Responses To Hyperthermia. Optimizing Heat Dissipation By Convection And Evaporation: Neural Control Of Skin Blood Flow And Sweating In Humans

ASU Author/Contributor (non-ASU co-authors, if there are any, appear on document)
Caroline Smith, Assistant Professor (Creator)
Institution
Appalachian State University (ASU )
Web Site: https://library.appstate.edu/

Abstract: Under normothermic, resting conditions, humans dissipate heat from the body at a rate approximately equal to heat production. Small discrepancies between heat production and heat elimination would, over time, lead to significant changes in heat storage and body temperature. When heat production or environmental temperature is high the challenge of maintaining heat balance is much greater. This matching of heat elimination with heat production is a function of the skin circulation facilitating heat transport to the body surface and sweating, enabling evaporative heat loss. These processes are manifestations of the autonomic control of cutaneous vasomotor and sudomotor functions and form the basis of this review. We focus on these systems in the responses to hyperthermia. In particular, the cutaneous vascular responses to heat stress and the current understanding of the neurovascular mechanisms involved. The available research regarding cutaneous active vasodilation and vasoconstriction is highlighted, with emphasis on active vasodilation as a major responder to heat stress. Involvement of the vasoconstrictor and active vasodilator controls of the skin circulation in the context of heat stress and nonthermoregulatory reflexes (blood pressure, exercise) are also considered. Autonomic involvement in the cutaneous vascular responses to direct heating and cooling of the skin are also discussed. We examine the autonomic control of sweating, including cholinergic and noncholinergic mechanisms, the local control of sweating, thermoregulatory and nonthermoregulatory reflex control and the possible relationship between sudomotor and cutaneous vasodilator function. Finally, we comment on the clinical relevance of these control schemes in conditions of autonomic dysfunction.

Additional Information

Publication
Smith, C. & Johnson, J. (2016). Responses To Hyperthermia. Optimizing Heat Dissipation By Convection And Evaporation: Neural Control Of Skin Blood Flow And Sweating In Humans. Autonomic Neuroscience: Basic and Clinical 196 (2016) 25–36. http://dx.doi.org/10.1016/j.autneu.2016.01.002. Publisher version of record available at: https://www.autonomicneuroscience.com/article/S1566-0702(16)30002-9/pdf
Language: English
Date: 2016
Keywords
Cutaneous, Vasodilation, Sweating, Thermoregulation, Autonomic, Hyperthermia

Email this document to