Engineering education for youth: diverse elementary school students' experiences with engineering design

UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
Theresa Hegedus (Creator)
Institution
The University of North Carolina at Greensboro (UNCG )
Web Site: http://library.uncg.edu/
Advisor
Heidi Carlone

Abstract: Lingering concerns over the persistent achievement gap amidst the trend of an increasingly diverse society have been compounded by calls from the Oval Office, the National Science Board, and nationwide media to also address our current creativity crisis. Now, more than ever, we have a responsibility to produce a STEM-capable (science, technology, engineering, and mathematics) workforce to meet the demands of our rapidly changing local and global economic landscape. Barriers exist in our traditional educational system, which has historically limited underrepresented groups' affiliation and membership in the disciplines of science and engineering. The recent incorporation of engineering into the latest science education reform efforts presents an opportunity to expose students as early as elementary school to engineering practices and habits of mind, which have the potential to stimulate creative thinking skills through engineering design. This qualitative study was designed to examine the ways in which engineering education has the potential to promote creativity and academic competence in elementary science classrooms. As a part of my study, a diverse group of students from two fifth-grade classrooms took part in a 10-12 hour, engineering-based curriculum unit (Engineering is Elementary) during their regular science instructional time. Using a sociocultural lens, to include cultural production and identities in practice as part of my framework, I analyzed group and individual performances through classroom observations, student interviews, and teacher reflections to better understand the meaning students made of their experiences with engineering. Findings from the study included the ways in which creativity was culturally produced in the classroom to include: 1) idea generation; 2) design and innovation; 3) gumption/resourcefulness; and 4) social value. Opportunities for collaboration increased through each stage of the unit culminating with the design challenge. Engineering teams required cultivation by the teacher as students negotiated spaces for collaboration through challenges of competition versus compromise; assumed versus assigned roles; management of verbal versus non-verbal communication; and shifts from teacher-as-authority-figure to peers as sources of knowledge and inspiration. The engineering design challenge provided an ideal context for broaching socio-scientific issues and attention to ethical considerations. Students made reference to their growing environmental awareness and developing moral reasoning in their definitions and reflections on green engineering. Throughout the course of the unit, successful students, struggling students, and students with uncertain trajectories established themselves as competent and efficacious engineers. Implications of the study include ways to assist teachers in recognizing and cultivating creativity and collaboration in addition to effectively incorporating socio-scientific issues as part of the engineering (and science) curriculum. I also present recommendations for promoting equity in classroom engineering, pre-service teacher initiatives, and strategies for capitalizing on the complementarity between science and engineering.

Additional Information

Publication
Dissertation
Language: English
Date: 2014
Keywords
Creativity, Elementary, Engineering design, Engineering education, Equity, Identity
Subjects
Engineering $x Study and teaching (Elementary) $z United States
Science $x Study and teaching (Elementary) $z United States
Creative thinking in children $x Study and teaching (Elementary) $z United States
Educational equalization $z United States

Email this document to