Molecular Chirality and Charge Transfer through Self-Assembled Scaffold Monolayers

UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
Jianjun Wei, Associate Professor (Creator)
Institution
The University of North Carolina at Greensboro (UNCG )
Web Site: http://library.uncg.edu/

Abstract: The effect of molecular chirality on electron transmission is explored by photoelectrochemistry. Thiol-terminated chiral scaffold molecules containing a porphyrin chromophore were self-assembled on gold surfaces to form a monolayer. Incorporation of the SAM-coated gold into an electrochemical cell and illumination with visible light generated a cathodic photocurrent. When using circularly polarized light, the photocurrent displayed an asymmetry (different magnitude of photocurrent for right versus left polarization) that changed with the molecular chirality (left- or right-handedness of the scaffold). A symmetry constraint on the electronic coupling between the porphyrin and the organic scaffold is proposed as a possible mechanism for the photocurrent asymmetry.

Additional Information

Publication
J. of Physical Chemistry B.; 2006; 110(3); 1301-1308.
Language: English
Date: 2005
Keywords
photoelectrochemistry, electron transfer, electrochemical cell, cathodic photocurrent

Email this document to