Realizable Dicyclic Groups

ASU Author/Contributor (non-ASU co-authors, if there are any, appear on document)
Lindsey Wise (Creator)
Appalachian State University (ASU )
Web Site:
William Cook

Abstract: It is well-known that the units of a ring forms a group called the group of units. A group that is the group of units for some ring is said to be realizable. Fuchs’ problem asks whether a given group is realizable by some ring. In this paper, we present the resolution of Fuchs’ problem for dihedral groups as given in [CL1]. We then present partial results for dicyclic groups. For dicyclic groups of order 12 and smaller, our results are complete.

Additional Information

Honors Project
Wise, L. (2020). Realizable Dicyclic Groups. Unpublished Honors Thesis. Appalachian State University, Boone, NC.
Language: English
Date: 2020
Fuchs' Problem, group theory, ring theory, unit groups

Email this document to