Multiple timescales in postural dynamics associated with vision and a secondary task are revealed by wavelet analysis
- UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
- Christopher K. Rhea, Associate Professor (Creator)
- Institution
- The University of North Carolina at Greensboro (UNCG )
- Web Site: http://library.uncg.edu/
Abstract: Discrete wavelet analysis is used to resolve the center of pressure time series data into several timescale components, providing new insights into postural control. Healthy young and elderly participants stood quietly with their eyes open or closed and either performed a secondary task or stood quietly. Without vision, both younger and older participants had reduced energy in the long time-scales, supporting the concept that vision is used to control low frequency postural sway. Furthermore, energy was increased at timescales corresponding to closed-loop (somatosensory and vestibular) and open-loop mechanisms, consistent with the idea of a shift from visual control to other control mechanisms. However, a relatively greater increase was observed for older adults. With a secondary task a similar pattern was observed—increased energy at the short and moderate timescales, decreased energy at long timescales. The possibility of a common strategy—at the timescale level—in response to postural perturbations is considered.
Multiple timescales in postural dynamics associated with vision and a secondary task are revealed by wavelet analysis
PDF (Portable Document Format)
747 KB
Created on 8/1/2011
Views: 2042
Additional Information
- Publication
- Experimental Brain Research
- Language: English
- Date: 2009
- Keywords
- Postural dynamics, Wavelets, Nonlinear dynamics, Dual-task Vision, Aging, Timescales