Contrasting modes of diversification in the Aux/IAA and ARF gene families

UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
David L. Remington, Associate Professor (Creator)
The University of North Carolina at Greensboro (UNCG )
Web Site:

Abstract: The complete genomic sequence for Arabidopsis provides the opportunity to combine phylogenetic and genomic approaches to study the evolution of gene families in plants. The Aux/IAA and ARF gene families, consisting of 29 and 23 loci in Arabidopsis, respectively, encode proteins that interact to mediate auxin responses and regulate various aspects of plant morphological development. We developed scenarios for the genomic proliferation of the Aux/IAA and ARF families by combining phylogenetic analysis with information on the relationship between each locus and the previously identified duplicated genomic segments in Arabidopsis. This analysis shows that both gene families date back at least to the origin of land plants and that the major Aux/IAA and ARF lineages originated before the monocot-eudicot divergence. We found that the extant Aux/IAA loci arose primarily through segmental duplication events, in sharp contrast to the ARF family and to the general pattern of gene family proliferation in Arabidopsis. Possible explanations for the unusual mode of Aux/IAA duplication include evolutionary constraints imposed by complex interactions among proteins and pathways, or the presence of long-distance cis-regulatory sequences. The antiquity of the two gene families and the unusual mode of Aux/IAA diversification have a number of potential implications for understanding both the functional and evolutionary roles of these genes.

Additional Information

Plant Physiology 135:1738-1752.
Language: English
Date: 2004
Arabidopsis genomic sequence, ARF, Aux/IAA, phylogenetic analysis

Email this document to