A Permutation based Mixed Eect Model in Rare Variants Association Study
- UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
- Luke Vilaseca (Creator)
- Institution
- The University of North Carolina at Greensboro (UNCG )
- Web Site: http://library.uncg.edu/
- Advisor
- Jianping Sun
Abstract: In the past decade, rare variant association study has become popular in the scientific field to identify disease associated rare genetic variants. A lot of statistical methods have been developed since then, including the method of mixed effect score test (MiST) proposed by Sun et. al., 2013. Though MiST is a more robust method comparing with other existing methods, it has the limitation of potential type I error inflation under some circumstances. Hence, the aim of my research is to improve MiST so that it can control type I error well. Particularly, we will use permutation based method to improve MiST and use simulations under various scenarios to examine the performance of this improvement in terms of type I error rate.
A Permutation based Mixed Eect Model in Rare Variants Association Study
PDF (Portable Document Format)
207 KB
Created on 1/8/2021
Views: 232
Additional Information
- Publication
- Honors Project
- Language: English
- Date: 2020
- Keywords
- MiST, Mixed Effect Model, Rare Variants, Statistics, Mathematics, Permutation, Genetics