IFN-β Facilitates Neuroantigen-Dependent Induction of CD25+ FOXP3+ Regulatory T Cells That Suppress Experimental Autoimmune Encephalomyelitis

ECU Author/Contributor (non-ECU co-authors, if there are any, appear on document)
Duncheng,Ghosh,Debjani,Islam,Touhidul,Moorman,Cody Wang (Creator)
Institution
East Carolina University (ECU )
Web Site: http://www.ecu.edu/lib/

Abstract: This study introduces a flexible format for tolerogenic vaccination that incorporates IFN-β and neuroantigen (NAg) in the Alum adjuvant. Tolerogenic vaccination required all three components, IFN-β, NAg, and Alum, for inhibition of experimental autoimmune encephalomyelitis (EAE) and induction of tolerance. Vaccination with IFN-β + NAg in Alum ameliorated NAg-specific sensitization and inhibited EAE in C57BL/6 mice in pretreatment and therapeutic regimens. Tolerance induction was specific for the tolerogenic vaccine Ag PLP178-191 or myelin oligodendrocyte glycoprotein (MOG)35--55 in proteolipid protein-- and MOG-induced models of EAE, respectively, and was abrogated by pretreatment with a depleting anti-CD25 mAb. IFN-β/Alum--based vaccination exhibited hallmarks of infectious tolerance, because IFN-β + OVA in Alum--specific vaccination inhibited EAE elicited by OVA + MOG in CFA but not EAE elicited by MOG in CFA. IFN-β + NAg in Alum vaccination elicited elevated numbers and percentages of FOXP3+ T cells in blood and secondary lymphoid organs in 2D2 MOG-specific transgenic mice, and repeated boosters facilitated generation of activated CD44high CD25+ regulatory T cell (Treg) populations. IFN-β and MOG35--55 elicited suppressive FOXP3+ Tregs in vitro in the absence of Alum via a mechanism that was neutralized by anti--TGF-β and that resulted in the induction of an effector CD69+ CTLA-4+ IFNAR+ FOXP3+ Treg subset. In vitro IFN-β + MOG--induced Tregs inhibited EAE when transferred into actively challenged recipients. Unlike IFN-β + NAg in Alum vaccines, vaccination with TGF-β + MOG35-55 in Alum did not increase Treg percentages in vivo. Overall, this study indicates that IFN-β + NAg in Alum vaccination elicits NAg-specific, suppressive CD25+ Tregs that inhibit CNS autoimmune disease. Thus, IFN-β has the activity spectrum that drives selective responses of suppressive FOXP3+ Tregs.

Additional Information

Publication
Other
Language: English
Date: 2016

Email this document to

This item references:

TitleLocation & LinkType of Relationship
IFN-β Facilitates Neuroantigen-Dependent Induction of CD25+ FOXP3+ Regulatory T Cells That Suppress Experimental Autoimmune Encephalomyelitishttp://hdl.handle.net/10342/8301The described resource references, cites, or otherwise points to the related resource.