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PREFACE 
 

 
 This thesis is organized in a manuscript format consisting of three chapters.  Chapter 1 is 

an introduction to this project’s relevance in the southern Appalachians and contribution to 

species distribution modeling.  Chapter 2 is a summary of scientific literature that explores rare 

plant species and the growing field of knowledge regarding species distribution modeling.  

Chapter 3 is the manuscript consisting of an introduction, methods, results, and discussion of the 

project.  Literature Cited lists references from all three chapters.   
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ABSTRACT 
 
 

HABITAT MODELING OF A RARE ENDEMIC TRILLIUM SPECIES (TRILLIUM SIMILE 
GLEASON): A COMPARISON OF THE METHODS MAXENT AND DOMAIN FOR 
MODELING RARE SPECIES-RICH HABITAT 
 
Ashley Mendenhall Hawk, M.S.  
 
Western Carolina University (June 2017) 
 
Director: Dr. Laura E. DeWald 
 
 
Many species habitat and distribution models are available that use field habitat observations to 

identify environmental predictor variables and quantify species-environment relationships. The 

relative effectiveness in terms of ease of use and accurately predicting habitat is not known for 

many of the models. The purpose of this study was to compare Maxent (a machine learning 

probability model) to DOMAIN (a simple GIS statistical profile model) in terms of their habitat 

prediction. Both models were used to predict habitat for the rare Trillium simile, an endemic 

species of the southern Appalachian Mountains found in the very rich cove environments that 

also provide critical habitat for other similarly sensitive species. Habitat was characterized by 

measuring biotic and abiotic variables at 20 sites where the species was found scattered 

throughout National Forests (Pisgah, Nantahala, Cherokee, and Sumter) in North Carolina and 

South Carolina, and the Great Smoky Mountains National Park in Tennessee.  Digital 

environmental and climatic data for the known locations were matched to the abiotic and biotic 

variables measured in the field to create the models. Maxent performed with an AUC of 0.839; a 

DOMAIN AUC was not available because output was not automatic, and there was insufficient 

guidance on how to calculate the AUC.  Highly suitable, suitable, and unsuitable habitat were 

identified for T. simile using both Maxent and DOMAIN.  Model validation was performed by 
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visiting a total of 12 highly suitable sites predicted by each model, where the original variables 

were collected for comparison against known occurrence sites.  Model predicted data were 

compared to the known T. simile site data using statistical analyses and quantitative assessment.  

Maxent and DOMAIN models were compared using a method agreement analysis.  Univariate 

ANOVA results, descriptive statistics, and percentages of sites withheld during model testing 

showed that both models successfully predicted highly suitable habitat for T. simile consistent 

with the characteristics of the known occurrence locations, although predictions were slightly 

different.  Method agreement analysis resulted in a Cohen’s kappa of substantial agreement 

(κ=0.674) between the methods Maxent and DOMAIN.  Specific project objectives coupled with 

the complexity of understanding and evaluating model performance makes choosing a “best-fit” 

model a challenge for modeling rare, endemic plant species.  Both models were successful at 

predicting suitable habitat for T. simile, and although Maxent proved to work well on a small-

scale, DOMAIN was much simpler to use and is thus the recommended method.  Additional 

experience using both models under different project circumstances and informed opinion will 

further assist modelers in deciding whether to use a complex model like Maxent or a more 

simple, less flexible model like DOMAIN when modeling habitat distribution for rare plants like 

T. simile.  

 

 

 

 

 



CHAPTER 1: INTRODUCTION 
 
 

Rare plant species possess distinct functional traits that significantly contribute to 

important ecological functions, such as productivity, organic matter degradation, bioerosion, and 

bioturbation, and their extirpation may alter biogeochemical and dynamic ecosystem processes 

(Mouillot et al. 2013).  Unfortunately, rare species ecosystem functions and the species 

themselves are vulnerable to extinction as recent trends show a decline in biodiversity and loss of 

rare species (Mouillot et al. 2013).  In the United States over 744 plant species are listed as either 

threatened or endangered (Farnsworth 2014).  The southern Appalachian Mountains of western 

North Carolina and eastern Tennessee are home to some of the most species-diverse forests, 

making their conservation and protection a highly desirable goal (Irwin & Andrew 2000).  

Furthermore, the occurrence of rare species in the herbaceous layer, some of which are 

categorized as threatened or endangered, contributes to forest ecosystem biodiversity.  Because 

of their specificity of habitat and resources, rare herbaceous plants are useful as indicators of 

biodiversity (Gilliam 2007).   

One rare plant species in the southern Appalachians is sweet white trillium (Trillium 

simile Gleason), which is found in very rich cove sites.  These particular cove sites are 

considered “richer” due to a very high diversity of flora and abundance of endemic species 

(Loucks et al. 2017).  T. simile is classified as imperiled in North Carolina and Georgia and 

critically imperiled in South Carolina, and is endemic to a narrow ecological range in the 

southern Appalachian Mountains (Pistrang 2016).  Most of the extant populations are found in 

National Forest lands of the three southeastern states North Carolina, South Carolina, and 

Georgia, as well as the Tennessee side of the Great Smoky Mountains National Park (GRSM).  

Much more is known about more common trillium species such as Trillium grandiflorum 
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(Michx.) Salisb. compared to knowledge about the ecological importance, specific habitat 

requirements, and distribution of T. simile. There are no peer-reviewed journal articles on these 

aspects of T. simile whose habitat is currently under threat due to factors including land-use 

conversion, habitat fragmentation, and invasion by non-native shade tolerant weed species 

(Pistrang 2016). 

One way to identify forest habitats where rare plant species are found is through the use 

of species habitat and distribution models (SDMs) that relate field habitat observations where 

species are found to environmental predictor variables to quantify species-environment 

relationships (Guisan & Thuiller 2005).  The subsequent models predict potential suitable habitat 

where certain species are likely to occur based on where we know they already do occur, making 

the models useful for conservation projects.  Maps of potential habitat suitability aid in 

management of rare, threatened, and endangered species by identifying sites for potential 

restoration, protection for species introduction, and can lead to discovery of new populations 

(Hernandez et al. 2006).  There is a wide range of methods for modeling species habitat that can 

be used for rare or common species of plants and animals.  Currently, there is growing interest in 

the use of presence-only data models, which are based on known observations of the species and 

use no reliable data on where the species is not found (Pearce & Boyce 2006).  Presence-only 

data may be more reliable than presence-absence data because absence data are infrequently 

available, and even when available may be of questionable value in many situations (Phillips et 

al. 2006).  A 2002 study showed that although presence-absence based methods were often more 

discriminate than presence-only techniques, they appeared to be less suitable for identifying 

areas with high conservation concern, which is often the case with rare species (Zaniewski et al. 

2002).  For instance, if the ultimate goal is to protect endangered or rare species, overestimating 
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areas of potentially elevated biodiversity might be more preferable than underestimating their 

existence, thus making presence-only methods quite useful (Zaniewski et al. 2002).  A major 

conclusion of a comparison of several modeling methods also definitively showed that presence-

only data are useful for modeling species’ distributions (Elith et al. 2006).  

In this project, two different types of species habitat modeling programs were used to 

gain an understanding of T. simile habitat requirements: Maximum entropy (Maxent) and 

DOMAIN.  Both Maxent and DOMAIN use presence-only data to predict potential geographic 

locations of rare species (Philips et al. 2006).  Maxent is a general purpose, machine learning 

probability model that searches for predicted occurrences based on the probability distribution 

that is most uniform using a set of variables. The DOMAIN model is a simple biophysical 

envelope that defines the degree of similarity among species-presence sites in terms of their 

environmental variables (Pearce & Boyce 2006). Strengths and weaknesses and comparisons of 

various models have been documented, but the relative effectiveness of Maxent versus 

DOMAIN has not been compared in the southern Appalachian Mountains for a rare herbaceous 

plant. Therefore, these two models were compared to determine which method might be more 

useful in terms of accuracy, ease of use, new population discoveries, and other factors in 

predicting habitat for T. simile.  With any comparative modeling method exercise, results may 

differ in a new study area, at a different spatial scale, and with varying qualities of model data, 

including but not limited to the species of interest and environmental data variables (Hernandez 

et al. 2006).  

The purpose of this research was to compare the advantages and disadvantages of two 

methods when applied to the same data set in one particular context, which is that of a rare 

herbaceous plant endemic to the southern Appalachian Mountains.  In studies that involve any 
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kind of species or habitat distribution modeling, choosing the most appropriate method is 

facilitated by increased publication and access to such comparative papers.  Thus, this project 

can contribute to the growing field of the study of SDM use and effectiveness.  The specific 

objectives of this project were to: 1) characterize the species-rich, diverse habitat of T. simile; 2) 

create and validate habitat models using both Maxent and DOMAIN methods; and 3) evaluate 

the efficacy and accuracy of the two separate methods for modeling rare species habitat on a 

small scale for use in the Great Smoky Mountains National Park and the National Forests of the 

southern Appalachian Mountains. 
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CHAPTER 2: LITERATURE SUMMARY 
 
 
Species of Interest: Trillium simile (Gleason) 
 
 
 Trillium simile is in the family Melanthiaceae and is commonly known as the “jeweled 

wakerobin” or “sweet white trillium”. It is also synonymous with Trillium vaseyi var. simile 

(Gleason) Barksdale.  “Trille” comes from the Latin trilix meaning triple, which refers to the 

plant having parts in threes (Case 2002).  T. simile is a spring-flowering (late March to early 

May) perennial herb that is native to the southern Appalachian Mountains in North Carolina, 

Tennessee, South Carolina, and Georgia.  It is endemic to a small area within these four states in 

the vicinity of the Great Smoky Mountains and southern edge of the Blue Ridge Mountains.  

Globally, NatureServe lists this species with a G3 rank (21-100 population present) (Pistrang 

2016).  In North Carolina and Georgia it has a rank of S2 (6-20 populations present), meaning 

the species is imperiled, and in South Carolina it has a rank of S1 (5 or fewer occurrences) 

(Pistrang 2016).  Because of its narrow range this species is especially vulnerable to land-use 

conversion and habitat fragmentation (e.g., second home developments), although forest 

management practices are a low-level threat to this species.  These statements by NatureServe 

are amongst the few notes on threats to this species.  There is also a notable lack of studies on the 

habitat requirements of T. simile, although habitat descriptions and publications of other more 

common Trillium species are available.  Furthermore, published literature lacks information on 

the species’ demographics and population dynamics. 

 T. simile flowers have a sweet, apple-like odor, very unlike the scent of Trillium erectum 

L., which has a fetid odor like wet dog.  The petals of T. simile are flat, creamy white, spreading 

and not recurved at the tip.  The ovary is dark purple to black, pyramidal at anthesis, very 
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strongly 6-angled, and 7-12 mm wide.  The inflorescence is showy and large, especially 

compared to other Trillium species. The fruits are baccate, purple to black, odorless, orbicular 1-

1.5 cm diameter, and fleshy but not juicy (Case 2002).  T. simile are often found on the edges of 

forests in very humus-rich soils in rich coves of mature forests over mafic or calcareous rock, 

often in or near seepages and close to rhododendron (Rhododendron L.) thickets (Pistrang 2016).  

T. simile hybridizes with T. erectum, giving it the additional common name “confusing trillium”, 

since identification can be difficult when it is not in its most robust condition and exhibiting the 

characteristics that distinguish it from T. erectum and Trillium vaseyi Harbison (Case 2002).  

    
Species Distribution Models 
 
 

The development of species distribution models (SDMs) is a rapidly developing field in 

which distributions of plants or wildlife at various spatial scales is applicable in ecology, 

conservation biology, natural resource management, and several others.  Creation of these 

models is also referred to as environmental niche modeling, ecological niche modeling, 

predictive habitat distribution modeling, or climate envelope modeling.  Regardless of the name, 

SDMs use computer algorithms to predict species distribution in geographical space.  These 

empirical models relate field observations to environmental predictor variables, and most are 

based on quantifying species-environment relationships (Guisan & Thuiller 2005; Guisan & 

Zimmerman 2000).  Most of the models do not identify where the species of interest is actually 

located, but rather identify habitat that is suitable or unsuitable for that particular species based 

on the input species data and environmental variables.   

Most of the common modeling algorithms fall under three techniques: profile, regression-

based, and machine learning.  Profile techniques use presence-only data and involve simple 
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statistics that use such variables as environmental distance to known sites.  These profile, 

bioclimatic envelope techniques include DOMAIN and BIOCLIM.  Regression-based techniques 

require both presence and absence data and include generalized linear models (GLM), 

generalized additive models (GAM), and multivariate adaptive regression splines (MARS).  The 

machine learning techniques include Maximum entropy (Maxent), artificial neural networks 

(ANN), genetic algorithm for rule set production (GARP), boosted regression trees (BRT), 

random forest (RF), and support vector machines (SVM).  Some of these methods require either 

presence-only data (e.g., Maxent) or both presence and absence data (e.g., ANN).  The result of 

numerous available modeling algorithms is a growing bank of literature on the suitability, 

reliability, and advantages and disadvantages of modeling techniques for a certain purpose. 

SDMs all use species occurrence data, which come from locations where the species is 

known to exist and where data are obtained primarily from field sampling although they can also 

come from natural history collections such as herbariums or online databases.  Species data can 

be presence-only, presence-absence, or abundance data, and various modeling algorithms have 

been developed for both.  Each type of data has pros and cons depending on the aim of the study 

or project, and many have been shown to outperform others in certain situations.  For instance, 

some studies have shown that the addition of absence data results in better model performance 

than those studies that just use presence-only data.  In fact, some researchers recommend 

analysis of data in a strictly presence-absence framework whenever possible because fewer 

assumptions are required and better inferences can be made about occurrence probability (Elith 

et al. 2006; Yackulic et al. 2013).  One study showed that broad-scale models like Maxent and 

Boosted Regression Tree techniques performed poorly in modeling vulnerable marine 

ecosystems because absence data was not used.  The study suggested such broad-scale models 
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could improve performance and avoid over-estimation by incorporating true absence data 

(Anderson et al. 2016). These results suggest using caution when applying and interpreting 

broad-scale, presence-only models.  Also, presence data is not always readily available or 

reliable because of large, unknown biases due to unsystematic collection schemes, and unlike 

absence data, occurrence data for most species that come from herbarium collections or that are 

accessible online have been recorded with an unknown method and intent of collection (Elith et 

al. 2006; Fithian et al. 2014). Conversely, a 2002 study showed that although presence-absence 

based methods were more discriminate than presence-only techniques, they appeared to be less 

suitable to identify areas with high conservation concern (Zaniewski et al. 2002).  As a result, 

presence-only techniques might be more preferable when the species of concern is rare, 

endangered, or has high conservation priority.  Presence-only data has proven useful for habitat 

modeling, an important finding given the improved accessibility of occurrence records and ever-

improving high-resolution environmental data. 

Choosing appropriate environmental variables for creating SDMs significantly improves 

model performance when predictors known to be ecologically relevant to the species of interest 

are used (Elith & Leathwick 2009). All digital environmental data must be manipulated using a 

geographical information system (GIS), such as ArcGIS, to prepare them for use by the chosen 

model (Guisan & Thuiller 2005; Guisan & Zimmermann 2000; Hernandez et al. 2006).  

Variables that describe the abiotic environment related to topography (e.g., elevation, slope, 

aspect), climate, (e.g., precipitation, temperature), land cover, land use, and soil type are amongst 

the most common digital data variables used because they have been used to help explain 

vegetation patterns around the world (Guisan & Zimmermann 2000).  Topographic data are 

obtained from the United States Geological Survey (USGS) National Elevation Dataset (NED) 
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(http://ned.usgs.gov; Hernandez et al. 2006; Pearson et al. 2006; Williams et al. 2009).  Climate 

data are typically obtained from WorldClim (http://www.worldclim.org) or the National Oceanic 

and Atmospheric Administration (NOAA) (http://www.noaa.gov; Pearson et al. 2006).  Even 

remotely sensed data are used in some modeling programs, although not extensively; the data are 

typically obtained from USGS Landsat (http://landsat.usgs.gov) and provide data from satellite 

imagery (Williams et al. 2009).  

Evaluation of SDMs often focuses on predictive performance of the models and includes 

statistics such as area under receiver operating characteristic (ROC) curve (AUC), correlation 

(COR), and Kappa that assess the agreement between presence record data and predictions. AUC 

measures a model’s ability to discriminate between where a species is present and where it is 

absent, which helps indicate how useful a model is for prioritizing areas as suitable habitat for a 

particular species.  AUC values range from 0 to 1, where 1 is perfect discrimination, 0.5 is 

discrimination no better than a random guess, and values less than 0.5 are considered failures 

indicating performance worse than random guessing.  Other techniques such as true sill statistic 

(TSS) were also used.  TSS is an alternative measure of model accuracy that works like Kappa 

but corrects for some of the drawbacks (such as inherent dependence on prevalence) that critics 

have identified of Kappa while still keeping the advantages (Allouche et al. 2006).  Field 

validation as a method of assessing model performance was nearly nonexistent in published 

research, despite the fact that ground observation would provide supporting evidence of a 

model’s reliability in predicting suitable habitat.  For instance, Maxent modeling was used to 

predict suitable habitat for a threatened and endangered tree species in New Caledonia and 

performed at a 91% success rate; however, field validation was notably absent from the study 

(Kumar & Stohlgren 2009). 
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Maxent and DOMAIN 
 
 

The two SDMs of interest in this study were Maxent and DOMAIN.  Maxent is a general 

purpose, machine learning probability model that searches for predicted occurrences based on 

the probability distribution that is most uniform using a set of variables.  Maxent software uses 

categorical and continuous data and is available for use by both the public and professional 

organizations. This model is flexible in regard to the variables used and the form of their 

relationships to species presence (Williams et al. 2009).  Studies have shown that Maxent 

consistently outperforms other traditional linear models (Elith et al. 2006; Phillips et al. 2005) 

and that it can somewhat compensate for incomplete or small species data sets (as is typical of 

rare species) and still perform near maximal accuracy level (Hernandez et al. 2006; Kumar & 

Stohlgren 2009).  It should be noted that while Maxent has traditionally been used to model 

habitat distribution on a large, regional scale, its effectiveness is largely unknown on smaller, 

ecologically narrow scales (Elith et al. 2011; Phillips et al. 2006).  

When using SDMs, creating a balance between complexity and simplicity could benefit 

model performance, suggesting that researchers should constrain the complexity of their models 

based on study objective, attributes of the data, and how these interact with the underlying 

biological processes (Merow et al. 2014).  Avoiding very complex or overly simplistic 

techniques will prevent poorly fit models because ‘over-fit’, complex models run the risk of 

being superfluous and ascribing significant patterns to noise, whereas ‘under-fit’, simple models 

could misunderstand the factors that shape species distributions (Merow et al. 2014).  Study of 

the performance of a simple model such as DOMAIN is an opportunity to assess whether a 

similar technique can still produce reliable habitat predictions.  DOMAIN is a simple biophysical 

envelope that defines the degree of similarity among species-presence sites in terms of their 
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environmental variables (Pearce & Boyce 2006).  The algorithm uses a computerized procedure 

that calculates a Gower similarity index for each pixel in the study area based upon how closely 

the environmental values at that point correlate with the environmental values at points of known 

occurrences. This method also uses fewer biophysical attributes than Maxent and has proven to 

be more suitable in applications where available records are limited, and thus might be easier to 

apply at smaller spatial scales (Carpenter et al. 1993; Guisan & Zimmerman 2000). The 

DOMAIN method uses categorical and continuous data, is available for use by both the public as 

well as private or government sectors, and its output can be easily integrated into a Geographic 

Information Systems (GIS). Furthermore, DOMAIN uses continuous similarity function, which 

gives it increased flexibility as a heuristic tool.  In an original early study, DOMAIN, compared 

to some other alternative models, produced distribution patterns most consistent with species 

ecology (Carpenter et al. 1993). 

Recent and ongoing advancements in GIS allow predictive habitat modeling to 

significantly improve land managers’ abilities to do detailed analyses, inventories, and 

management practices (Vogiatzakis 2003).  The availability and ease of environmental 

information in digital formats and improvements of GIS-based techniques offer an opportunity to 

improve and test species distributions mapping (Brotons et al. 2004), which make DOMAIN an 

attractive method for building SDMs.  Also, integrating statistical algorithms and spatial analysis 

in a GIS makes it possible to rapidly review a species’ distribution, even when information is 

poor or non-existent, and this same integration can be used to predict potential habitat from 

limited field data (Austin 1998).  In general, progress in GIS-based modeling and remote sensing 

could be a key factor for obtaining more accurate information (e.g., forest structure, vegetation 

cover, land use) that best represents the habitat of interest (Guisan & Zimmerman 2000).  A 
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number of factors, when collectively taken into consideration, make DOMAIN ideal for study 

compared to the well-known Maxent technique.  These factors include utilization of this 

technique for rare species by state Heritage Programs in Colorado (Decker et al. 2006) and 

Wyoming (Beauvais et al. 2004; Beauvais & Smith, 2005); DOMAINs ability to use limited 

occurrence data (Elith et al., 2006); the availability of DOMAIN for public use; the ability of the 

method to use categorical data; and the ease by which output can be integrated into a GIS.   

Literature that evaluated different models almost always included Maxent, whereas 

discussion of DOMAIN was more likely to be discussed only if there was a wide range of 

models being evaluated.  BIOCLIM, the other bioclimatic envelope model, was discussed more 

frequently in detail than DOMAIN.  Furthermore, there has traditionally been a lack of 

comparative studies in which two or more methods have been applied to the exact same dataset.  

Usually the models are intrinsically evaluated for their performance of various data sets (i.e., 

multiple species and/or models).  Thus, as the number of published comparative papers that show 

advantages and disadvantages increases, it is more likely that future studies will have the 

literature to support the choosing of the most appropriate models. 

 
Comparative Model Performance 
 
 

There are conflicting reports regarding which models have better predictive success and 

the inconsistency is due to excess amounts of variability that can be introduced into the models.  

For instance, some studies showed that sample size (i.e., number of occurrences) had no effect 

on model performance (Elith et al. 2006), whereas other studies showed a negative influence of 

small sample size (Pearce & Ferrier 2000; Stockwell & Peterson 2002).  The difference could be 

due to the number of adequate localities available for modeling.  In a comparative study of four 
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different models (Bioclim, DOMAIN, GARP, and Maxent) with sample sizes ranging from five 

to 25 occurrences, method performance was highest for Maxent, although DOMAIN 

compensated reasonably well and was still a reasonable method for modeling rare species.  

Useful models have been created with sample sizes as small as five to ten, but increasing sample 

size had a positive effect on model performance (Hernandez et al. 2006).  In addition, decreasing 

sample size has been shown to negatively affect model accuracy and increase variability across 

species and between models.  However, some algorithms were much less sensitive to sample 

size, including Maxent, which had amongst the best predictive power across a number of sample 

sizes.  Also, relative to other algorithms, DOMAIN and a genetic algorithm (OM-GARP) had 

intermediate performance at the largest sample size and among the best performance at the lower 

sample size (Wisz et al. 2008). It has also been noted that while sample size is important, failing 

to consider population status and potential expansion of the species of interest could also 

negatively affect model performance (McFarland et al. 2015). 

Published literature has shown a strong relationship between the type of species 

distributions being modeled and model performance.  A 2015 study assessed performance of 

three modeling techniques to predict habitat distribution of plant species in the Qom Province 

rangelands of Iran: logistic regression (LR), Maxent, and artificial neural network (ANN). The 

species of interest was a flowering plant in the amaranth family with a limited ecological niche 

like T. simile.  Results showed that no method was superior in performance and that all 

performed at good or very good levels, providing yet another indication of the complexities of 

what is considered an optimal approach to habitat distribution modeling (Sahragard & Chahouki 

2015).  The results further suggested that several factors must be considered and will have 

varying effects on model performance: purpose, statistical consideration, data types and 
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availability, ecological niche, and the range of the species of interest.  With all these factors to 

consider, it is highly likely that the complexities of SDMs will grow as comparative research 

progresses.  Furthermore, this same aforementioned 2015 study is also an example of the various 

ways in which models can be assessed.  Whereas AUC is one method of assessing a model’s 

discriminatory abilities used in several studies, this study introduced the use of true skill statistic 

(TSS).  Comparing models based on different performance assessments serves to make 

comparative research even more complex.    

The nature of the species of interest must also be considered, such as whether it is a 

specialist or generalist.  This influences the spatial extent of the area being evaluated, which 

could also affect model performance (Guisan & Zimmerman 2000).  Although geographic range 

size and ecological niche breadth may contribute to variation, it is also possible that pixel 

resolution is inappropriate and some species are simply not suited for climatic modeling 

(Hernandez et al. 2006).  Using higher resolution for some variables could improve broad-scale 

models like Maxent (Anderson et al. 2016); however, a resolution with large pixels that results in 

overestimation of suitable habitat might have its advantages.  As mentioned previously, studies 

showed that presence-only techniques appeared to be more suitable for identifying areas of high 

conservation concern although they were less discriminate than techniques that use absence data.  

If the ultimate goal is to protect rare or endangered species, overestimating areas of potentially 

elevated biodiversity might be more preferable than underestimating their existence, thus making 

presence-only methods quite useful (Zaniewski et al. 2002).  Studies have also shown that 

change in data grain size did not severely affect predictions from SDMs (Guisan et al. 2007).  

Although the overall trend was towards degradation, the study also noted improvements, and a 
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change in grain size did not affect models across species types, techniques, or area of study 

(Guisan et al. 2007).  

The debate regarding appropriate scale for SDMs is ongoing, and investigation into what 

is the best scale has been a complex endeavor that is not straightforward because of the wide 

array of methods, data types, and diverse research questions (Elith & Graham 2009; Aguirre-

Gutiérrez et al. 2013).  A recent study investigated the impact of various fine-scale spatial 

resolutions on modeling 11 rare and endangered species in dry forests of Hawaii.   The results 

showed that for all species of interest, the SDMs had very high AUCs (all greater than or equal 

to 0.92), showing that regardless of the spatial scale, they were able to reliably discriminate 

between occupied habitat and background habitat.  However, fine scale and course scale 

resolution of certain variables might affect the models and their ability to best capture the 

environment they are modeling because a finer scale might be necessary to capture the 

microclimates that are not represented in coarse scale data (Austin & Van Niel 2010; Rovzar et 

al. 2016).  SDMs are thus useful at several spatial scales, but some variables such as temperature 

and variables that affect the light regime (e.g., aspect, slope, canopy cover) may benefit from 

finer resolution (Austin & Van Niel 2010).   
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CHAPTER 3: MANUSCRIPT 

 
 
HABITAT MODELING OF A RARE ENDEMIC TRILLIUM SPECIES (TRILLIUM SIMILE 
GLEASON): A COMPARISON OF THE METHODS MAXENT AND DOMAIN FOR 
MODELING RARE SPECIES-RICH HABITAT 
 
 
Introduction 
 
 

Sweet white trillium (Trillium simile Gleason) is a rare plant species that occurs in the 

rich mesophytic coves of the southern Appalachian Mountains in counties of western North 

Carolina, eastern Tennessee, northeastern Georgia and northwestern South Carolina (Figure 1).  

Extant populations have been documented in the Pisgah, Nantahala, and Cherokee National 

Forests of NC, the Tennessee side of the Great Smoky Mountains National Park (GRSM), 

Sumter National Forest in SC, and Chattahoochee National Forest in GA.  Globally, it is 

considered vulnerable with a G3 rank (21-100 known populations) and is endemic to a narrow 

ecological range in the southern Appalachian Mountains (Pistrang 2016).  In North Carolina and 

Georgia it has a rank of S2 (6-20 known populations), meaning the species is imperiled, and is 

S1 or critically imperiled (5 occurrence or less) in South Carolina (Pistrang 2016). T. simile is a 

showy, large perennial herb found in very nutrient-, moisture-, and species-rich forested cove 

sites (Pistrang 2016).  The richness of these cove forests refers to the highly fertile soils and 

presence of more than 25 species of canopy trees and numerous species in the understory, 

including very diverse herbaceous and shrub layers. These rich cove forests are described as the 

most diverse forest types in North America (Loucks et al. 2017).  As a result, effective 

conservation and protection of T. simile in the National Forests and GRSM of the Southeast 

depends on identification of these forest habitat types.  In addition, these very rich cove 
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environments where T. simile is found could also provide critical habitat for other similarly rare 

and sensitive species whose survival is threatened (Farnsworth 2014).  Effective conservation of 

these forest types could result in protection of critical habitat for multiple communities of rare 

plants.   

 

 

 
Figure 1. Study area in the southern Appalachian mountain counties of North Carolina, 
Tennessee, Georgia, and South Carolina where T. simile is present and rare (sourced from The 
Biota of North America Program).  
 

 

 

Species habitat and distribution models (SDMs) can be used to identify potential suitable 

habitat for rare and endangered species, which can aid in location of new populations and 

identify areas for monitoring or reintroduction of a species.  These models use known location 

occurrences and spatial environmental layers to infer ecological requirements of a species 

(Hernandez et al. 2006).  The habitat modeling program Maximum entropy (Maxent) is one of 
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the most popular and commonly used habitat modeling programs with over 1,000 published 

applications since 2006 (Merow et al. 2013) and is just one of a very wide range of SDM 

options.  Maxent and a lesser known and used model called DOMAIN were the two methods 

used in this project to better understand T. simile habitat requirements and to describe potential 

areas of high habitat suitability.  The two SDMs were compared to evaluate their relative 

usefulness in predicting habitat for T. simile in the southern Appalachian Mountains. 

Maxent is a general purpose, machine learning probability model that searches for 

predicted occurrences based on the probability distribution that is most uniform using a set of 

variables.  This model is flexible in regard to the input environmental variables used and the 

form of their relationships to a species’ presence (Williams et al. 2009).  Other studies have 

shown that Maxent consistently outperforms other traditional linear models (Elith et al. 2006).  

However, while Maxent has been used to model habitat distribution on a large, regional scale, its 

effectiveness is unknown on smaller, ecologically narrow scales (Elith et al. 2011; Phillips et al. 

2006) such as southeastern National Forests or the Tennessee portion of GRSM, which are study 

areas in this project. The ability to effectively identify suitable habitat in small-scale distributions 

is important to conservation efforts, protection of rarely-occurring plant species, and searches for 

additional, previously unknown populations (McCune 2016).   

The DOMAIN model is a simple biophysical envelope that defines the degree of 

similarity among species-presence sites in terms of their environmental variables (Pearce & 

Boyce 2006).  The algorithm uses a computerized procedure that calculates a Gower similarity 

index for each pixel in the study area based upon how closely the environmental values at that 

point correlate with the environmental values at points of known species occurrences. This 

method uses fewer biophysical attributes than Maxent and thus might be easier to apply at 
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smaller spatial scales (Carpenter et al. 1993).  The DOMAIN algorithm has been used effectively 

by state Heritage Programs in Colorado (Decker et al. 2006) and Wyoming (Beauvais et al. 

2004; Beauvais & Smith 2005).  The model performs well with limited occurrence data (Elith et 

al. 2006) and is readily available for public use.  DOMAIN can use categorical data and is easily 

integrated into a Geographic Information System (GIS). 

Integration of SDMs into GIS improves the capability of performing detailed analyses, 

inventories, and management practices (Vogiatzakis 2003).  The availability of environmental 

information in digital formats and progresses in GIS-based techniques offer an opportunity to 

improve and test species distributions mapping (Brotons et al. 2004), which makes DOMAIN an 

attractive method.  Also, integrating statistical algorithms and spatial analysis in a GIS makes it 

possible to rapidly review species distribution, even when information is poor or non-existent 

and can be used to predict potential habitat from limited field data (Austin 1998).  Furthermore, 

DOMAIN uses a continuous similarity function, which gives it increased flexibility as a heuristic 

tool, meaning a satisfactory solution is possible even when the optimal solution may not be 

possible.  In an early study comparing DOMAIN to other alternative models, distribution 

patterns were consistent with species’ ecology, and DOMAIN was deemed highly appropriate 

for survey design (Carpenter et al. 1993).   

The approach of this study was to identify factors associated with suitable habitat for T. 

simile and to compare the predictive performance on a small scale of Maxent to the simple GIS 

model DOMAIN.  The level of accuracy of the models was estimated given the small geographic 

range and limited environmental tolerances of rare plant species such as T. simile (Hernandez et 

al. 2006).  The results of this project help identify which model might be best to use when 

modeling species distributions, which can be used to inform the U.S. Forest Service, National 
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Park Service, and other land managers in their conservation efforts to protect T. simile habitat as 

well as other potentially rare and endemic plant species in the southern Appalachian Mountains.  

The specific objectives of this project were to: 1) characterize the species-rich, diverse habitat of 

T. simile; 2) create and validate habitat models using both Maxent and DOMAIN methods; and 

3) evaluate the efficacy and accuracy of the two separate methods for modeling rare species 

habitat on a small scale. 

 
Methods 

Target Species and Study Area 
 
 

Location records of extant Trillium simile occurrences were obtained from the U.S. 

Forest Service and Great Smoky Mountains National Park (GRSM).  Locations for the species 

occurrence on federal lands were provided in a GIS format by the NC Natural Heritage Program 

(NCNHP) botanist.  The botanist for GRSM provided general locations T. simile has been 

observed.  Occurrences in SC and GA were obtained from internet searches were the species has 

been observed by wildflower enthusiasts and photographers.  Permission to work in the National 

Forests was granted by the USFS, and a research permit for work in GRSM was obtained.   

In GRSM there are approximately six to eight extant occurrence locations, which are 

located on the Tennessee side of the park only.  No occurrences have yet been documented on 

the North Carolina portion of the park.  Maps were used to obtain coordinates or landmarks 

where the species is thought to occur in the GRSM.  Based on the most recent NCNHP element 

occurrence report for T. simile (updated April 6, 2015), there were 45 total species occurrences 

documented. Of this total, 36 had a current status, meaning they were observed recently, and 

nine have a historical status (observed during years ranging from 1930 to 1974).  Historical 
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status implies the species has not been found in recent surveys, recently enough to be confident 

of its occurrence, or that the occurrence is thought to be destroyed.  NCNHP also assigned the 

most recent occurrences a degree of viability ranging from A (excellent) to D (poor), or E 

(extant, but viability not assessed).  The GIS files also assigned accuracy to each species 

occurrence where accuracy is an estimate of how much of the mapped occurrence is believed to 

be occupied by the species of interest.  The element occurrence report coupled with the GIS 

shapefiles was used to select locations of high viability (A and B viability) and accuracy.  

Twenty sites where T. simile is documented to have occurred were visited, occurrence was 

verified wherever possible, and the habitat was characterized. The remaining sites of documented 

known occurrences were saved for model validation since these sites were expected to be 

predicted by the models.  

 
Initial Habitat Characterization 
 
 

Occurrences were characterized by measuring environmental variables at six locations in 

GRSM and 14 in National Forests in NC, TN, and SC (see Figure 2).  The site at each location 

was characterized using habitat variables that describe the physical and biological environment 

known to influence herbaceous species occurrence: canopy species, shrub and herbaceous layer, 

canopy cover, soils, topography, and distances to trails or roads and streams and bodies of water.  

At each location, a simple count and estimate method was used to assess the size of the 

population.  A systematic walk and count of each individual yielded a population size estimate.  

In very large areas, a 2 m x 2 m quadrat was used to count individuals and extrapolate out to the 

entire area.    
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A T. simile individual was chosen at random around which a plot (radius = 5 m) was 

established.  Within the plot, diameter at breast height (DBH) of each tree (≥5.1 cm DBH, ≥1.4 

m tall) was measured, and trees were characterized by canopy class (midstory, overstory, 

superstory), and mortality class (alive or dead).  Shade tolerance of each tree species was 

identified using the USDA Silvics of North America (Burns & Honkala 1990).  Dead trees that 

could not be identified were recorded as snags. Saplings (single stem <5.1 cm DBH, ≥1.4 m tall) 

and shrubs (multi-stemmed woody plants <6 m tall) were identified. Herbaceous plants were 

identified and classified by degree of ground cover: low (<25%), moderate (25-49%), high (50-

75%), very high (>75%).  Ferns and vines were also accounted for in the same way as 

herbaceous plants. 

Canopy cover was assessed using a camera with a fisheye lens that was placed at plot 

center approximately half a meter above the ground surface.  From the photographs, canopy 

cover values were quantified using the freely available program ImageJ 

(https://imagej.nih.gov/ij/download.html).  From each plot center, a clinometer was used to 

measure slope steepness (percent), aspect (degrees) was measured using a compass, and 

topographic position (toeslope, midslope, ridge) was visually assessed.  A GPS unit was used to 

determine elevation (meters).  Distances (in meters) to trails, roads or other disturbed areas (e.g., 

parking lots, picnic areas) were estimated using a measuring tape. 

A soil sample was collected from near plot center using a 6-inch core to measure soil pH.  

The duff layer (leaves, needles, other not decomposed plant material) was cleared away and 

samples of the O horizon and the topmost mineral horizon (A horizon) were sampled for pH 

determination following the protocols of the EPA (Mason 1992).  Soil samples were placed in a 

drying oven set at 65°F.  They were reweighed until they reached a stable weight (constant dry 
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weight of soil), after which they were tested.  The pH of 10 g of dried soil was measured using 

the procedure outlined by Hendershot et al. (2007).  A ThermoScientific Orion Star A111 

benchtop l pH meter was used to measure the pH. 

Information obtained from the habitat characterization measurements was used to create a 

profile of the habitat where T. simile occurs in the southern Appalachian Mountains.  This 

information was also used to select the types of digital environmental variables to use in the 

modeling programs, and later in the project to assess the models’ predictive performances.   

 
Digital Environmental Variables for Model Development 
 
 

The environmental variables chosen for the site characterization were considered 

potential predictors of T. simile habitat based on research of other herbaceous species found in 

southeastern rich cove forests.  Choosing the most appropriate input variables is very challenging 

(Lecours et al. 2016), and this approach was chosen due to the absence of detailed published 

material on T. simile habitat.  Studies on SDMs (Velez-Liendo et al. 2013; Lecours et al. 2016; 

Hijmans & Elith 2017) show that it is important to use variables that are relevant to the ecology 

of the species rather than what is merely easily accessible, and, ideally, a modeler needs 

complete understanding of the species prior to modeling (Rodríguez-Castañeda et al. 2012; 

Porfirio et al. 2014).  Ideally, when building an SDM, the modeler should work with species 

experts to ensure that the input variables agree with the ecological importance of the species 

(Porfirio et al. 2014).   

The measured habitat characteristics from the 20 extant plots were not directly used to 

develop both the Maxent and DOMAIN models because they were collected at a micro-habitat 

level of finer spatial resolution.  Both models were developed for use at a regional scale of 
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courser spatial resolution and thus required regional digital environmental data.  A study using 

Maxent (Bradie & Leung 2016) assessed over 400 distinct environmental variables for nearly 

1900 different species.  Results showed that Maxent performed with high discriminatory ability 

due to variables related to temperature and precipitation, which were identified as amongst the 

most important input variables (Bradie & Leung 2016).  Furthermore, terrain attributes such as 

aspect and slope are highly appropriate, especially in combination with climate and precipitation 

variables (Lecours et al. 2016), and because light regime is a very necessary component of plant 

SDMs (Austin & Van Niel 2010).  A study by Williams et al. (2009) used four models, including 

Maxent, to model rare plants using environmental and climate data, and each model yielded 

reliable predictions of habitat for the rare plant species. In this same study, elevation, canopy 

cover, and precipitation were identified as the most important variables for strong prediction of 

occurrence for rare plants of interest (Williams et al. 2009). 

In accordance with these findings, the ten digital environmental variables used in this 

study included USGS National Map National Elevation Data containing elevation, aspect, and 

slope at 30 m resolution; USDA Geospatial Data Gateway annual average maximum and 

minimum temperatures, annual average precipitation, and average monthly precipitation for May 

at highest resolution of 30-arc seconds (~1 km); National Land Cover Database 2011 USFS 

percent tree cover (canopy cover %) and land cover/land use at 30 m resolution; and soil type 

from NRCS Soil Data Access.  Because rare plant habitats can vary a great deal over small 

scales, a 30 m x 30 m cell size was preferred and was the best available resolution.   

Once data were collected from online sources, they were processed in ArcGIS to be the 

same format and extent (i.e., cell size, geographic bounds, and projection system). All data were 

converted to raster format and combined to make a raster mosaic with the same formatting 
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(Projected Coordinate System NAD 1983 UTM).  A previously created mask, or bounding box, 

of the area of interest was used to clip the raster mosaic so that all layers had the same extent.  

The raster layers were converted to ASCII files.  The editing processes of the digital data were 

necessary for the files to be able to function in both Maxent and DOMAIN modeling processes.   

 
 
 

 
 
Figure 2.  Initial habitat characterization performed at 20 locations in three states (NC, TN, SC) 
where T. simile is documented to have occurred. 
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DOMAIN Modeling Procedure 
 
 

The same environmental variables were used in both Maxent and DOMAIN.  The 

modeling procedure was performed in the computer program DIVA-GIS (http://www.diva-

gis.org/), which was the only platform available to run the DOMAIN procedure.  A CSV file of 

known location coordinates was uploaded.  Of the 45 documented known occurrences, 75% (34) 

were used to build or train the model, and the remaining 25% (11) were used to test the model. 

The Gower similarity approach as implemented in DOMAIN uses a metric based upon its 

proximity in statistical environmental space to the most similar occurrence location.  This results 

in the assignment of a value to a potential site (pixel).  The output was a grid where cell values 

reflect multivariate distance to the nearest known set of conditions where T. simile occurs.  The 

highest values (those approaching 1) represented areas most similar to known occurrence 

conditions and low values were most unlike occurrence locations.  The values are not probability 

estimates, which is what Maxent generates, but rather are interpreted as a measure of 

classification confidence.  Environmental layers and known species location were input into 

DOMAIN to run the model.  The output grid was converted to an ASCII grid.  As with Maxent, 

the value thresholds were user-defined because the statistical surface does not give discrete 

boundaries for potential habitat.  Thresholds were defined into three groups of habitat suitability 

confidence: unsuitable (<85%), suitable (85-97.4%) and highly suitable (97.5-100%). Value 

thresholds were chosen based on previous DOMAIN studies (Beauvais et al. 2004; Beauvais and 

Smith 2005; Decker et al. 2006), which suggested using certain distributions of predicted Gower 

similarity values.   
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Maxent Modeling Procedure  
 
 

Maxent software version 3.3 (https://www.cs.princeton.edu/~schapire/maxent/) was 

freely available for use in this project.  Maxent requires only species presence data (not absence) 

and the environmental variables must be continuous or categorical.  Each variable was 

appropriately assigned as continuous or categorical in the ASCII files.  A CSV file of known T. 

simile location occurrences was uploaded.  The same numbers of documented occurrences used 

in DOMAIN were used to build and test the Maxent model: 75% (34) were used to build or train 

the model, and the remaining 25% (11) were used to test the model.  The program generated an 

estimated probability of presence of the target species ranging from 0 to 1, where 0 is the lowest 

probability and 1 is the highest. Habitat suitability was categorized into three probability classes 

that were the same as those defined in DOMAIN: unsuitable (<85%), suitable (>85%) and highly 

suitable (approaching 100%, generally within 2.5% of the maximum).  

 
Field Validation of Models 
 
 

Both models were validated in the field by visiting locations predicted by the models and 

collecting habitat variables and presence data for T. simile.  Three categories of predicted highly 

suitable habitat were used: those areas predicted by Maxent only, by DOMAIN only, and those 

predicted by both models (i.e., overlapping areas that both models predicted as highly suitable).  

Four sites predicted as highly suitable sites were selected from of each category for a total of 12 

field validation sites.  Geographical coordinates for the 12 field validation sites were chosen 

somewhat randomly, but kept near trails or roads for easy access to the site.  The same 

environmental variables collected in the initial habitat characterization were collected at the sites 

predicted by the models using the same methods.  Discovering new occurrences could indicate 
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success of one model, or both, in correctly predicting suitable habitat.  The measured biotic and 

abiotic variables collected in the field validation sites of each category were compared to the 

known occurrence location characteristics and between models. 

 The broad range of suitable habitat as well as the somewhat coarse resolution of the 

environmental data used to run the models caused potential for an overestimation of amount and 

distribution of suitable habitat predicted by both models.  However, the amount of highly 

suitable habitat was extremely narrow compared to the unsuitable habitat, and thus sampling 

unsuitable habitat was deemed unnecessary. 

 
Statistical Analyses and Quantitative Assessment 
 
 

The predictive performances of both models included statistics such as the area under the 

receiver operating characteristic (ROC) curve (AUC).  AUC measures a model’s ability to 

discriminate between where a species is present and where it is absent.  AUC ranges from 0 to 1, 

where 1 is perfect discrimination, 0.5 is discrimination no better than a random guess, and values 

<0.5 indicate performance worse than random guessing.  The AUC of Maxent was automatically 

generated as an output, but the AUC for DOMAIN was not.  An AUC for the DOMAIN 

performance was not calculated due to insufficient guidance and output data in the DIVA-GIS 

program.  The goal of the field validation data collection was to observe the models’ 

effectiveness and accuracy at identifying T. simile habitat and species rich environments.  

Ideally, this would help identify which model is most useful on a small scale and has the best 

ability to predict habitat of T. simile and potentially other rare, endemic, rich cove species. 

Descriptive statistics of habitat characteristics of known sites versus model predicted sites 

were calculated in R statistical software (R Core Team 2014).  The mean and standard errors for 
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four abiotic variables (canopy cover, elevation, slope, and soil pH) collected in the 20 known 

sites and the 12 sites of model prediction were calculated. These descriptive statistics were used 

to compare variables collected at the sites where T. simile is known to occur compares to the 

means of the characteristics where Maxent and DOMAIN predicted highly suitable habitat.   

Univariate ANOVAs were performed in R for the habitat characteristics slope, elevation, 

canopy cover, and soil pH to see if any of the variables in the sites predicted as highly suitable by 

Maxent, DOMAIN, and both models were dissimilar to the known T. simile sites.  For each 

variable, all possible pair-wise t-tests were also conducted to determine if there were differences 

in habitat between the following: Maxent highly predicted sites versus known sites, DOMAIN 

highly predicted sites versus known sites, both models’ predicted sites versus known sites, and 

each of the model predictions versus each other.  Due to its circular distribution, a similar 

approach called a ratio likelihood test, or circular ANOVA, was used for aspect. 

During both modeling procedures, 11 sites (25% of the total 45 known sites where T. 

simile is known to occur) were withheld from both models for testing.  The percentage of these 

11 sites that were correctly predicted as suitable or highly suitable by each model was calculated. 

A method agreement analysis as described by Watson and Petrie (2010) was also 

performed in R.  This analysis was used because the two methods being compared, Maxent and 

DOMAIN, were believed to produce similar results.  The analysis calculates a Cohen's kappa 

value (κ) that describes the degree of agreement between two methods.  The value falls within a 

range of -1 to 1, where -1 is total disagreement between the methods, 0 is no better than random, 

and 1 is perfect agreement between the methods.  A numbered grid was laid over each of the 

habitat suitability prediction maps by Maxent and DOMAIN.  A random number generator was 

used to randomly generate 50 values, which were identified in the grid overlays. Each value was 
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placed into one of nine categories in a contingency table.   The counts were presented in a two-

way contingency table of frequencies with the rows and columns indicating the categories of 

response for each method.  This table was analyzed in R using the method agreement analysis to 

calculate a Cohen’s kappa value. 

 
Results 
 
Habitat Characterization of T. simile Known Occurrences 
 
 

Habitat characteristics (mainly topographical) of the 20 verified extant T. simile sites are 

shown in Table 1.  Elevation ranged from 328 m to 1630 m, with an average of 699 m (±89).  

Two sites were at much higher elevations than the rest (1609 m and 1630 m), which is not 

consistent with current descriptions of T. simile habitat.   Most of the plots (85%) had a northern 

or northeastern aspect with an average aspect of about 84° and a canopy cover percentage greater 

than 80%.  Percent slope was variable, with half of the sites having slopes greater than or equal 

to 50%.  Soil pH was generally around 6 with more than half the plots having a soil pH greater 

than 6. The two plots that had the lowest pH levels (5.1 and 5.04) were found at the highest 

elevations (1609 m and 1630 m, respectively).  The majority of the plots (70%) were classified 

as midslope with the remaining classified as toeslopes, and none of the plots occurred on a ridge.   
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Table 1.  Topographical habitat characteristics of 20 T. simile known occurrence locations in NC, 
TN, and SC.  All characteristics were measured for the field validation of both Maxent and 
DOMAIN models  (n=20 for all characteristics except soil pH n=19). 
 

Habitat Characteristic Mean ± SE Minimum Maximum 

Elevation (m) 699 ±89 328 1630 

Slope (%) 49 ±5 5 85 

Canopy cover (%) 83 ±1 71 88 

Soil pH 6 ±0.12 5.04 6.78 

Aspect (°) 83.6 ±6.8 4 350 

Slope position midslope -- -- 
 

 

The count of individual T. simile stems in known locations revealed a wide range of 

individuals of a given population.  The minimum count was two individuals in a population to 

over 1000 individuals in a population.  The average was 133.5 individuals (SE = 57.1 

individuals) in a population.   

The forest composition of trees in the 20 extant sites is summarized in Table 2.  The most 

frequently occurring tree was Liriodendron tulipifera L. (65% of plots), followed by Tilia 

americana L. (55% of plots), and Aesculus flava Aiton and Betula lenta L. (both in 40% of 

plots).  B. lenta had the highest average tree density (406.4/ha), followed by Asimina triloba (L.) 

Dunal and A. flava (390.1 and 292.6/ha, respectively).  L. tulipifera had the highest basal area 

(m2/ha) at 20.4%, followed by B. lenta and T. americana (16.8% and 15%, respectively).  T. 

americana was the most frequently occurring sapling amongst the plots (50%), with Fraxiunus 

spp. L. and Carpinus caroliniana Walter both occurring in 40% of the plots.  Fagus grandifolia 

Ehrh. had the highest average sapling density (1170.4/ha), followed by C. caroliniana and 

Fraxinus spp. (747.7 and 715.2/ha, respectively). 
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The proportion of trees in the midstory, overstory and superstory by their shade tolerance 

(tolerant, intermediate, intolerant) is shown in Figure 3. In the midstory 86.3% of the tree species 

were shade tolerant, 8.2% were intermediate, and 5.5% were shade intolerant.  In the overstory 

33.3% of the tree species were shade tolerant, 49% were intermediate, and 17.6% were shade 

intolerant.  The superstory had almost an even proportion of the three different shade tolerances: 

34.6% shade tolerant, 30.8% intermediate, and 34.6% shade intolerant. 

Shrub species occurred in 17 of the 20 extant T. simile sites and at low frequencies.  

Table 3 lists the 11 shrub species and their frequencies and densities across the 17 sites. 

Viburnum cassinoides L. was the most frequent (41.2% of 17 extant sites), but having a lower 

mean density (371.5 ±16.7 clumps/ha) compared to the other shrub species. Rhododendron 

maximum L., and Rubus spp. L. were the next most frequent shrub species (35.3%).  Lindera 

benzoin (L.) Blume also occurred at 35.3% frequency and had the highest average density (975.3 

±72.2).  Leucothoe fontanesiana (Steud.) Sleumer and Hydrangea radiata Walter had the highest 

densities (942.8 ±138.9 and 715.2 ±137.9 clumps/ha, respectively) although they occurred at 

lower average frequencies. 
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Table 2.  Forest composition of trees (≥5.1 cm DBH, ≥1.4 m tall) and saplings surround 20 
extant T. simile populations in NC, TN, and SC. Basal area (m2/ha) includes only trees.    

 
Species 

Frequency  
(% of plots) 

BA % of 
total 

Average Density 
(#/ha) 

 Tree  Sapling  Tree  Sapling 
Liriodendron tulipifera L. 65 25 20.4 185.8 208.1 
Tilia americana L. 55 50 15.0 283.7 390.1 
Aesculus flava Aiton 40 40 6.1 292.6 357.6 
Betula lenta L. 40 20 16.8 406.4 227.6 
Fagus grandifolia Ehrh. 25 20 7.7 234.1 1170.4 
Fraxinus spp. L. 20 40 2.8 162.5 715.2 
Quercus rubra L. 20 25 14.7 130.0 260.1 
Halesia tetraptera Ellis 20 20 1.1 260.1 292.6 
Carya glabra (Mill.) Sweet 15 20 1.7 130.0 227.6 
Acer pensylvanicum L. 15 20 0.1 130.0 520.2 
Acer rubrum L. 15 20 1.2 216.7 390.1 
Acer saccharum Marshall 15 10 0.7 260.1 325.1 
Carpinus caroliniana Walter 10 20 0.6 195.1 747.7 
Liquidambar styraciflua L. 10 5 5.0 130.0 130.0 
Cornus florida L. 10 0 0.3 195.1 0.0 
Tsuga canadensis (L.) Carriere 5 10 0.7 195.1 390.1 
Amelanchier spp. Medik. 5 5 0.1 130.0 130.0 
Asimina triloba (L.) Dunal 5 5 0.3 390.1 520.2 
Betula alleghaniensis Britton 5 0 0.2 130.0 0.0 
Cercis canadensis L. 5 0 0.0 130.0 0.0 
Magnolia acuminata (L.) L. 5 0 0.0 130.0 0.0 
Cornus alternifolia L. f. 0 20 0.0 0.0 227.6 
Carya cordiformis (Wangenh.) K. Koch 0 15 0.0 0.0 390.1 
Sambucus canadensis L. 0 10 0.0 0.0 260.1 
Ulmus rubra Muhl. 0 5 0.0 0.0 520.2 
Sassafras albidum (Nutt.) Nees 0 5 0.0 0.0 260.1 
Ilex montana Torr. & A. Gray ex A. Gray 0 5 0.0 0.0 390.1 
Nyssa sylvatica Marshall 0 5 0.0 0.0 260.1 
Ilex opaca Aiton 0 5 0.0 0.0 260.1 
Castanea dentata (Marshall) Borkh. 0 5 0.0 0.0 130.0 
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Figure 3.  Proportion of trees in the midstory, overstory, and superstory by their shade tolerance 
across the 20 T. simile occurrences sites in NC, TN, and SC. 
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Table 3.  Frequency and density of shrub species identified in 17 of the 20 sites of T. simile 
known occurrence in NC, TN, and SC.   
 

Shrub Species Frequency  
(% of plots) 

Density  
Mean ± SE (clumps/ha) 

Viburnum cassinoides L. 41.2 371.5 ±16.7 

Lindera benzoin (L.) Blume  35.3 975.3 ±72.2 

Rhododendron maximum L. 35.3 628.5 ±25.3 

Rubus spp. L. 35.3 671.9 ±160.7 

Euonymus americanus L. 23.5 292.6 ±16.3 

Leucothoe fontanesiana (Steud.) Sleumer 23.5 942.8 ±138.9 

Pyrularia pubera Michx. 17.6 346.8 ±90.2 

Calycanthus floridus L. 11.8 585.2 ±229.9 

Hydrangea arborescens L. 11.8 260.1 ±92.0 

Hydrangea radiata Walter 11.8 715.2 ±137.9 

Viburnum lantanoides Michx. 5.9 260.1 ±0.0 
 

 

A total of 51 herbaceous species were identified across the 20 extant sites where T. simile 

was verified as being present.  The frequencies of these species (including ferns, vines, 

lychophytes, bryophytes, and grasses) are shown in Table 4.  The three most common species 

across the 20 sites were Polystichum acrostichoides (Michx.) Schott (85% frequency), Actaea 

racemosa L. (75%), and Polygonatum biflorum (Walter) Elliott (70%).  Other common 

herbaceous plants that occurred at more than half the sites included Arisaema triphyllum (L.) 

Schott (65%), Tiarella cordifolia L. (65%), Veratrum parviflorum Michx. (55%), and Viola spp. 

L. (55%).  Most of the herbaceous species occurred at relatively low (<25% of macroplot) to 

moderate coverage (25-49%) in all plots where they occurred.  Few species tended to occur 
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frequently at high (50-75%) to very high coverage (>75%); these species included A. racemosa, 

Laportea canadensis (L.) Weddell, Viola spp., and T. cordifolia.  

Nearly all occurrence locations were observed 30 m or less from a trail, service road, 

major road, or parking lot, and several site edges were within a few feet from a hiking trail.  In 

all six locations in the GRSM, a trail or road was in the immediate vicinity. Also, in greater than 

50% of the locations, a water source (seepages, ephemeral streams, creeks, rivers, and waterfalls) 

was observed within plots or in close proximity.   
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Table 4.  Herbaceous species frequency identified in 20 sites of known occurrence of T. simile in 
NC, TN, and SC. 
 

Herbaceous Species Frequency  
(% of plots) 

Polystichum acrostichoides (Michx.) Schott 85 
Actaea racemosa L. 75 
Polygonatum biflorum (Walter) Elliott 70 
Arisaema triphyllum (L.) Schott, Tiarella cordifolia L. 65* 
Dryopteris campylotera Clarkson 60 
Veratrum parviflorum Michx., Viola spp. L. 55* 

Laportea canadensis (L.) Weddell, Parthenocissus quinquefolia (L.) 
Planch., Toxicodendron radicans (L.) Kuntze 45* 

Adiantum pedatum L., Ageratina altissima (L.) King & H. Rob., 
Desmodium nudiflorum (L.) DC., Eurybia chlorolepis (Burgess) 
Nesom, Hepatica acutiloba DC. 

40* 

 Caulophyllum thalictroides (L.) Michx., Goodyera pubescens 
(Willd.) R. Br., Prenanthes spp. L., Sanguinaria canadensis L., 
Maianthemum racemosum (L.) Link 

35* 

Athyrium asplenoides (Michx.) A. A. Eaton, Collinsonia canadensis 
L., Geranium maculatum L., Osmorhiza claytonii (Michx.) C. B. 
Clarke 

25* 

Impatiens pallida Nutt., Mitchella repens L., Podophyllum peltatum 
L., Thalictrum clavatum DC., Thelypteris noveboracensis (L.) 
Nieuwl., Trillium spp. L. 

20* 

Aristolochia macrophylla Lam., Discorea villosa L., Lysimachia 
quadrifolia L., Marchantia spp. L., Oclemena acuminata (Michx.) 
Greene, Polygonum virginianum L., Polypodium virginianum L. 

15* 

Actaea pachypoda Elliot, Medeola virginia L., Smilax glabra Roxb. 10* 

Conopholis americana (L.) Wallr., Disporum lanuginosum (Michx.) 
G. Nicholson, Hexastylis arifolia (Michx.) Small, Huperzia lucidula 
(Michx.) Trevis., Hydrophyllum canadense L., Microstegium 
vimineum (Trin.) A. Camus, Panax quinquefolius L., Smilax 
rotundifolia L., Vitis rotundifolia Michx., Xanthoriza simplicissima 
Marshall 

5* 

*Percentage applies to each herabaceous species in that group   
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Habitat Distribution Outputs of Maxent and DOMAIN 
 
 

A side-by-side comparison of the two initial outputs from each of the models shows the 

similarities and differences in predicting habitat suitability using the two SDM methods (Figure 

4).  Areas of high suitability (in red) were very fine-scale and had to be magnified for ease of 

visibility.  Figure 4 also depicts areas that were predicted as highly suitable habitat for T. simile 

by both models (circled in white), as well as areas predicted by each model that were not 

predicted by the opposing model (circled in black).  The Maxent distribution output was 

integrated into ArcGIS and mapped the distribution of highly suitable, suitable, and unsuitable 

(divided into both unsuitable and highly unsuitable for ease of viewing) habitat throughout the 

project area (Figure 5a).  The average AUC of Maxent was 0.839 (Figure 6).  The final 

DOMAIN habitat distribution map also shows the highly suitable, suitable, and unsuitable 

habitat distribution (Figure 5b).  It did not have to be integrated in ArcGIS since the model ran in 

its own GIS program DIVA-GIS.  An AUC for the DOMAIN map was not an automatic output 

nor was there sufficient guidance on how to measure the AUC.   
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Figure 4.  Side-by-side comparison of initial Maxent and DOMAIN model outputs for T. simile 
habitat suitability.   
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Figure 5a.  Maxent predicted habitat for Trillium simile across the southern Appalachian 
mountain region of the southeastern United States, as displayed in ArcGIS.   
 
 

 
 
Figure 5b.  DOMAIN predicted habitat for Trillium simile across the southern Appalachian 
mountain region of the southeastern United States, as displayed in DIVA-GIS.   
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Figure 6.  Area under the receiver operating characteristic (ROC) curve (AUC) averaged over 
the replicated Maxent runs describes the predictive accuracy of the Maxent model 
performance.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Mean AUC = 0.839 
Standard Deviation = 0.122 
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Field Validation of Habitat Distribution Maps 
 

 
 Maxent and DOMAIN both produced maps in which areas of highly suitable, suitable, 

and unsuitable habitat were defined.  With the user-defined cutoffs in place and predicted sites of 

high suitability chosen, both models successfully predicted sites that were rich cove type forests 

similar to those observed where T. simile is known to occur.  This was verified by a statistical, 

quantitative assessment of the data collected at the sites predicted by the models compared to the 

data collected at the extant T. simile sites.  In addition, the appearance of the predicted sites as 

similar to extant sites is based on familiarity with rich coves forests and the topographic features 

that characterize them. However, although there was overlap in both maps that were predicted as 

high suitability, each prediction map also predicted high suitability or suitable areas that the 

other did not, and these areas were characteristic of the rich cove forests where T. simile is 

known to occur.  No new, previously unrecorded T. simile populations were discovered during 

the field validation. 

 
Quantitative Assessment of Maxent and DOMAIN Models 
 
 
 The 20 known T. simile sites were compared to the 12 sites predicted as highly suitable 

by either Maxent, DOMAIN, or both models for the habitat characteristics slope, elevation, 

canopy cover, and soil pH.  The results showing the means and standard errors of the 

characteristics for the known sites compared to the three types of model prediction are shown in 

Table 5.  The mean slope of the known sites was 49%, and the mean slopes for the Maxent, 

DOMAIN, and both model predicted sites were slightly lower at 44%, 47%, and 44%, 

respectively, and all standard error ranges overlapped (Figure 7a).  The mean elevation of the 

known sites was 699 m, whereas the mean elevations for the Maxent, DOMAIN, and both model 
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predicted sites were much higher at 914 m, 925 m, and 864 m, respectively (Figure 7b).  The 

elevation standard error ranges for the predicted sites all overlapped with each other, but were 

above the standard error range of the known sites (Figure 7b).  For canopy cover, the mean for 

known sites was 83.2% and the means for the Maxent, DOMAIN, and both model predicted sites 

were very similar at 81.8%, 80.2%, and 83.0%, respectively, and with overlapping standard error 

ranges (Figure 7c).  The soil pH means for the known sites and the three types of predicted sites 

slightly more variable, with known site mean soil pH of 6.0, and higher mean soil pH for the 

Maxent, DOMAIN, and both model predicted sites at 6.3, 6.6, and 6.1, respectively (Figure 7d).  

Sites that were predicted by both models had a soil pH mean very similar to the mean for known 

sites, whereas DOMAIN had a mean soil pH higher than the known sites or sites predicted by 

Maxent. 

 

 

Table 5.  Means and standard error ranges for habitat characteristics associated with 20 known T. 
simile sites and sites predicted as highly suitable by Maxent, DOMAIN, or both models. 
 

 
  Mean ±SE   

  Slope (%) Elevation (m) Canopy Cover (%) Soil pH 
Known  49 ±5 699 ±89 83.2 ±1.0 6.0 ±0.12 
Maxent 44 ±4 914 ±29 81.8 ±1.2 6.3 ±0.16 

DOMAIN 47 ±8 925 ±48 80.2 ±2.8 6.6 ±0.15 
Both 44 ±9 864 ±74 83.0 ±3.2 6.1 ±0.16 

 



 44 

 

Figure 7a.  Mean slope with standard error bars at 20 known sites compared to sites predicted as 
highly suitable by Maxent, DOMAIN, and both models. 
 
 

 

Figure 7b.  Mean elevation with standard error bars at 20 known sites compared to sites 
predicted as highly suitable by Maxent, DOMAIN, and both models. 
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Figure 7c.  Mean canopy cover with standard error bars at 20 known sites compared to sites 
predicted as highly suitable by Maxent, DOMAIN, and both models. 
 
 
 

 
 

Figure 7d.  Mean soil pH with standard error bars at 20 known sites compared to sites predicted 
as highly suitable by Maxent, DOMAIN, and both models. 
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The univariate ANOVA for slope, elevation, canopy cover, and soil pH, and the circular 

ANOVA for aspect for all possible pair-wise t-tests yielded p-values that were not significant.  

From this information, it can be concluded that there is no significant difference between the 

known T. simile sites and those predicted by the models Maxent and DOMAIN.  Table 6 

provides a summary of the univariate ANOVA results, including p-values, for slope, elevation, 

canopy cover, and soil pH.  The results of the circular ANOVA for aspect showed no significant 

difference between known sites and predicted sites (p=0.4517).   

 
 
 
 
Table 6.  Summary univariate ANOVA results of habitat characteristics for the known T. simile 
sites and sites predicted as highly suitable by Maxent and DOMAIN. 
 

Habitat 
Characteristic 

Numerator 
Degrees of 
Freedom 

Denominator 
Degrees of 
Freedom 

Mean 
Square 

Mean 
Square 
Error 

F-
value 

p-
value 

Slope (%) 3 28 58.3 427.7 0.1364 0.9375 
Elevation (m) 3 28 104703 112345 0.932 0.4383 

Canopy Cover (%) 3 28 10.93 21.88 0.4996 0.6856 
Soil pH 3 27 0.44 0.23 1.927 0.1491 

 

 

 
Out of the documented 45 sites of known T. simile occurrence, 11 sites were withheld 

from the model building and used for model training.  Of these 11 sites Maxent correctly 

predicted 8 sites (73%) as either highly suitable or suitable, whereas DOMAIN correctly 

predicted 9 sites (82%).  Overall, out of the 45 known sites used to both build and test the model, 

Maxent successfully predicted 93% of the sites as suitable or highly suitable, and DOMAIN 

successfully predicted 95% of the sites as suitable or highly suitable.  It should be noted that the 
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45 sites do not include the other unofficial occurrences where T. simile has been sited, only those 

that are officially documented.  In addition, Maxent failed to identify a known location, not 

officially documented, in Chatahoochee National Forest of Georgia where T. simile was verified 

in the field validation.   

The results of the count from the grid overlay for the method agreement analysis were 

presented in a two-way contingency table of frequencies with the rows and columns indicating 

the categories of response for each method Maxent and DOMAIN (Table 7).  The frequencies of 

the agreement between the two methods are shown along the right downward diagonal.  The 

method agreement analysis calculated a Cohen's kappa value of 0.674 from the contingency table 

of frequencies, which suggests that there was substantial agreement between the Maxent and 

DOMAIN methods.  Although there is no formal scale for categorizing the kappa value, 

according to Watson and Petrie (2010) this value falls within the range of substantial agreement, 

where method agreement is substantial if 0.61 < κ < 0.80. 

 
 
 
 
Table 7.  Method agreement analysis contingency table of frequencies showing the comparison 
of sites predicted by Maxent and sites predicted by DOMAIN for evaluating the degree of model 
agreement. 
 

    Maxent     
    Unsuitable Suitable Highly Suitable 
DOMAIN Unsuitable 28 1 1 

 
Suitable 3 5 0 

  Highly Suitable 0 4 8 
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Discussion 
 
 

The environmental variables chosen for the initial site characterization were considered 

potential predictors of T. simile habitat based on research of other herbaceous species typically 

found in southeastern rich cove forests.  This approach was chosen due to the absence of detailed 

published material on T. simile habitat. The herbaceous layer in eastern forests constitutes a 

small fraction of the entire vegetative biomass, but is very important for ecosystem function and 

diversity because of its contribution to productivity, organic matter degradation, bioerosion, 

bioturbation, and other biogeochemical and dynamic ecosystem processes (Mouillot et al. 2013).  

A significant relationship has been found between herbaceous community composition and 

overstory tree species, both locally and at a forest stand scale (McEwan & Muller 2011).  The 

greater proportion of tolerant tree species in the uppermost canopy classes indicates movement 

toward later successional forests, which is consistent with reports that T. simile is typically found 

in more mature forests (Pistrang 2016).  The 20 extant T. simile sites were characteristic of 

southern Appalachian rich cove forests where several species of herbaceous plants as well as 

upper canopy tree species flourish and are strong indicators of a rich cove forest (Elliott et al. 

2014). 

In addition to tree species composition in the canopy, both basal area and percent canopy 

cover are characteristics related to herb species richness, evenness, and diversity (Ford et al. 

2000).  Although not explicitly used in building the models, identification and abundance (as a 

percent cover) of the herbaceous layer species that are found with T. simile are also important 

variables for characterizing habitat of this species.  The percent canopy cover is important for 

assessing the amount of light available for the herbaceous layer (Elliot et al. 2014; Ford et al. 

2000; McEwan & Muller 2011; Thiemann et al. 2009).  Canopy cover in the extant T. simile sites 
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averaged 83%, indicating that it thrived in low light conditions.  Woodland herbs respond to light 

condition changes, and the quality and quantity of light associated with gaps generates the 

greatest response in understory herb species because most are light-limited (Whigham 2004). 

The average elevation range was consistent with what is reported as typical for T. simile (500-

700 m) (Pistrang 2016), with some exceptions falling outside of this range at lower and higher 

elevations. 

Several researchers have acknowledged the importance of soil charcteristics and fertility 

in the herbaceous community, specifically soil pH (Elliot et al. 2014; Gilliam & Dick 2010; 

McEwan & Muller 2011; Small & McCarthy 2002).  The results of the soil pH are consistent 

with known rich cove soils that generally have "sweet" soils with pH greater than 6.  Also, the 

pH range of the most frequent herbaceous plants found in the plots matches the range of pH that 

is typical and expected.  For instance, A. racemosa, P. biflorum, and A. triphyllum, the most 

frequently observed herbaceous plants in the T. simile sites, are all typically found in rich soils 

and are indicators of southern Appalachian rich cove forests (Elliott et al. 2014). 

Conservation of woodland herbs, both abundant and threatened, must continue to be 

addressed, and future research needs to focus on restoration and maintenance of herbaceous plant 

in areas that are directly influenced by human activities (e.g., activities resulting in forest 

fragmentation) (Whigham 2004).  Most of the extant sites were 30 m away or less from either a 

trail, service road, major road, or parking lot, and several site edges were only a few feet away 

from a hiking trail.  It is debatable whether T. simile is an edge species or it is found near roads 

and trails because they happen to be visible from those locations.  Patch size was also highly 

variable from site to site, ranging from two individuals in one population to over a thousand in 

another population, both of which were not far from a road or trail.  Hernandez et al. (2006) 



 50 

argue that reasonable models can be developed for rare species even if they have varying 

population sizes and small geographical ranges.  Fragmentation and disturbance variables have 

also been cited as important influences on herbaceous composition (Elliot et al. 2014; Thiemann 

et al. 2009; Whigham 2004).  Because the majority of the 20 sites were so close to a road or trail, 

there is potential for threat of increased takeover by exotic invasives, removal of plants by people 

using the trails, accidental destruction when people deviate from trails or parking areas, 

destruction by vehicles, and even expansion of parking areas and road pull-offs. 

Both models produced outputs maps that predicted highly suitable habitat in overlapping 

areas, however, there were also locations predicted as highly suitable by one that was not 

predicted by the other.  This could be because the models weigh the input variables differently 

and thus “view” their environments differently.  Certain digital environmental variables and even 

the nature of a species and its habitat could have an affect on the distributions of individual 

models.  It is possible that each method modeled the rich cove habitat of this rare species 

differently because there are several attributes (e.g., competition, resource partitioning, dispersal 

ability, predation tolerance, and interaction with soil microbes) that contribute to relative 

abundance and rarity of plant species (Klironomos 2002).  Furthermore, rare plant species have 

complex relationships with their environments (Miller-Struttmann 2013), which could affect 

SDM distribution output.  SDMs are incomplete approximations in that distributions are always 

influenced by unknown factors, potentially related to rarity attributes, which interact spatially in 

an unknown way (Lobo et al. 2007) and could account for variations in distribution predictions.  

Studies discuss how two models can effectively model habitat distribution with good predictive 

performance (i.e., better than random prediction), even if they have different spatial output 

distributions (Velez-Liendo et al. 2013; Lecours et al. 2016).  Instead of relying on a single, 
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‘best’ model, many studies suggest model averaging or using multiple SDM maps that use a 

combination of environmental variables to get the overall best representation of an area and a 

more robust performance (Thuiller 2003; Lecours et al. 2016; Hijmans & Elith 2017; Pacifici et 

al. 2017).  Other researchers argue that while it is important to compare model performance and 

predictive capabilities, more research is needed on why these differences occur on the statistical 

level of various SDM algorithms, even before they can be effectively compared (Elith & Graham 

2009). 

There are ways the models could be improved.  Studies on SDMs show that it is 

important to use variables that are relevant to the ecology of the species rather than what is 

merely easily accessible (Velez-Liendo et al. 2013; Lecours et al. 2016; Hijmans & Elith 2017).  

Thus, it is potentially very useful to develop new, more ecologically relevant predictor variables 

from the easily accessible existing data using a statistical program such as R (Hijmans & Elith 

2017).  Furthermore, SDMs typically rely completely or partially on climatic variables as 

predictors (as was done in this project using precipitation and temperature values), when in fact 

these variables could be associated with uncertainties from interpolation between sparse data 

stations (Deblauwe et al. 2016).  Satellite-based climatic predictor data (i.e., remotely sensed 

data) of temperature and precipitation could potentially improve models because they might be a 

more effective alternative to climatic variables collected from stations on the ground, particularly 

where stations are sparse across a particular landscape (Deblauwe et al. 2016).  The nature of T. 

simile is such that a microclimate may have an impact on where it will grow, and the data used in 

this study were coarse (~1km) and unable to capture microclimate.  Satellite-derived data might 

be better able to capture the microclimates that influence habitat for rare plant species (Williams 

et al. 2009; Deblauwe et al. 2016; Dymytrova et al. 2016).  Forest-structure data such as canopy 
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height and other predictors have also been shown to significantly improve models for rare and 

threatened lichens (Dymytrova et al. 2016), especially when the species have particular 

microhabitat requirements.  This may be the case with T. simile and other rare plants for which 

habitat distributions warrant further research into their microhabitat requirements.  Furthermore, 

both Maxent and DOMAIN outputs could have been improved had selected input data been 

different from what was actually chosen.  For Maxent in particular, there is wide variety of 

settings in the software package to build the model from these data, including background data, 

regularization, sampling bias, model output, and model evaluation (Merow et al. 2013).  As a 

result, model predictions could be different given alternative data input and settings rather than 

using the default settings. 

Maxent had a “good” performance with an AUC of 0.839, considering a random 

prediction is 0.5 and a value approaching 1 is considered a perfect prediction.  To understand the 

AUC obtained in a study and give a rating, one has to rely on previous work done in similar 

studies.  Yang et al. (2013) used Maxent to predict the potential distribution of a rare medicinal 

plant, and the predictive performance was very high (AUC=0.923).  The AUC of the Maxent 

model performance for T. simile distribution (0.839) could be classified as “good” compared to 

this study’s performance.  Unfortunately, an AUC for DOMAIN to compare to the Maxent AUC 

was not obtained.  The DIVA-GIS program and the scant literature on guidelines for DOMAIN 

did not have guidance on how to properly calculate an AUC or similar predictive performance 

value.  The drawback of this was an inability to compare DOMAIN to Maxent in terms of AUC.   

Although AUC is currently considered the standard method to assess the accuracy of predictive 

distribution models, some studies raise concerns about its extensive use because its meaning and 

use could be misleading, biased, and not appropriate for directly comparing models (Lobo et al. 
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2007; Peterson et al. 2007; Elith & Hijmans).  Khatchikian et al. (2011) found that DOMAIN 

had a very low prediction performance AUC, the lowest out of five compared models, including 

Maxent, which had the second highest.  However, DOMAIN presented with the highest level of 

robustness (>96%), whereas Maxent scored among the lowest in robustness, where robustness of 

a model refers to its ability to effectively perform while its variables or assumptions are altered.  

Even though AUC might be high, model performance robustness can tell an opposing story and a 

high AUC score does not necessarily imply suitability accuracy (Lobo et al. 2007).  While an 

AUC value is one important way to assess model performance, it should not be the only means 

of comparing model performance and should be used in conjunction with other methods such as 

statistical analysis of field validation data.   

Field validation, which is an especially critical step in assessing the predictive 

performance of rare species habitat models (Jiménez-Valverde et al. 2008; Lobo et al. 2008; 

Rebelo & Jones 2010) revealed similarities between habitat characteristics at predicted high 

suitability sites compared to extant T. simile populations visited during the initial habitat 

characterization. This indicates that both Maxent and DOMAIN predicted suitable habitat for T. 

simile accurately.  The descriptive statistics of the habitat characteristics slope, elevation, canopy 

cover, and soil pH showed that the means of the abiotic variables were close to those of the 

known sites.  Furthermore, the univariate ANOVA results for these same habitat characteristics 

and a circular ANOVA for aspect revealed that all pair-wise t-tests had p-values that were not 

significant.  From this it could be concluded that there was no statistical difference between 

known T. simile sites and sites predicted as highly suitable by Maxent, DOMAIN, and areas 

where both predicted highly suitable habitat.   
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Both models had high, comparable predictive performance in terms of the sites that were 

withheld for model testing, although DOMAIN performed slightly better.  Of the 11 sites 

withheld for model testing, Maxent correctly predicted 8 sites (73%) as either highly suitable or 

suitable, whereas DOMAIN correctly predicted 9 sites (82%).  Overall, out of the 45 

documented known sites used to both build and test the model, Maxent successfully predicted 

93% of the sites as suitable or highly suitable, and DOMAIN successfully predicted 95% of the 

sites as suitable or highly suitable, both of which were very high predictions.  These results 

further support the fact that both models performed comparably well, and were not significantly 

different in their predictions. 

Taking into consideration the results of the quantitative assessments of the data, Hijmans 

& Elith (2017) discuss how it is much easier to create a model and make predictions on species 

and habitat distributions and much more difficult to assess how good the model actually is.  

However, they propose model agreement analysis (Watson & Petrie 2010) as appropriate method 

for comparing models, which was used in this study.  The method agreement analysis showed 

that both models Maxent and DOMAIN had substantial agreement (κ=0.674) and were both 

suitable for modeling T. simile habitat, further supporting the quantitative assessments. 

In terms of qualitative assessment, Maxent was a more complicated model to use than 

DOMAIN.  Pre-processing the data involved several time-consuming steps.  The Maxent 

program itself has several settings that can be adjusted prior to running the model with the 

processed data, making it difficult to understand under what parameters to properly run the 

model.  The Maxent program’s output varies in response to different settings and what the user 

does affects the output because alternatives to the default settings may be more appropriate 

(Merow et al. 2013).  Settings that affect the modeling options include choice of background 
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samples and accounting for environmentally biased sampling, which can both lead to different 

interpretations of various model outputs and challenges for model validation.  

Experimenting and working with Maxent on different scales, with different species, and 

with various project objectives, would be beneficial to understanding how to best to operate the 

program. Because of the popularity of Maxent for habitat suitability modeling, several resources 

exist to serve as guidelines (e.g., how to format data, suggestions for settings).  Although this 

was extremely helpful in modeling T. simile habitat, the steep learning curve creates a limited 

amount of time to learn about possible issues that could affect model performance or how to 

make informed decisions to help it perform better.  Another aspect of Maxent that could be seen 

as an advantage is the automatic generation of the environmental variable response curves that 

show how environmental predictor variables affect model prediction.  The AUC is also an 

automatic output in the Maxent program. 

Many of the user qualities of DOMAIN were opposite those of Maxent.  For example, the 

user interface of DOMAIN was very simple.  Because the data for both models was processed 

the same way and the same variables were used, once pre-processing was complete, running the 

model with DOMAIN was very simple and straightforward.  The settings for DOMAIN as used 

in DIVA-GIS were minimal, only calling for settings necessary to make the model operate.  

Although the simplicity was an advantage, there is also the potential disadvantage associated 

making few adjustments. Also, the DIVA-GIS system was the only workable format for running 

the DOMAIN model; it is a simple platform that requires no licenses, but lacks the versatility 

and flexibility of a proprietary program like ArcGIS.  Furthermore, because of the simplicity of 

the model and the lack of published material in which DOMAIN was used, there was very 

minimal guidance.  The guidance was limited to how to input data and at the very least obtain a 
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visual output.  DOMAIN also appears in very few published articles compared to Maxent, 

causing a lack of information and suggestions from others who have used the model.  Unlike 

Maxent, however, DOMAIN does not provide environmental predictor variables response 

curves, and the AUC is not immediately generated but rather is a separate process, which is not 

presented in this research.   

As mentioned, pre-processing of the digital environmental variables prior to input was 

the same for both Maxent and DOMAIN.  Both models ran quickly once initiated, and both 

allowed user-defined cutoffs for habitat suitability.  Also, the range of either probability of 

suitable habitat (Maxent) or confidence of suitable habitat (DOMAIN) was 0-1 for both models.  

Because of the user-defined cutoffs, suitability ranges of both, and use of the same 

environmental variables, the two model outputs were directly comparable.  The image outputs of 

habitat suitability across the area of interest were also easily integrated into ArcGIS (Maxent) or 

kept in DIVA-GIS (DOMAIN), where modifications of the images were possible for clarity and 

use as T. simile habitat maps or maps of particular types of species-rich rich cove forests.   

Differences in the levels of simplicity or complexity have been explored in the literature 

with various SDMs.  Jiménez-Valverde et al. (2008) suggests that more complex models, such as 

Maxent, might be better suited to modeling realized habitat distributions, whereas simpler 

models, like DOMAIN, may be more appropriate for modeling potential habitat distributions.  

Therefore, DOMAIN might be the preferred method for species that are candidates for 

conservation prioritization and propagation, like T. simile and other rare and endemic plant 

species.  ‘Under-fit’ models like DOMAIN might be too simple and have insufficient flexibility 

and thus misunderstand the factors that shape species distributions flexibility.  On the contrary, 

‘over-fit’ models, like Maxent, could have excessive flexibility, which runs the risk of being 
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superfluous and ascribing significant patterns to noise (Merow et al. 2014).  Both extremes in 

model capabilities make model selection challenging, and there are differences in opinion that 

favor simpler or more complex SDMs (Merow et al. 2014). 

In conclusion, with limited time, a simpler, less flexible model like DOMAIN might be 

more beneficial to use, whereas a more complex model like Maxent could be better if the user 

has plenty of experience and a working knowledge of the program and its settings.  In this 

project, Maxent proved to work well on a small scale although it has been used primarily for 

species on larger scales (Elith et al. 2011; Phillips et al. 2006); however, DOMAIN performed 

equally as well and was a simpler process.  While both Maxent and DOMAIN modeling method 

provided a useful and successful tool for predicting suitable habitat for T. simile in the southern 

Appalachian Mountains region, this study recommends DOMAIN because of its ability to 

predict highly suitable habitat for T. simile using a simpler, GIS-based method.  Further 

experience with each model under various conditions is recommended and essential to truly 

understanding how SDMs perform and which might be preferred.  
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