Increasing the specificity of CRISPR systems with engineered RNA secondary structures
- UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
- Eric Josephs, Assistant Professor (Creator)
- Institution
- The University of North Carolina at Greensboro (UNCG )
- Web Site: http://library.uncg.edu/
Abstract: CRISPR (clustered regularly interspaced short palindromic repeat) systems have been broadly adopted for basic science, biotechnology, and gene and cell therapy. In some cases, these bacterial nucleases have demonstrated off-target activity. This creates a potential hazard for therapeutic applications and could confound results in biological research. Therefore, improving the precision of these nucleases is of broad interest. Here we show that engineering a hairpin secondary structure onto the spacer region of single guide RNAs (hp-sgRNAs) can increase specificity by several orders of magnitude when combined with various CRISPR effectors. We first demonstrate that designed hp-sgRNAs can tune the activity of a transactivator based on Cas9 from Streptococcus pyogenes (SpCas9). We then show that hp-sgRNAs increase the specificity of gene editing using five different Cas9 or Cas12a variants. Our results demonstrate that RNA secondary structure is a fundamental parameter that can tune the activity of diverse CRISPR systems.
Increasing the specificity of CRISPR systems with engineered RNA secondary structures
PDF (Portable Document Format)
5728 KB
Created on 6/24/2020
Views: 550
Additional Information
- Publication
- Nature Biotechnology 37, 657–666
- Language: English
- Date: 2019
- Keywords
- CRISPR, single guide RNAs (sg-RNAs), gene editing, Streptococcus pyogenes