The influences of sex and posture on joint energetics during drop landings

UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
Sandra J. Shultz, Professor and Chair (Creator)
The University of North Carolina at Greensboro (UNCG )
Web Site:

Abstract: Previous observations suggest that females utilize a more erect initial landing posture than males with sex differences in landing posture possibly related to sex-specific energy absorption (EA) strategies. However, sex-specific EA strategies have only been observed when accompanied by sex differences in initial landing posture. This study (a) investigated the potential existence of sex-specific EA strategies; and (b) determined the influences of sex and initial landing posture on the biomechanical determinants of EA. The landing biomechanics of 80 subjects were recorded during drop landings in Preferred, Flexed, and Erect conditions. No sex differences in joint EA were identified after controlling for initial landing posture. Males and females exhibited greater ankle EA during Erect vs Flexed landings with this increase driven by 12% greater ankle velocity, but no change in ankle extensor moment. No differences in hip and knee EA were observed between conditions. However, to achieve similar knee EA, subjects used 7% greater mean knee extensor moment but 9% less knee angular velocity during Flexed landings. The results suggest that sex-specific EA strategies do not exist, and that the magnitude of knee joint EA can be maintained by modulating the relative contributions of joint moment and angular velocity to EA.

Additional Information

Scandinavian Journal of Medicine & Science in Sports, 2015; 25: e166–e175
Language: English
Date: 2015
Kinematics, kinetics, energy absorption, landing biomechanics

Email this document to