Biodemographic analysis of male honey bee mortality
- UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
- Olav Rueppell, Associate Professor (Creator)
- Institution
- The University of North Carolina at Greensboro (UNCG )
- Web Site: http://library.uncg.edu/
Abstract: Biodemographic studies of insects have significantly enhanced our understanding of the biology of aging. Eusocial insects have evolved to form different groups of colony members that are specialized for particular tasks and highly dependent on each other. These different groups (castes and sexes) also differ strongly in their life expectancy but relatively little is known about their mortality dynamics. In this study we present data on the age-specific flight activity and mortality of male honey bees from two different genetic lines that are exclusively dedicated to reproduction. We show that males initiating flight at a young age experience more flight events during their lifetime. No (negative) relation between the age at flight initiation and lifespan exists, as might be predicted on the basis of the antagonistic pleiotropy theory of aging. Furthermore, we fit our data to different aging models and conclude that overall a slight deceleration of the age-dependent mortality increase at advanced ages occurs. However, mortality risk increases according to the Gompertz–Makeham model when only days with flight activity (active days) are taken into account. Our interpretation of the latter is that two mortality components act on honey bee males during flight: increasing, age-dependent deaths (possibly from wear-and-tear), and age-independent deaths (possibly due to predation). The overall mortality curve is caused by the interaction of the distribution of age at foraging initiation and the mortality function during the active (flight) lifespan.
Biodemographic analysis of male honey bee mortality
PDF (Portable Document Format)
270 KB
Created on 1/1/2005
Views: 2627
Additional Information
- Publication
- Aging Cell, 4: 13-19
- Language: English
- Date: 2005
- Keywords
- aging, biodemography, drones, life history, mortality dynamics, reproduction, social evolution