Browse All

Theses & Dissertations

Submissions

  • Submissions (Articles, Chapters, and other finished products)

Multiple timescales in postural dynamics associated with vision and a secondary task are revealed by wavelet analysis

UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
Christopher K. Rhea, Assistant Professor (Creator)
Institution
The University of North Carolina at Greensboro (UNCG )
Web Site: http://library.uncg.edu/

Abstract: Discrete wavelet analysis is used to resolve the center of pressure time series data into several timescale components, providing new insights into postural control. Healthy young and elderly participants stood quietly with their eyes open or closed and either performed a secondary task or stood quietly. Without vision, both younger and older participants had reduced energy in the long time-scales, supporting the concept that vision is used to control low frequency postural sway. Furthermore, energy was increased at timescales corresponding to closed-loop (somatosensory and vestibular) and open-loop mechanisms, consistent with the idea of a shift from visual control to other control mechanisms. However, a relatively greater increase was observed for older adults. With a secondary task a similar pattern was observed—increased energy at the short and moderate timescales, decreased energy at long timescales. The possibility of a common strategy—at the timescale level—in response to postural perturbations is considered.

Additional Information

Publication
Experimental Brain Research
Language: English
Date: 2009
Keywords
Postural dynamics, Wavelets, Nonlinear dynamics, Dual-task Vision, Aging, Timescales