Media studies to enhance the production of verticillins facilitated by in situ chemical analysis

UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
Nicholas Oberlies, Patricia A. Sullivan Distinguished Professor of Chemistry (Creator)
Huzefa A. Raja, Research Scientist (Creator)
Institution
The University of North Carolina at Greensboro (UNCG )
Web Site: http://library.uncg.edu/

Abstract: Verticillins are a group of epipolythiodioxopiperazine alkaloids that have displayed potent cytotoxicity. To evaluate their potential further, a larger supply of these compounds was needed for both in vivo studies and analogue development via semisynthesis. To optimize the biosynthesis of these secondary metabolites, their production was analyzed in two different fungal strains (MSX59553 and MSX79542) under a suite of fermentation conditions. These studies were facilitated by the use of the droplet-liquid microjunction-surface sampling probe (droplet probe), which enables chemical analysis in situ directly from the surface of the cultures. These experiments showed that the production of verticillins was greatly affected by growth conditions; a significantly higher quantity of these alkaloids was noted when the fungal strains were grown on an oatmeal-based medium. Using these technologies to select the best among the tested growth conditions, the production of the verticillin analogues was increased while concomitantly decreasing the time required for fermentations from 5 weeks to about 11 days. Importantly, where we could previously supply 5–10 mg every 6 weeks, we are now able to supply 50–150 mg quantities of key analogues per month via laboratory scale fermentation. [The original abstract for this article contains images that cannot be displayed here. Please click on the link below to read the full abstract and article.]

Additional Information

Publication
Journal of industrial microbiology & biotechnology
Language: English
Date: 2018
Keywords
Verticillin, Epipolythiodioxopiperazine alkaloids, In situ extraction, Filamentous, fungi Fermentation

Email this document to