Effects of inhaled brevetoxins in allergic airways: Toxin–allergen interactions and pharmacologic intervention

UNCW Author/Contributor (non-UNCW co-authors, if there are any, appear on document)
Daniel G Baden, Director (Creator)
Andrea J. Bourdelais, Research Associate Professor (Creator)
Institution
The University of North Carolina Wilmington (UNCW )
Web Site: http://library.uncw.edu/

Abstract: During a Florida red tide, brevetoxins produced by the dinoflagellate Karenia brevis become aerosolized and cause airway symptoms in humans, especially in those with pre-existing airway disease (e.g., asthma). To understand these toxin-induced airway effects, we used sheep with airway hypersensitivity to Ascaris suum antigen as a surrogate for asthmatic patients and studied changes in pulmonary airflow resistance (R-L) after inhalation challenge with lysed cultures of K brevis (crude brevetoxins). Studies were done without and with clinically available drugs to determine which might prevent/reverse these effects. Crude brevetoxins (20 breaths at 100 mu g/mL; n = 5) increased R-L 128 +/- 6% (mean +/- SE) over baseline. This bronchoconstriction was significantly reduced (% inhibition) after pretreatment with the glucocorticosteroid budesonide (49%), the beta(2) adrenergic agent albuterol (71%), the anticholinergic agent atropine (58%), and the histamine H-1-antagonist diphenhydramine (47%). The protection afforded by atropine and diphenhydramine suggests that both cholinergic (vagal) and HI-mediated pathways contribute to the bronchoconstriction. The response to cutaneous toxin injection was also histamine mediated. Thus, the airway and skin data support the hypothesis that toxin activates mast cells in vivo. Albuterol given immediately after toxin challenge rapidly reversed the bronchoconstriction. Toxin inhalation increased airway kinins, and the response to inhaled toxin was enhanced after allergen challenge. Both factors could contribute to the increased sensitivity of asthmatic patients to toxin exposure. We conclude that K brevis aerosols are potent airway constrictors. Clinically available drugs may be used to prevent or provide therapeutic relief for affected individuals. Published online 2005 February 10. doi: 10.1289/ehp.7498.

Additional Information

Publication
Abraham, W. M., Bourdelais, A. J., Ahmed, A., Serebriakov, I., & Baden, D. G. (2005). Effects of inhaled brevetoxins in allergic airways: Toxin–allergen interactions and pharmacologic intervention. Environmental Health Perspectives, 113(5), 632-637. doi:10.1289/ehp.7498. [Reproduced with permission from Environmental Health Perspectives.]
Language: English
Date: 2009
Keywords
Animal models in research, Asthma, Red tide--Florida
Subjects
Animal models in research
Asthma
Red tide--Florida