Is Motorized Treadmill Running Biomechanically Comparable to Overground Running? A Systematic Review and Meta-Analysis of Cross-Over Studies

ECU Author/Contributor (non-ECU co-authors, if there are any, appear on document)
Bas,Fuller,Joel T.,Buckley,Jonathan D.,Miller,Jayme R.,Sewell,Kerr Van Hooren (Creator)
Institution
East Carolina University (ECU )
Web Site: http://www.ecu.edu/lib/

Abstract: Background Treadmills are often used in research, clinical practice, and training. Biomechanical investigations comparing treadmill and overground running report inconsistent findings. Objective This study aimed at comparing biomechanical outcomes between motorized treadmill and overground running. Methods Four databases were searched until June 2019. Crossover design studies comparing lower limb biomechanics during non-inclined, non-cushioned, quasi-constant-velocity motorized treadmill running with overground running in healthy humans (18-65 years) and written in English were included. Meta-analyses and meta-regressions were performed where possible. Results 33 studies (n = 494 participants) were included. Most outcomes did not differ between running conditions. However, during treadmill running, sagittal foot-ground angle at footstrike (mean difference (MD) − 9.8° [95% confidence interval: − 13.1 to − 6.6]; low GRADE evidence), knee flexion range of motion from footstrike to peak during stance (MD 6.3° [4.5 to 8.2]; low), vertical displacement center of mass/pelvis (MD − 1.5 cm [− 2.7 to − 0.8]; low), and peak propulsive force (MD − 0.04 body weights [− 0.06 to − 0.02]; very low) were lower, while contact time (MD 5.0 ms [0.5 to 9.5]; low), knee flexion at footstrike (MD − 2.3° [− 3.6 to − 1.1]; low), and ankle sagittal plane internal joint moment (MD − 0.4 Nm/kg [− 0.7 to − 0.2]; low) were longer/higher, when pooled across overground surfaces. Conflicting findings were reported for amplitude of muscle activity. Conclusions Spatiotemporal, kinematic, kinetic, muscle activity, and muscle-tendon outcome measures are largely comparable between motorized treadmill and overground running. Considerations should, however, particularly be given to sagittal plane kinematic differences at footstrike when extrapolating treadmill running biomechanics to overground running.

Additional Information

Publication
Other
Language: English
Date: 2019

Email this document to

This item references:

TitleLocation & LinkType of Relationship
Is Motorized Treadmill Running Biomechanically Comparable to Overground Running? A Systematic Review and Meta-Analysis of Cross-Over Studieshttp://hdl.handle.net/10342/8224The described resource references, cites, or otherwise points to the related resource.