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ABSTRACT 
 
 
 
THE EFFECT OF CELASTRUS ORBICULATUS, ORIENTAL BITTERSWEET, ON THE 

HERBACEOUS LAYER ALONG A WESTERN NORTH CAROLINA CREEK 

Jenny Rebecca Browder, M.S. 

Western Carolina University (May 2011) 

Director:  Dr. Greg Adkison 

 

 Nonnative, invasive plants such as Celastrus orbiculatus Thunb. (Oriental bittersweet) 

threaten the biodiversity of areas they invade.  I examine bittersweet’s effect on the diversity, 

richness, and total abundance of the herbaceous layer of Dingle Creek in western North Carolina 

and its effect on the abundance of several native species found along Dingle Creek: Phlox 

stolonifera, Viola sororia, Arisaema triphyllum, and Thelypteris noveboracensis.  I selected an 

area in this floodplain where bittersweet appeared to be encroaching but was not dominant to 

establish a transect of paired quadrats.  A pair was defined as one quadrat with bittersweet and 

one quadrat without bittersweet.  Abundance of all species in the herbaceous layer was measured 

as percent cover and as number of rooted shoots in each quadrat.  I found that bittersweet is 

negatively affecting the community.  Specifically, quadrats containing bittersweet had lower 

richness, diversity, and total abundance compared to quadrats without the invasive plant.  Nearly 

a third of the species sampled were absent from quadrats with bittersweet.  Also, one of the four 

populations I examined, T. noveboracensis, was less abundant in bittersweet quadrats relative to 

quadrats without bittersweet.  These results, along with the abundance of young individuals of 

bittersweet in the floodplain and the dominance of bittersweet in areas where it has apparently 

been long established, all suggest that this species's highly developed morphological and 

physiological adaptations may allow it to eventually dominate this site. 
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INTRODUCTION 
 
 
 
 Invasive plants are one of the biggest threats to native species and to natural ecosystems 

in the United States (Levine et al. 2003; Zavaleta 2000).  It has been estimated that 5,000 

nonnative plant species have naturalized in the U.S., and these species represent almost a third of 

the entire plant population here (Morin 1995).  Consequently, almost half of the threatened and 

endangered species of the Endangered Species Act are thought to be in peril as a result of 

invasive species (Wilcove et al. 1998).  Escalating the problem of invasives are the growing 

human population, land development, and trade (Zheng et al. 2004). 

 The purpose of this study is to examine one of these invasives, Celastrus orbiculatus 

Thunb. (Oriental bittersweet), and its effect on the diversity, richness, and total abundance of the 

herbaceous layer of the riparian area of Dingle Creek.  The study also examines the effect of 

bittersweet on the abundance of several typical floodplain species found along Dingle Creek.  In 

this thesis, I discuss the general ecology of invasive plants, the specific case of bittersweet as an 

invasive, the encroachment of this plant in western North Carolina, and my research of its effect 

on the herbaceous layer along Dingle Creek in the Biltmore Forest. 

Significance of the Herbaceous Layer 

 My study focuses on the herbaceous layer of the Dingle Creek riparian community.  The 

herbaceous (herb) layer, ground vegetation, ground cover, or herb understory, has as many names 

as it does definitions.  For my study, these terms are used to denote all vascular species that are 

less than, or equal to, 1.5m in height, including resident and transient species.  Transients are 

included because they have dynamic interactions with the herb layer and are capable of altering 

both the tree layer (a term I use to encompass the canopy, sub canopy and understory layers of a 

forest) and the herbaceous layers’ compositions (Gilliam & Roberts 2003). 
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 The relationship between the herb and tree layers is dynamic and complex.  It may be 

competitive, as both attempt to acquire minerals, water, and sunlight; it may be commensally 

facilitative, as one may provide the proper amount of shading necessary for the other; or it may be 

antagonistic, as one uses its neighbor to gain height.  Most ecologists are aware of the tree layer’s 

ability to inhibit the herb layer through the alteration of soil conditions and the obstruction of 

light availability, but the flipside of this relationship is not as well known.  Following a 

disturbance, the herb layer is where a great deal of competition takes place.  A forest’s 

herbaceous layer affects the shrub layer, the sub-canopy layer, and the canopy layer by competing 

with their seedlings.  Many herbaceous species are able to deter the growth of seedlings through 

shading and the hoarding of soil nutrients.  In this way, the herbaceous layer is capable of 

contributing to the particular type of forest that re-establishes. (Gilliam 2007). 

 The herb layer is a greater contributor to forest biodiversity than any other plant layer 

(Gilliam 2007).  High richness of non-tree vascular plants has a strong correlation with high 

richness of animal species (Ricketts et al. 1999).  Gilliam (2007) evaluated data that had been 

collected on species richness of both the herb layer and tree layer from 28 different studies and 

found that the herb layer accounted for more than 80% of the total plant species richness of forest 

plant diversity.  The studies he examined encompassed many different forest types in North 

America, including mixed hardwood, mixed conifer, white spruce, oak barren, northern hardwood 

and longleaf pine. 

 A forest’s herbaceous layer affects the ecosystem processes, including flow of energy and 

cycling of nutrients (Gilliam 2007) and contributes abundantly to the net primary productivity, 

total net ecosystem carbon gain, and litter fall (Gilliam & Roberts 2003).  In addition, C, P, K, 

and Mg concentrations are significantly higher on average in herbaceous foliage than in tree 

foliage (Gilliam & Roberts 2003).  Some spring ephemerals are able to uptake N when tree 

foliage has not yet emerged thus freeing up these nutrients for use by trees.  This process, termed 
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the vernal dam hypothesis (Rothstein 2000), demonstrates yet another way that the herb and tree 

layers are linked.  Obviously, any disruption of the herbaceous layer by an invasive plant like 

bittersweet might jeopardize the biodiversity and functions of the forest in habitats such as Dingle 

Creek. 

Habitat Susceptibility 

 Some habitats appear to be more vulnerable to invasion than others.  For example, all else 

being relatively equal, habitats that are richer in resources tend to be more susceptible to invasion 

(Maron & Marler 2007).  Maron and Marler (2007) show experimentally that increased moisture 

increases invasibility of experimental plots.  Given this apparent connection between resource 

availability and susceptibility to invasion, it is no surprise that disturbance tends to make habitats 

more susceptible to invasion.  Disturbance can redistribute and free up resources that were 

previously being used (Silveri et al.  2001).  Logging and development are two primary examples 

of this (Robertson et al. 1994; Silveri et al.  2001).  Natural disturbances such as windstorms, 

wildfires, floods, and hurricanes may also provide a gateway through which invasives can enter 

and establish (Silveri et al.  2001). 

 Riparian areas are particularly susceptible to invasion (Lyon & Gross 2005).  This can 

partially be attributed to floodwaters transporting propagules from a wide array of habitats along 

the watershed (Tickner et al. 2001; Brown & Peet 2003; Jansson et al. 2005).  The establishment 

of incoming plant species may be facilitated as floodwaters make resources, such as space, light, 

and minerals available (Tickner et al. 2001; Brown and Peet 2003).  The pool of colonizing 

species can be approximately 50% greater in riparian areas that experience hydrochory versus 

those that do not, even when accounting for the increased mortality rates due to the flooding 

(Jansson et al. 2005).  A study that examined Southern Appalachian plant communities of riparian 

vs. upland habitats found richness, frequency, and cover of invasives to be much greater in 

riparian areas than upland areas (Brown and Peet 2003). 
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General Ecology of Invasive Plants 

 A small percentage of nonnative plants have traits that allow them to successfully invade 

new habitats (Gordon 1998).  For example, invasive plants tend to grow rapidly and have high 

population growth rates (Mack et al. 2000; Hejda et al. 2009).  Rapid individual growth means 

that these plants can quickly overtop and shade out native competitors.  Combined with high rates 

of reproductive success and colonization, rapid individual growth also means that invasive 

species can quickly spread over a site and competitively exclude native species.  In general, a 

nonnative species is likely to take over an area if it has a similar role as a native and is able to 

outcompete that native (Woods 1997; Gordon 1998), if its growth rate exceeds that of most 

natives (Gordon 1998) and if it more efficiently captures and uses available resources (Leicht-

Young et al. 2007).  A nonnative is also likely to successfully invade an area if it takes advantage 

of a niche that is not being occupied (Silveri et al. 2001) or possesses a unique trait that allows it 

to take advantage of the community’s characteristics (Urgenson 2009). 

 Invasive plants also tend to have effective mechanisms of dispersal and colonization.  

Plants whose seeds are dispersed by wind, birds, mammals, and flying insects can potentially 

spread great distances with relative ease and thereby occur with high frequency in many 

locations.  In contrast, plants whose seeds are dispersed by gravity or by insects that do not fly 

tend to disperse away from parent plants gradually.  Within forest understories, species that 

cannot exceed heights of 1.5m (Gilliam & Roberts 2003) are often somewhat dispersal limited 

because they typically spread by invertebrates that do not fly.  “Transient species,” those species 

in the herb layer that may eventually emerge past the height of 1.5m and become part of another 

layer, tend to disperse more widely because they spread by wind, water, and vertebrates (Gilliam 

& Roberts 2003).  Invasive plants affect community composition through both of these general 

paths.  In other words, they often have dispersal mechanisms and growth rates that promote their 

spread, increasing the chance that they will colonize a particular site.  Also, often they have traits 
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that allow them to compete successfully in a range of environmental conditions thereby altering 

environmental conditions to which native species might be specialized. 

 The most successful invaders are capable of altering resource availability, disturbance 

patterns (Gordon 1998), and ecosystem processes (Laungani & Knops 2009; Zavaleta 2000; 

Urgenson 2009; Reinhart et al. 2006), and they often do so in ways that favor their own needs.  

Several studies have examined the mechanisms by which invasives competitively exclude or 

reduce the growth of neighboring taxa (Levine et al. 2003).  Of those mechanisms, the limitation 

of light appears to be the most common (Meekins & McCarthy 2000; Levine et al. 2003; Woods 

1993; Wyckoff & Webb 1996) and is associated with decreasing species richness, diversity, and 

abundance (Antlfinger et al. 1985).  Monopolizing water is another mechanism used by invasives.  

African carrion flower (Orbea variagata) (Dunbar & Facelli 1999), common hottentot 

(Carpobrotus edulis) (D’Antonio & Mahall 1991), and cheatgrass (Bromus tectorum) (Melgoza et 

al. 1990) are all invasives that use this method.  Additionally, invasives may influence 

disturbance regimes that support their regeneration (Reinhart et al. 2006; Mack 1996).  Also, 

several methods of competition may be occurring simultaneously (Gentle & Duggin 1997; Busch 

& Smith 1995).  Changes created by invasives impede the survival of plants lacking sufficient 

plasticity or genetic variation (Reinhart et al. 2006).  Selection pressures created by the newly 

changed environment are then advantageous for the invasive (Vitousek 1990). 

 Commonly, plants in their native environments create negative plant-soil biota feedbacks 

that serve to regulate distribution of species and to increase diversity (Laungani & Knops 2009; 

Reinhart & Callaway 2006).  When placed in foreign soils, these same plants, now considered 

nonnatives, create positive plant-soil biota feedbacks perpetuating their own population and 

inhibiting the growth of other species (Reinhart & Callaway 2006).  These allelopathic traits 

allow them to literally hinder the growth of native plants by decreasing the growth, nutrient 

uptake, or germination of nearby plants (Pisula & Meiners 2010; van Ruijven et al. 2003; Gentle 
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& Duggin 1997).  For example, in an effort to explain why many invasives are competitively 

inferior in their native habitats but competitively superior in habitats they successfully invade, 

Callaway and Ridenour (2004) describe invasive species that release chemicals into the 

rhizosphere that weakly affect neighboring plants from the invasive’s native habitat but strongly 

inhibit neighbors from invaded habitats since they lack previous experience in dealing with these 

“novel weapons”.  Sri Lankan privet (Ligustrum robustum) is able to prevent the regeneration of 

surrounding plants (Lavergne et al. 1999).  To my knowledge, only one study has examined 

bittersweet’s allelopathic capacities and more research is needed.  Pisula & Meiners (2010) tested 

the allelopathic potential of ten co-occurring invasive species on the germination of one target 

species and ranked them on their relative strength.  Based on the low inhibitory performance by 

both of the invasive shrubs examined (bittersweet and Japanese honeysuckle (Lonicera 

japonica)), they concluded that allelopathy by these lianas was unlikely to occur in the field.  

Some invasives may enrich the soil with nutrients (Hejda et al. 2009), creating specific 

environments in which only they are able to thrive (Leicht-Young et al. 2007; Reinhart & 

Callaway 2006; Truscott 2008).  Vivrette  & Muller’s (1977) study of invader crystalline iceplant 

(Mesembryanthemum crystallinum) shows how the build up of salt under the plant prohibits the 

growth of other plants for years to come.  Soil found beneath invasives generally has higher pH 

values, nutrient values, and nitrification rates than soil found under adjacent native plants 

(Laungani & Knops 2009; Ehrenfeld et al. 2001; Leicht-Young et al. 2009). 

 Clearly, much needs to be learned about the systemic interplay among these invaders, 

their targeted community, and other taxa sharing the same environment (Levine et al. 2003; Hejda 

et al. 2006; van Ruijven et al. 2003; Tickner et al. 2001; Hill & Silander 2001; Gentle & Duggin 

1997).  Fortunately, several studies over the past decade have begun exploring these systemic 

relationships.  One study examining cape ivy (Delairea odorata) an invasive evergreen vine, 

found that the invader diminished diversity and richness of all forbs, grasses, and sedges, but not 
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ferns.  It was proposed that the ferns’ shade tolerance deemed it unaffected by cape ivy’s 

smothering methods (Alvarez et al. 2002).  Another study evaluating the impacts of Amur 

honeysuckle (Lonicera maackii) an invasive shrub, found it lowered species richness and 

abundance of the community.  However, on a population level, 86% of the taxa were negatively 

affected, 10% were positively affected, and 4% showed neither positive nor negative effects.  The 

variances in taxa response were attributed to the taxa’s diverse life histories (Collier et al. 2002).  

Stinson et al.’s (2007) research on the invasion of garlic mustard (Alliaria petiolata) in a forest 

understory community found different taxa to vary in susceptibility. 

 A few studies have concluded that certain plant species may actually help prevent 

invasion.  Hejda et al. (2009) found from their study of 13 invasive plants that native species vary 

in their ability to resist invasion, with some battling the invader more strongly than others.  A 

study conducted in the Netherlands by Van Ruijven et al. (2003) found that particular plant 

species, oxeye daisy (Leucanthemum vulgare) and brown knapweed (Centaurea jacea), are able 

to resist invasion by native invaders.  They suggest that research be conducted on these 

“suppressive species” to determine exactly how they reduce invasibility and if their resistance 

capabilities are effective with all plant invaders. 

 The bottom line is that invasives are capable of occupying the space, resources, and 

processes once controlled by natives (Urgenson 2009; Gordon 1998; Mack et al. 2000; Dukes and 

Mooney 2004; Vitousek 1990).  As a result, roles that were formerly held by many species of a 

community are shifted into one or a few dominants.  This shift changes an ecosystem’s structure 

and functions (Urgenson et al. 2009; Hooper and Vitousek 1997; Chapin et al. 2000; Gordon 

1998; Leicht-Young et al. 2009; Vitousek 1990).  When an ecosystem’s processes are changed, 

its goods are affected (Urgenson et al. 2009).  This leads one to question what vital fundamentals 

invasives are really costing us.  Though no decidedly fixed monetary value has been placed on 

specific ecosystem goods and services, it should be a point of great concern for humans, because 
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most of these products, such as clean water, fertile soil, nutrient cycling, and flood and waste 

management, are very important to our species (Vitousek 1990; Zavaleta 2000). 

 My research will provide information about one specific invader, bittersweet, and its 

effect on a riparian community and on common native taxa of that community. 

Description and Identification of Bittersweet 

 Oriental bittersweet is a member of the Celastraceae family and is native to China, Japan, 

and Korea where it can be found primarily in lowland slopes or thickets (Zheng et al. 2004; 

Dreyer 1994).  It is a deciduous, climbing, woody vine, also known as a liana.  Its stems range 

from 5 to 13 cm at dbh (Dreyer 1994) and can reach heights of at least 30 m and girths of 18 cm 

(Leicht-Young et al. 2007).  Its branches contain lenticels and are pale grey or brown, darkening 

as they mature.  In addition to being an ornamental in its native land, its fruits are used for 

medicine, its bark for fiber, and its seeds for oil (Zheng et al. 2004). 

 Oriental bittersweet looks like and is sometimes confused with its congenor, American 

bittersweet (Celastrus scandens), a native of the United States and Canada.  American bittersweet 

is listed as endangered by the North Carolina Plant Conservation Board and is becoming even 

more rare as it hybridizes with and is outcompeted by the invasive (Pooler et al. 2002; Steward et 

al. 2003).  One study suggests that this hybridization is threatening American bittersweet’s 

genetic integrity (Pooler et al. 2002).  In a variety of environmental conditions, the invasive is 

much more successful in reproduction, efficient in obtaining and using resources, and tolerant of 

a wide gradient of resource states.  Oriental bittersweet is more shade tolerant than the native.  A 

study that varied light transmittance between 0.8 and 6.4% found bittersweet to have a 90% 

survival rate compared with American bittersweet’s 68% and a biomass that is almost three times 

greater (Leicht-Young et al. 2007).  In an average forest understory bittersweet can grow 15 times 

greater than American bittersweet (Dukes et al. 2009).  In studies with varying soil conditions 

from very dry to saturated, both species show a decrease in survival, but the native’s mortality 
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rate is approximately three times greater than the invasive’s (Leicht-Young et al. 2007; Woods 

1997).  The invasive’s pollen is 67% viable compared to the native’s 48%.  Its seeds are also 

brighter and redder than the native’s (Dreyer 1994).  Germination rates of the invasive are double 

that of the native (Dreyer et al. 1987).  When plots with Oriental bittersweet present are compared 

to plots of the same soil, location, and habitat type without it present, the plots with the invader 

are much higher in soil pH, potassium, calcium, and nitrogen levels and litter decomposition rates 

(Leicht-Young et al. 2009).  This increase follows the pattern recognized for the majority of 

invasives. 

 Oriental bittersweet’s light green to yellow flowers appear from May to June (Zheng et 

al. 2004) and are functionally dioecious (Dreyer et al. 1987; Williams & Timmins 2003).  Its 

fruits are yellow-orange globose capsules ranging from 8-10mm in diameter (Zheng et al. 2004) 

that are produced from functionally female plants (Dreyer et al. 1987).  When ripe, the ovary wall 

breaks open exposing three to six bright red, plump seeds (Dreyer et al. 1987) that are 4-5mm in 

length and 2.5-3 mm in diameter (Zheng et al. 2004). 

 Oriental bittersweet has axillary cymes with three to seven green flowers and fruit, and a 

vegetative bud.  It may produce flowers all along its stem, unlike American bittersweet, which 

has just one terminal panicle inflorescence.  This is the most reliable characteristic to use for 

distinguishing the two species, but can only be applied to female flowers since male flowers do 

not follow these distinct patterns (Dreyer et al. 1987; Dreyer 1994).  Its leaves are broadly 

obovate, orbicular, or oblong, 5-13 cm long and 3-9 cm wide.  They have toothed margins, an 

apiculate apex, and a broadly cuneate or nearly obtuse base (Zheng et al. 2004).  Its buds and 

leaves emerge in the Southern Appalachian region in early April, ahead of most summer plants.  

Its vines break dormancy and elongate their stems at least a month and a half earlier than the trees 

of the region (McNab & Loftis 2002).  Its leaves may remain green for at least a month after the 

first frost (Tibbetts & Ewers 2000). 
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 Oriental bittersweet has the capacity to grow 3 m every year (McNab & Loftis 2002; 

Patterson 1974; Silveri et al. 2001).  Its early and rapid growth gives it a height advantage that 

makes the reestablishment of the herb and tree layers more difficult (McNab & Loftis 2002; 

Patterson 1974; Silveri et al. 2001).  During autumn some understory seedlings experience 

freezing at their buds but compensate for their loss by allocating growth to the roots (McNab & 

Loftis 2002; Patterson 1975). 

 Three known fungal species that occur in bittersweet’s native land help to keep it in 

check: Microsphaera celastri, Amazonia celastri, and Uncinula sengokui (the latter of which is 

host specific).  Also, there are six known arthropod species that prey on bittersweet: Plinachtus 

bicoloripes, Aphis clerodendri, Trioza celastrae, Yponomeuta sociatus, Hypothenemus eruditus, 

and Unaspis euonymi (Zheng et al. 2004).  The last two are native in North America.  Generally, 

local pests and pathogens target invasives less than natives. 

Dispersal, Range, and Preferred Habitat of Bittersweet 

 Dispersal of the species results from birds dining on and then defecating its abundant 

seeds during the winter and from pollination by hymennopterous insects, primarily bees 

(Williams & Timmins 2003).  A strong correlation between bittersweet’s presence and 

scarification of the litter layer (Silveri et al.  2002; McNab & Loftis 2002) could suggest that 

other animals may be dispersing the plant.  Primary distribution of this plant has been by humans 

as a garden or dried ornamental (Chornesky & Randall 2003; McNab & Meeker 1987; Dreyer et 

al. 1987).  The plant spreads vegetatively by root sprouting, the phenomenon of shoots emerging 

from a below ground root (Dreyer et al. 1987). 

 Being a liana is another great advantage of bittersweet.  Like most lianas (Silveri et al.  

2001), bittersweet is opportunistic for sites that have experienced disturbance, especially in the 

canopy and soil (McNab & Loftis 2002).  Its vines have spine-like protuberances that burrow into 

the bark of its hosts (Silveri et al. 2001).  As the vines climb or grow over their host, they girdle 
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its stems and trunk inhibiting nutrient and water flow, smother it preventing air and sun access as 

they leaf out, outcompete it for other vital resources, and add extra weight (Dreyer et al. 1987; 

Williams & Timmins 2003). 

 Oriental bittersweet grows in a wide range of habitats.  A topic with a more succinct 

description would be habitats that bittersweet does not prefer.  The liana is full sun tolerant and 

shade tolerant (Leicht-Young et al. 2007; Ellsworth et al. 2004).  It has the capacity, through 

complex modifications of leaf morphology and physiology, to lower its growth rate in low light 

conditions, while increasing its survival (Woods 1997; Ellsworth et al. 2004).  Therefore, it is 

able to survive in the forest understory, growing slowly, and then flourish if forests are thinned or 

harvested (Ellsworth et al. 2004).  Its seeds can germinate in the dark and survive as seedlings in 

extremely low light intensity for prolonged periods of time (McNab & Loftis 2002; Patterson 

1975; Patterson 1974; Silveri et al. 2001; Dreyer et al. 1987). 

 There are conflicting data about whether or not sunlight plays a role in the plant’s 

abundance.  Where light availability was thought to be a major factor contributing to bittersweet’s 

positive response to disturbance, some studies have found there to be no correlation between light 

availability and the abundance of the plant (McNab & Loftis 2002).  Yet others found abundance 

of irradiance to greatly increase its presence.  A study by Leicht-Young et al. (2007) warns of 

bittersweet’s tolerance of low light and its ability to thrive in areas such as forest edges or gaps 

where light is accessible, permitting this plant to dominate two widely diverse habitats.  These 

contradictory findings demonstrate the high plasticity this invasive possesses. 

 Oriental bittersweet’s capacity to surpass natives in a wide array of environmental 

conditions has been documented time and time again (Leicht-Young et al. 2007).  Its adaptable 

nature gives it a competitive edge that makes it superior to most native vegetation, including its 

native congener, American bittersweet (McNab & Loftis 2002; Dreyer et al. 1987; Leicht-Young 

et al. 2007).  It is prolific in mesic (Leicht-Young et al. 2007) to abundantly moist (McNab & 
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Loftis 2002) soil conditions including those associated with concave topography (McNab & 

Loftis 2002), which is a water collecting curvature on landscapes with relief. 

Origin and Arrival of Bittersweet 

 Eastern Asia is a main source of plants used for horticulture, agriculture, and the 

prevention of soil erosion in the United States (Ding et al. 2006); so it is not surprising that many 

of our invasive plants—including bittersweet—come from that part of the world.  Of the 58 

invasive plants in Illinois for example, 24 species are native to eastern Asia or China (Ding et al. 

2006).  The United States has exported many invasive plants to China as well (specific numbers 

are unknown).  Examples include annual ragweed (Ambrosia artemisiifolia) and great ragweed 

(Ambrosia trifida).  Both were introduced in the ‘30s and have naturalized in at least ten 

provinces (Ding et al. 2006).  Invasive smooth cordgrass (Spartina alterniflora), native to gulf 

coasts of the United States, was introduced to China to prevent erosion in the ‘60s (Ding et al. 

2006).  As a result of our similar environments, we have many common invasives from other 

continents such as water hyacinth (Eichhornia crassipes) and alligator weed (Alternanthera 

philoxeroides) (Ding et al. 2006). 

 The time of bittersweet’s entry to North America is unclear.  Though the consensus is 

that it was brought here for horticultural purposes (Albright et al. 2009; Miller 2003; Patterson 

1973), the cited year of its arrival varies greatly.  Albright et al. (2009) and Miller (2003) state 

that it was first introduced into the United States as an ornamental in 1736.  Patterson (1973) 

reports that it came to North America in the 1860s and was first admired publicly by the Arnold 

Arboretum at Harvard University.  Collections dating back to 1910 document its naturalization in 

northeastern North America (Steward et al. 2003).  It has naturalized in at least 21 midwestern 

and eastern states, including North Carolina (Patterson 1974; Albright et al. 2009). 
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Bittersweet in Western North Carolina 

 Regionally, studies indicate that bittersweet is “concentrated in areas south of Asheville, 

North Carolina, where it has been documented as far back as 1895” (Albright et al. 2009; 

Merriam 2003; McNab & Meeker 1987).  McNab and Loftis (2002) report its presence in 39% of 

the plots sampled at Bent Creek Experimental Forest, just south of Asheville.  National Biological 

Information Infrastructure data (2009) indicate that bittersweet occurs in roughly a tenth of 

sampling sites (on public lands) in the southern Appalachians, with the greatest concentration in 

western North Carolina. 

 It is conventionally stated that bittersweet was first introduced to southern Asheville 

where it was cultivated on a homestead as an ornamental.  It supposedly spread throughout the 

area when the construction of the Blue Ridge Parkway (beginning in the 1930s) ran through that 

homestead (McNab & Meeker 1987, Merriam 2003). 

 Interestingly, the Biltmore Estate may have helped in the early establishment of this 

invasive plant, both locally and nationally, through the work of its nursery.  The concept of 

invasive plants was unheard of at the founding of the nursery in the late 1800s; and it was the 

trend of the times for nurseries of North America and Europe to grow and sell any plant that 

could possibly be obtained (Alexander 2007).  Especially prestigious were the collections of fast 

growing ornamentals from foreign lands.  Landscape architect Frederick Law Olmsted 

recommended to Vanderbilt that, “To obtain them (trees, shrubs, and vines) in quantity of a 

desirable planting size will take several years.  Some can best be propagated on the ground; some 

obtained as small seedlings in Europe or from Japan and advanced on the Estate” (Alexander 

2007). 

 In the first ten years of the nursery’s establishment, plants were cultivated almost solely 

for the Biltmore Estate (Alexander 2007).  Then, from around 1898 until 1916, shipments of 

seeds and plants of an extensive range of plants (4,430 species total) were made to over 200 
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clients primarily located in the eastern half of the United States.  Customers included but were not 

limited to individual estate owners, botanical gardens, arboretums, universities, experiment 

stations, landscape architects, hospitals, resorts, parks, schools, and nurseries. 

 The Celastrus vines, C. orbiculatus and C. scandens, were noted in the Biltmore Nursery 

catalog (Alexander 1912) to be “extremely hardy and very effective for covering walls, rocks or 

trellis work, or for climbing trees and lattice” (Alexander 1912).  Oriental bittersweet was 

described as “splendid for decorating.”  Today, the Biltmore Estate spends a lot of time and 

money controlling oriental bittersweet and other invasives first planted on the property by 

Olmsted (Parker Andes 2010 interview).  Thus there is an ironic element of Biltmore’s botanical 

legacy whereby the Biltmore Nursery may have played a prominent role in the introduction and 

spread of the invasive Oriental bittersweet. 

Encroachment of Bittersweet 

 Historical references of bittersweet note its ability to encroach and spread abundantly.  

Nash (1919) writes of the “vigorous high-climbing shrub” and states that it (Celastrus articulatus, 

a former name) was growing on several trees behind the Museum building of the New York 

Botanical Garden:  "It was of accidental occurrence there, and perhaps originated from seed 

carried by birds from the large specimen in the viticetum but a short distance to the east" (Nash 

1919).  Records of harvesting a mountainous terrain in North Carolina in 1985 observe an 

unsubstantial presence of bittersweet (McNab & Loftis 2002) where a 2002 inventory of the same 

site notes bittersweet’s presence on 77 of the 198, 314m2 plots (McNab & Loftis 2002).  In a 

study conducted over four decades in a Central Hardwoods Forest region of southern New 

England, researchers were expecting the sites to follow typical succession patterns for post 

agricultural fields, forming an herbaceous community that eventually lead to the establishment of 

a forest community.  They instead found that forty years of forest growth had resulted in a forest 

dominated by bittersweet.  The 41 herbaceous species that were documented in 1954 had 
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dwindled to just seven in 1992 (Fike & Niering 1999).  They report that bittersweet was able to 

dominate the habitat, change shrub stratum, facilitate northern fox grape’s (Vitis labrusca), ability 

to gain height and cause destruction, arrest forest development, and decrease species diversity and 

richness. 

 To what degree bittersweet will spread is hard to predict, but it is forecasted to be part of 

our ecosystems for quite some time (Albright et al. 2009; McNab & Loftis 2002).  Certain 

environmental events that may exacerbate bittersweet’s spread are climate change and the dying 

off of the hemlocks.  Albright et al. (2009) suggest that future deaths of hemlocks, Tsuga spp., 

may provide large disturbed areas for opportunistic invaders such as bittersweet.  If future climate 

conditions involve warmer temperatures and increased winter precipitation, the spread of 

bittersweet could also be greatly accelerated (Dukes 2009; McNab & Loftis 2002; Tibbetts & 

Ewers 2000). 

 The important point is that bittersweet represents a clear and present danger to our forest 

community.  Albright et al. (2009) warn land managers to prepare for its expanding impact.  It 

has high pollen and seed viability; its seeds are extremely attractive to birds and it can persist 

under a dense coverage until the opportunity for growth presents itself; it can girdle and diminish 

the size of established trees (Fike & Niering 1999) and collapse forest canopies.  Thus it has traits 

that make it successful as an invader and it likely will strengthen over the long term as it 

entrenches itself in the regional landscape. 

Objective 

 Several works have expressed the need for research examining the relationships between 

invasive and invaded communities (Stinson et al. 2007; Tickner et al. 2001; Alvarez & Cushman 

2002; Levine et al. 2003; Hejda et al. 2009), and more specifically between invasive and 

particular native species (Tickner et al. 2001; Truscott et al. 2008; Urgenson et al. 2009; Alvarez 

& Cushman 2002; Collier et al. 2002; Stinson et al. 2007; Levine 2003). 
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 I examined whether bittersweet affects species diversity, richness, and total abundance of 

the herbaceous community along Dingle Creek in Buncombe County, western North Carolina.  I 

also tested whether the presence of bittersweet affects the abundance of several native species 

typical of floodplains in western North Carolina.  These species include phlox (Phlox 

stolonifera), common blue violet (Viola sororia), New York fern (Thelypteris noveboracensis), 

and Jack-in-the-pulpit (Arisaema triphyllum). 

 The hypothesis that bittersweet reduces diversity, richness, and total abundance of the 

herbaceous community would be supported if plots with bittersweet are less diverse, less rich, and 

less productive than plots without bittersweet.  Similarly, the hypothesis that bittersweet hinders 

the growth of typical floodplain species would be supported if these plants are less abundant in 

plots with bittersweet than in plots without bittersweet. 

The Biltmore Estate and Forest 

 I was particularly interested in conducting research on the Biltmore Estate because of its 

rich history in addition to its special relevance for bittersweet.  Lurking on the estate grounds are 

fabled spirits from the beginnings of professional forest management and nature conservation; 

and this forest is hallowed as the birthplace of American forestry.  All of the historical 

information in this subsection is from Alexander’s book (2007) and his paper entitled “Biltmore 

Estate’s Forestry Legacy” (2003).  The Blue Ridge Mountains in the Asheville area became 

popular in the late 1880s as a health resort for people with common illnesses of the time.  The 

mountain air and moderate temperatures attracted people like George Vanderbilt who would 

come to vacation with his mother who had malaria (Alexander 2003; Alexander 2007). 

 Vanderbilt hired Frederick Law Olmsted, Sr., to be his landscape architect in 1888.  

Olmsted had designed the grounds of the United States Capitol in Washington, D.C. and Central 

Park in New York City and would later be considered America’s “Father of Landscape 

Architecture.”  Olmsted reviewed the property and found it to be in an extremely depleted 
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condition.  The settlers in that area had been poor and had to use every resource they had 

available.  Land was overgrazed by livestock and cleared with the use of fire.  Shallowly planted 

and unrotated crops were placed on steep terrain increasing erosion.  The landscape, along with 

unsustainable agricultural practices, made long term farming not lucrative, so clear cutting 

became a way of survival.  Biltmore forest became a primary timber supplier with several 

sawmills (Alexander 2003; Alexander 2007). 

 Olmsted still had hope for the land.  He envisioned a park-like setting surrounding 

Vanderbilt’s home, with gardens, a nursery and arboretum, a botanical library and herbarium, a 

working forest and game preserve.  In a short working paper entitled “Project Of Operations For 

Improving The Forest of Biltmore,” (1889) he proposed novel, methodical management for both 

growth and diversity for the forest, while also accounting for beauty (Alexander 2003; Alexander 

2007). 

 Gifford Pinchot was hired in 1892 to be Olmsted’s consulting forester.  His three goals 

were “profitable production, a nearly constant annual yield, and an improvement in the condition 

of the forest” (Pinchot 1893; Alexander 2003; Alexander 2007).  He wrote the “Biltmore 

Working Plan” (1892), the first report to introduce forest management as a noteworthy concept in 

America (Pinchot 1893; Alexander 2003).  After launching his management plan, he left Biltmore 

in 1895 to become the original chief of the U.S. Forest Service. 

 Dr. Alwin Schenck expanded upon the continuing vision in 1895 with his own ideas of 

sustainable forestry, converting depleted lands into healthy forests.  He established the Biltmore 

Forest School in 1898, which was the country’s first such entity.  It operated on the Biltmore 

grounds from 1898 to 1909 and produced the initial generation of the nation’s professional 

foresters (Alexander 2003; Alexander 2007). 

 After George Vanderbilt died in 1909, 86,000 of the 125,000 acres were sold to the 

federal government becoming the nation’s first national forest on the east coast, the Pisgah 
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National Forest.  The Cradle of Forestry was established in 1968 by Congress to honor the 

beginning of forest conservation in the United States (Alexander 2003; Alexander 2007). 

 The Biltmore Estate is truly the birthplace of conservation in the U.S. and it provides an 

inspiring locale for my research. 
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METHODS 
 
 
 
Study Area 

 Dingle Creek is located in the southeastern corner of the Biltmore Estate and flows 

westward into the French Broad River (Figure 1).  This riparian habitat has a dense herbaceous 

layer that includes many species of trees, ferns, and wildflowers.  It is home to several invasive 

species including oriental bittersweet (Celastrus orbiculatus), autumn olive (Eleagnus 

umbellata), Japanese honeysuckle (Lonicera japonica), Chinese privet (Ligustrum sinense), 

Nepalese browntop (Microstegium vimineum), and multiflora rose (Rosa multiflora). 

 Streams can affect the ecological functions of not only their specific locale, but of the 

collective riparian system (Edward 2003).  I used Hruby’s (2009) guidelines for assessing 

ecological functions of riparian areas to estimate Dingle Creek’s ecological services.  Under these 

guidelines, the presence of particular physical structures in riparian areas, referred to as 

indicators, signifies the occurrence of certain ecological processes.  Dingle Creek possesses many 

of these indicators. 

 Dingle Creek is a primary stream channel.  A portion (approximately 300m x 55m) of its 

floodplain falls within the Biltmore Estate.  It consists primarily of woody vegetation, with 

patches of wetland habitat interspersed.  This physical layout has been linked with an area’s 

potential to offer the hydrological services of allocating surface water, dispersing and slowing 

floodwaters, and maintaining the water table, all of which lessen the effects of floods on areas 

downstream (Edward 2003). 

 Pockets of sediment erosion and deposition are present along Dingle Creek, assisting in 

the removal of toxins and in nutrient and sediment cycling.  Current human- driven increases in 

nitrogen levels (Laungani & Knops 2009; Vitousek et al. 1997) make this service critical.  Dingle  
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Figure 1.  Location of study site.
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Creek has many large trees such as black gum, white pine, and sycamore.  Riparian zones that 

contain large trees have been found to support the habitats and food webs of terrestrial and 

aquatic organisms (Hruby 2009; Edward 2003).  Dingle Creek is a vital and important place for 

both the Biltmore Estate and the Pisgah forest, not only for the environmental services it 

provides, but also for the beauty and serenity it offers to visitors. 

Sampling Design 

 Oriental bittersweet has already encroached upon much of the landscape in the Dingle 

Creek area, with particularly strong presence in the areas within 3m from the creek and within 5m 

from the upland dirt road that is approximately 60 m from the creek.  The vines in this creek side 

corridor and in the roadside corridor are rampant and large, indicating that this invasion has been 

ongoing for decades.  However bittersweet is not dominant in the area between these corridors, 

where relatively young bittersweet vines and shoots and the occasional large vine share space 

with many other plants. 

 I selected an area in this floodplain where bittersweet appeared to be encroaching but was 

not dominant.  A 5m wide transect starting 5m from Dingle Creek’s northern bank was laid 

parallel to the creek for 290m (Figure 2).  Twenty-five pairs of 1m x 1m quadrats were flagged 

within the 5m x 290m transect.  The pairs were located within each 10m span of the 5m x 290m 

transect.  One quadrat of the pair contained bittersweet and one did not contain bittersweet.  A 

complete randomized design was not possible because each quadrat pair needed to meet specific 

criteria.  First, every quadrat was located at least 1m from any tree greater than 13cm in diameter 

and at least ½ m from any shrub greater than 13cm in diameter.  Second, to exclude plants not in 

the herbaceous layer, no quadrat included any plant greater than 1.5m in height or with a basal 

area greater than 13cm in diameter (other than bittersweet).  Third, each quadrat pair within these 

5m x 10m blocks was as similar to each other in microhabitat as possible. 
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Figure 2.  Layout of sampling transect in the Dingle Creek floodplain.  This sketch shows seven 

of the 25 pairs of 1m x 1m quadrats flagged within each 5m x 10m plot.  The 5m wide transect 

was placed 5m from the bank of Dingle Creek and ran parallel to the creek in the floodplain for 

290m. 

 
 
 Starting upstream at the 5m marker, I walked away from (perpendicular to) the stream, to 

the 10m boundary, making a path back and forth within the 5m wide belt transect.  Once 

bittersweet was encountered, a flag was placed to indicate the location for a “with” bittersweet 

quadrat.  To locate the “without” bittersweet member of the paired quadrats, I looked first on 

either side (in the same meter distance from the creek), then above and below the previously 

flagged “with” bittersweet area, all while staying within the transect boundaries.  If there was not 
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a pair in close proximity that met all the criteria, I followed the aforementioned methodical 

pathway, back and forth, heading downstream, until one was encountered.  One meter by one 

meter patches without bittersweet were somewhat difficult to find in this transect.  If a “without” 

bittersweet quadrat was not found, I started over at the beginning of that particular 10m section of 

transect and proceeded in the back and forth pathway until one was found. 

 I concentrated on the shoots of bittersweet that were less than 3.8 cm (1.5 in.) basal area 

because I was particularly interested in exploring if the young shoots have an impact on the 

herbaceous understory.  These shoots were immersed in the herbaceous understory community, 

whereas the larger bittersweet vines appeared to be surrounded by an almost barren barrier from 

the understory growth, though they were in tight proximity to vines like fox grape (Vitis labrusca) 

and various trees. 

 Interestingly, bittersweet’s ability to provide the structural support for the native vine, V. 

labrusca has been reported (Fike & Niering 1999).  These co-occurring vines (McNab & Meeker 

1987; Tibbetts & Ewers 2000; Fike & Niering 1999) may form a facilitative relationship 

compounding their destructive effects.  By setting plots 1 meter away from trees (which are 

generally where the large vines of V. labrusca and bittersweet are found), I avoided the larger 

bittersweet vines and therefore did not get the opportunity to confirm Fike and Niering’s results.  

However, I observed this frequent intertwining of bittersweet and V. labrusca and concur that 

when coupled, they appear to be much larger in size than when alone. 

Data Collection and Analysis 

 Abundance was measured for every species in every quadrat as the number of rooted 

shoots and as percent cover.  Bittersweet's size was measured as basal area (cm).  Species 

richness was measured by counting the total number of species present in each quadrat.  Species 

diversity (i.e., richness accounting for the relative abundance of each species) in each quadrat was 
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calculated using the Shannon-Wiener diversity index.  These data were collected during the first 

two weeks in August 2009 to reduce the effect of temporal variability. 

 A paired-sample t-test was used to test whether quadrats with bittersweet differed from 

quadrats without bittersweet in terms of richness, diversity, total abundance, and in terms of 

population size of four focal species (Phlox stolonifera, Arisaema triphyllum, Viola sororia, and 

Thelypteris noveboracensis).  An adverse effect of bittersweet's presence on the community 

would be indicated by quadrats with bittersweet having lower plant abundance, lower richness, 

lower diversity, or smaller population sizes.  The effect of bittersweet's abundance on these same 

dependent variables was examined with Pearson's correlation.  A negative correlation might be 

interpreted as a negative effect of bittersweet's abundance on the community. 
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RESULTS 
 
 
 
 Community-based data in this study indicate that bittersweet negatively affects the 

herbaceous understory in the floodplain of Dingle Creek.  Population-based data, however, 

suggest minimal harm from bittersweet. 

 Plots containing bittersweet had diminished diversity, richness, and total abundance 

compared to plots without the invasive plant (Figure 3).  There was 13% less diversity (H’) in 

plots containing bittersweet compared with plots not containing bittersweet (t = -2.41, df = 24, p 

= 0.02).  Species richness was diminished by 11% in plots that contained bittersweet (t = 2.21, df 

= 24, p < 0.04).  Total abundance (summed across all species) was measured two ways.  When 

taken as the percent cover of all species present, total abundance was 25% less in plots containing 

bittersweet (t = 3.03, df = 24, p < 0.006).  When represented as the number of shoots of all the 

species present, total abundance was 19% less in plots with bittersweet (t = 2.07, df = 24, p < 

0.05).  Despite these effects of the presence of bittersweet, the abundance of bittersweet had no 

detectable effects (Table 1; p > 0.05 for all relevant correlation analyses). 

 Although it seems reasonable to suspect that these community level effects of bittersweet 

would translate into population level effects, only one of the four populations I examined, 

Thelypteris noveboracensis, was less abundant in bittersweet plots relative to plots without 

bittersweet (Figure 4).  I found no effect of bittersweet on the other three:  Phlox stolonifera, 

Viola sororia, and Arisaema triphyllum.  Moreover, of the 81 plant species in the study, only 24 

occurred exclusively in quadrats that did not contain bittersweet (i.e., the 'without' treatment), 

perhaps reflecting competitive exclusion; but seven species occurred exclusively in quadrats that 

contained bittersweet (i.e., the ‘with’ treatment), and 50 of the 81 species occurred in both 

treatment groups (Appendix A). 



32 

 

 
Figure 3.  Mean (±se) species diversity (H’), species richness, and total plant abundance in 

quadrats with bittersweet versus quadrats without bittersweet. 
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Table 1.  Abundance (cover & number of rooted shoots) and average size (basal area) of oriental 

bittersweet along with vegetation characteristics in each plot.  The table is sorted by bittersweet’s 

cover.  The last column shows whether paired quadrats differed in species richness.  For example, 

species richness was lower in the quadrat with bittersweet (w) than the quadrat without 

bittersweet (wo) in plot 16. 

 Oriental Bittersweet  Vegetation in Quadrats (Qt)  

Plot 
Percent 
Cover 

Number 
Rooted 
Shoots 

Mean 
Basal 
Area 
(cm)  

Species 
Richness 

Species 
Diversity 

(H') 

Number 
Rooted 
Shoots 

Percent 
Cover 

Species 
Richness 
Treatment 

Comparison 
15 1 1 0.13  18 2.23 179 105 w > wo 
16 2 3 0.13  15 1.75 151 86.5 w < wo 
19 3 5 0.23  13 1.36 190 96.5 w = wo 
23 9 7 0.11  13 2.01 155 173 w < wo 
5 10 1 1.27  14 1.59 85 57 w > wo 
8 12 1 0.58  9 1.26 164 175 w < wo 
9 20 3 3.89  11 1.13 34 52 w < wo 
12 20 5 0.42  16 2.00 100 91.5 w > wo 
18 20 3 0.36  15 1.44 50 73 w > wo 
25 20 5 0.09  13 1.36 70 133.5 w < wo 
3 25 8 0.58  15 1.63 84 59 w = wo 
6 25 2 2.41  9 1.03 87 34.5 w < wo 
2 30 5 0.23  9 1.55 74 67.5 w < wo 
4 30 3 3.53  10 1.77 51 95 w < wo 
17 30 6 0.22  10 1.58 60 40.5 w < wo 
1 35 3 3.41  13 1.89 185 86.5 w = wo 
7 35 2 0.52  13 2.03 50 162.5 w = wo 
10 35 5 0.42  9 1.08 184 121.5 w < wo 
11 40 2 0.69  18 2.17 92 130 w > wo 
24 45 4 0.16  10 1.07 29 68 w < wo 
21 50 7 0.23  9 1.01 40 102.5 w > wo 
22 55 9 0.48  10 1.19 202 194 w < wo 
14 65 9 0.29  11 1.72 131 53.5 w < wo 
13 70 7 0.30  12 1.60 166 94 w < wo 
20 70 8 0.30  11 1.19 67 77 w = wo 
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Figure 4.  Mean (±se) abundance measured as number of rooted shoots and as percent cover for 

four native species in quadrats with bittersweet versus quadrats without bittersweet. 
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DISCUSSION 
 
 
 
 There is evidence from this study that bittersweet is having a negative effect on the 

herbaceous community of Dingle Creek in North Carolina.  Although the encroachment of 

bittersweet in this area was previously known, my research documents its growing threat to this 

historic forest.  This finding is important because bittersweet threatens the diversity, richness and 

total abundance of the understory.  As noted in my introduction, the herb layer is a greater 

contributor to forest biodiversity than any other plant layer; therefore, this continuing influence 

could affect the ecosystem processes of this area. 

Community Patterns 

 That declines in diversity, richness, and abundance are associated with bittersweet is not 

surprising given its prolific dispersal (Dreyer et al. 1987) and colonization, early emergence 

(McNab & Loftis 2002), and early height development.  Plants with such characteristics have a 

considerable competitive advantage (Lavergne et al. 1999).  Its morphological characteristics may 

be allowing bittersweet to arrive in my plots earlier than many other herb and tree species, taking 

their space, or if not, overtopping them (Ellsworth et al. 2004; McNab & Loftis 2002; Patterson 

1974; Silveri et al. 2001; Lavergne et al. 1999).  Once established, the plant is able to spread 

vegetatively in an array of environmental conditions, some of which have been altered by 

bittersweet and serve to benefit it.  For example, in the fall, its long lasting leaves (Tibbetts & 

Ewers 2000) extend conditions of light inhibition until winter when its bright red fruits riddle the 

forest floor. 

 A logical question, of course, is why is bittersweet only exhibiting a modest effect on the 

understory of this area.  Why doesn’t this dreaded invader evidence greater dominance over the 

vegetation in the surveyed plots?  I propose two explanations relating to temporal and spatial 

factors for the limited effects. 
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 First is the temporal factor.  I believe that bittersweet eventually will take over the 

forested floodplain where my study plots are located in a timely process of introduction, 

encroachment, and dominance.  I cannot present experimental evidence of this claim, because my 

project is a single, snapshot observation.  However, Fike and Niering (1999) depict a process of 

bittersweet’s entry, spread, and eventual takeover of a community over four decades; and their 

depiction provides a model for understanding what may be happening at Dingle Creek.  Fike and 

Niering find bittersweet joining the community and thriving with neighboring plants during its 

first two decades in the community; but in the beginning of the third decade there is a tipping 

point, with rapid bittersweet growth and sharp decline among neighboring species.  In the last 

decade, there are few other species left, and bittersweet almost completely dominates.  My project 

is analogous to Fike and Niering (1999) when bittersweet is first observed as an aggressive 

participant in the community. 

 Bittersweet and the other species can co-exist in the community at this stage of the 

vegetative game; but eventually the species will take over the floodplain and begin to engage 

more of its floodplain neighbors in competition.  Over time, as species grow and spread, 

competitive forces will favor some species over others; and the outcome may be a greater decline 

in the diversity of the community. 

 Oriental bittersweet’s highly developed morphology and physiology could be one of the 

major competitive advantages that will tip the scales in its favor.  Bittersweet, like many lianas, 

possesses a shoot differentiation system whereby a division of labor among its shoots maximizes 

the amount of energy gained while minimizing the amount of energy lost.  “Searcher shoots” 

search for support and are morphologically equipped with tendrils, adventitious roots, long 

internodes, and small leaves, where “ordinary shoots” account for the majority of the plant’s light 

capture (LAR) and have short nodes and a large leaf area.  The searcher shoots not only provide 

the majority of the plant’s growth extension but are a minimal energy expenditure due to their 
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small leaves (Ichihashi et al. 2009).  Though searcher shoots generally make up only a small 

percentage, approximately 1 to 6 % of the entire shoots, they can sprout both searcher and 

ordinary shoots in successive years (Ichihashi et al. 2009).  This proportion of searcher shoots 

appeared to be consistent with the shoots I observed in my survey area. 

 As competition increases, shading and crowding will become more of a strain on the 

community and plants with certain morphologies and abilities will fare better than others.  

Oriental bittersweet is able to increase its height, biomass, and leaf mass when shaded (Leicht and 

Silander 2006).  Collins and Wein (2000) found that certain plant species exhibit internode 

elongation, apical dominance, limitation of root growth and decreased branching in response to 

shading while others do not, and are therefore suppressed.  Their study found that the vine-like 

annual, Polygonum sagittatum, was able to elongate more than the upright perennial, Polygonum 

hydropiperoides; this difference may be because vines are not limited by the same allometric 

restrictions placed on upright plants (Collins and Wein 2000).  Harley & Bertness (1996) also 

compared the morphological responses of several plants to crowding and found that most 

vascular plants become taller and spindlier.  Although this adaptive response increases fitness, it 

also causes them to have weaker stem structure and be more reliant on their neighbors for 

support.  This tradeoff is not an issue for vines.  So again, being a vine may put bittersweet at the 

top of the competitive hierarchy. 

 It is clear that bittersweet is very adept in its vertical growth, but its vegetative spread 

across a community is just as noteworthy.  Regeneration in forest understories is dominated by 

vegetative propagation (Moora et al. 2009).  Vegetative mobility may allow some species to 

colonize a more optimal space, increasing their survival along with community diversity (Moora 

et al. 2009).  Given that bittersweet reproduces vegetatively and is very plastic, I would assume 

its rate of vegetative spread is quite rapid. 

 Adkison and Gleeson (2004) suggest, based on their study of forest understories, that 
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shade-tolerant plants have morphologies and physiologies that often permit them to avoid 

competitive exclusion resulting from shading.  But this finding does not include shading by 

invasives like bittersweet that can completely cover other plants.  Right now, bittersweet and 

numerous other plants co-exist in the studied plots.  But, at some point in the future of this 

floodplain, the aggressive invader, with abilities to penetrate the overstory canopies and spread 

horizontally, may inhibit many taxa especially those that are not shade-tolerant, and possibly 

overtake this community. 

 My second explanation for the limited effect detected in this study is the fact that my site 

is located in the forest interior.  It has been well established that invasive plants do well in areas 

directly contiguous to water flow, which facilitates abundant water, light, propagule dispersal, 

and soil disturbance (Tickner et al. 2001; Brown & Peet 2003; Jansson et al. 2005; McNab & 

Loftis 2002), and that such plants thrive in areas such as roads, where disturbance has opened 

corridors of light (Leicht-Young et al. 2007; Ellsworth et al. 2004; Manee 2008).  Also, it seems 

logical that invasives face greater growth challenges in the forest interior, where such resources 

are less plentiful.  Consequently, I found that bittersweet was rampant and large at the creek side 

and near the road running alongside Dingle Creek, but was much less established on the 

floodplain between those areas of dominance.  Bittersweet is expanding its presence in the 

forested area where my plots are located; but this area will take longer to access and dominate 

than was the case with the creek side and roadside. 

 Although the magnitude of bittersweet’s effect is not great in the floodplain at this time, 

bittersweet is extending its presence in this part of the landscape; and it is creating a continued, 

negative influence on the overall community of Dingle Creek.  I propose that once bittersweet has 

conquered more ground, it likely will take over all of the interior forest just as it has on the creek 

bank and dirt road.  When this stage is reached other plants in this community are likely to 

disappear.  The long term prognosis may be negative for particular low growing life forms; and 
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those that grow more vertically, especially vines, may be the ones left in existence with 

bittersweet in this community. 

Population Patterns 

 Given the reduced diversity, richness, and total abundance, I was surprised to find little 

evidence of bittersweet’s effect on particular populations.  Of the four frequently occurring native 

species, only one, Thelypeteris noveboracensis, was found to be less abundant in the presence of 

bittersweet. 

 There are credible reasons for bittersweet’s negative impact on Thelypteris 

noveboracensis.  Thelypteris noveboracensis is very particular in its habitat requirements, and is 

negatively affected by a too shady environment (Hill 2006).  Perhaps bittersweet has created too 

much cover and shade for T. noveboracensis along Dingle Creek. 

 Another explanation for T. noveboracensis’s decreased abundance in plots with 

bittersweet could be water availability.  While T. noveboracensis can tolerate a range of soil 

moisture conditions, soil moisture is positively correlated with its distribution and abundance 

(Hill & Silander 2001).  Other environmental factors that diminish the abundance of T. 

noveboracensis are changes in soil pH (preference is between 3.8 and 4.1 (Greller et al. 1990), 

and alterations in soil nutrient contents and conditions (Hill 2006).  Perhaps bittersweet has 

altered water resources, soil pH and/or soil nutrients at Dingle Creek, thereby inhibiting the fern 

population. 

 Why are the other species able to coexist with bittersweet?  It is unclear why Arisaema 

triphyllum and Phlox stolonifera both appear to be unaffected by bittersweet.  There is nothing in 

their life histories that would offer explanations for their resistance.  The lack of effect may 

simply reflect the fact that bittersweet is still young, small, and not yet capable of competitively 

excluding certain plants.  This follows in line with my proposed ideas about temporal and spatial 

dynamics, which may also offer part of the explanation. 
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 Light availability, as mentioned in the introduction, is a crucial environmental factor in 

the growth of most plants.  Though I chose to only monitor plots containing young shoots of 

bittersweet, it was impossible to ignore the larger vines because they have become integrated into 

the overstory canopies.  I did not survey Dingle Creek before the bittersweet invasion, but it 

seems logical that its infiltration into the canopy has created a more shaded environment than 

experienced by the understory before the invasion.  I assumed that this development would inhibit 

other species.  However, finding a general consensus from research on how variations of light 

affect the herbaceous understory is difficult, perhaps because different species respond differently 

(Tinya 2009).  As already noted, Adkison and Gleeson (2004) found no loss of understory species 

as productivity increased.  Even separate populations of the same species respond differently to 

light and other environmental variables.  A study examining nine populations of Phlox 

drummondii hypothesized that genetic differences between the populations were the reason for 

their varied responses to changing moisture, light, nutrients, temperature, and competition 

(Schwaegerle & Bazzaz 1987).  It would stand to reason that plant responses to independent 

variables are also somewhat based on past selective pressures and would be best studied on a site-

by-site basis and may even vary within the same location. 

 Viola sororia is a semi-shade tolerant (Antlfinger et al. 1985; Curtis 1984) perennial that 

produces a small leaf rosette from an underground rhizome (Solbrig 1981).  It has the potential to 

produce chasmogamous flowers in the spring and cleistogamous flowers in the middle and late 

summer (Solbrig 1981).  Though it may not flower twice a year, or even once every year, its 

fruits produce a generous amount of seeds (Solbrig 1981; Niering & Olmsted 1979) that are able 

to remain dormant in the soil.  Seedlings that emerge early are able to obtain a larger size and 

produce more seeds (Solbrig 1981), thus have a higher chance of reproduction (Kellly & Levin 

1997).  Viola sororia is one of the first understory herbs to appear in early spring, blooming as 

early as February, (Wofford 1989).  This phenology gives the species an increased chance for 
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high fecundity.  This trait may be the basis for V. sororia’s ability to coexist with bittersweet 

whose primary growth begins in April (McNab & Loftis 2002).  It grows well into summer, so it 

is also adaptable to changing conditions in the canopy (Antlfinger et al. 1985), though too much 

shading, which will most likely occur in the future at this site, reduces its growth and 

reproduction (Antlfinger et al. 1985). 

Management Implications 

 The findings of my study and those of others (Fike & Niering 1999; McNab & Loftis 

2002) suggest important guidance for protecting biological diversity in the Dingle Creek area and 

elsewhere.  My research should encourage monitoring of properties and pro-active protection 

against bittersweet and other invasives.  If we ignore the warnings of numerous studies, then 

Dingle Creek and other areas with bittersweet may be in for quite a change in the future. 

 The literature is far from settled on what to do about invasive species in such 

communities.  Even with the current options on invasive control and management, most, when 

enacted or not enacted, have undesirable consequences (Dukes et al. 2009; Chornesky & Randall 

2003; Zavaleta et al. 2001).  Where fire is recommended as a method of control for many 

invasives, including bittersweet (Chornesky & Randall 2003; McNab & Loftis 2002), it was 

shown to increase the abundance of invasive, Ligustrum camara, as it did nothing to suppress its 

allelopathic chemicals in the soil, perhaps giving the plant an advantage in post fire succession 

(Gentle & Duggin 1997).  Removal of an invasive plant infestation often opens space for another 

invader to establish (Truscott et al. 2008; Lyon and Gross 2005; Alvarez & Cushman 2002) and 

greatly disrupts the habitat through soil upheaval and disturbance of the plant community 

(Truscott et al. 2008; D’Antonio et al. 1998; Zavaleta et al. 2001).  Treatment with herbicides 

infiltrates chemicals into the surrounding community (McNab & Loftis 2002) and watershed.  In 

addition to the uncertainties and downsides that accompany methods of removal, elimination of 

invasive species is time-consuming, labor intensive, and expensive (Urgenson et al. 2009). 
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 With large-scale invasions, a comprehensive survey assessing the extent of the situation 

should first be performed.  Other current threats to the community in question need to be 

examined and prioritized before beginning treatment, as the eradication of an invasive involves a 

concert of procedures and large amounts of money, resources, and time (Urgenson et al. 2009; 

Miller 2003).  Long term planning strategies based on input from scientists, managers, and policy 

makers (Dukes et al. 2009; D’Antonio et al. 2004; Lyon & Gross 2004; Chornesky & Randall 

2003) should be formulated. 

 Chornesky and Randall (2003) propose the alternative approach of allocating physical 

and financial resources towards the restoration of native communities instead of towards 

eradication.  They suggest creating regulating processes such as fire and flooding and planting 

native species.  Research investigating the idea of “suppressive species” (van Ruijven et al. 2003) 

to see if certain species do indeed have the ability to decrease invasion would be worth exploring. 

 According to the North Carolina Department of Agriculture and Consumer Services 

website, oriental bittersweet is classified as a “Class C” State Noxious Weed prohibiting its sale 

and distribution in North Carolina.  But education is greatly needed to encourage compliance and 

prevent further spread (Pimentel et al. 2005; Lavergne et al. 1999), especially for those in 

horticultural fields and in the craft trade (Dreyer 1994).  Nationwide, Pimentel et al. (2005) urge 

that focus be placed on preventing the entrance of invasives through airports and seaports. 

 There are some practical strategies for managing invasions of bittersweet.  It is possible 

to slow the spread of small patches by hand removal of the plant (including the entire root and 

runners); this can be done successfully when the invasion is detected early (Chornesky & Randall 

2003).  For larger plants, clipping works (McNab & Loftis 2002), but the roots of clipped plants 

still produce ample shoots, so these suckers need to be killed as well; triclopyr is a popular 

herbicide used for treating these sprouts (Dreyer 1988; Dreyer 1994; Kaufman & Kaufman 2007).  

Physically removing large vines from trees can harm the tree, instead cutting and treating the 
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vines with triclopyr is recommended (Dreyer 1994).  Again, precautions need to be taken to 

prevent root suckers from growing up the cut vine, so cutting needs to occur at ground level as 

well as at a height of 5 ft. (Kaufman & Kaufman 2007).  In conjunction with these methods, any 

neighboring sources of seed must be eradicated (Ellsworth et al. 2004; Dreyer 1994).  Persistence 

is mandatory when using these methods of control because the soil seed bank can allow 

regeneration to occur for several years (Dreyer 1994).  Though not a possibility at Dingle Creek, 

weekly mowing greatly reduces the invasive (Dreyer 1994; Kaufman & Kaufman 2007), whereas 

irregular mowing (2-3 times per year) encourages root sprouting (Dreyer 1994).  Detailed 

methods for eradication are given in Dreyer (1988), and the value of various eradication methods 

are discussed in Williams and Timmins (2003) book on bittersweet. 

Future Research 

 Examining whether or not bittersweet is affecting diversity, richness, and total 

abundance, as I have done, is just one step in a series of many that are necessary to help 

understand the alterations it may make upon its environment.  We should explore further the 

relationship between bittersweet and other species sharing the same territory (Stinson et al. 2007; 

Alvarez & Cushman 2002).  If only the net patterns are examined, pertinent knowledge of the 

individual species in the community will be lost (Levine 2000).  Conducting controlled 

experiments where species that were found exclusively in ‘without’ plots are planted in plots with 

and without bittersweet would determine whether these missing plants are being competitively 

excluded by the invasive or whether they were exclusively in ‘without’ plots due to chance or for 

other reasons.  These experiments should control for variables such as shade and water 

availability, and measure soil chemistry to gain valuable insight into the nature of this exotic 

plant’s existence and dominance.  Also, comparison among numerous plots at different sites 

would provide greater confidence in the patterns observed here; and long- term research of the 

same site would provide greater insight into the stages of a bittersweet invasion. 
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Conclusions 

 This project documents the presence and negative effect of bittersweet on the understory 

community of Dingle Creek’s riparian area in western North Carolina’s Biltmore Estate.  The 

research also suggests that bittersweet may be inhibiting some species in varying ways that are 

important for the future biological diversity of this historic forest community.  Those populations 

currently not inhibited by bittersweet seem to have traits that permit their co-existence with the 

current stage of the invasion. 

 My study adds to the understanding of bittersweet mainly by documenting the negative 

effect of bittersweet on the diversity, richness and total abundance of this riparian community.  

This initial investigation should help scientists and managers further understand the continuing 

threat of this invasive plant.  It is important that future projects investigate complex interactions 

among bittersweet, individual species, and the total community as we attempt to deal with such 

invasions. 
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APPENDIX A 
 
 
List of plant taxa from samples at Dingle Creek study site.  Each taxon is identified as living in 
plots with bittersweet, in plots without bittersweet, or in both treatment groups. 
 

Taxon Type of Plot in which Taxon Occurred 
Acer sp. both 
Arisaema triphyllum both 
Aster sp. both 
Athyrium asplenioides both 
Berberis vulgaris both 
Botrychium biternatum both 
Buxus sp. both 
Carex sp. 1 with 
Carex intumescens without 
Carex sp. 2 both 
Carpinus sp. both 
Celastrus orbiculatus with 
Chasmanthium sp. both 
Chimaphila maculata without 
Dicanthelium sp. without 
Elaeagnus umbellata both 
Elephantopus carolinianus both 
Fagus sp. without 
Galium sp. both 
Geranium maculatum without 
Glechoma hederacea both 
Heracleum sp. without 
Houstonia caerulea without 
Ilex opaca both 
Ipomoea sp. without 
Lactuca sp. with 
Leersia virginica both 
Ligustrum sp. both 
Lindera benzoin both 
Lonicera japonica both 
Lycopus virginicus both 
Maianthemum racemosum both 
Medeola virginiana without 
Microstegium vimineum both 
Mitchella repens both 
Osmorhiza longistylis both 
Oxalis stricta both 
Parthenocissus quinquefolia both 
Phlox stolonifera both 
Phryma leptostachya without 
Pinus strobus both 
Poaceae 1 (bamboo) both 
Poaceae 2 both 
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Taxon Type of Plot in which Taxon Occurred 
Poaceae 3 without 
Poaceae 4 both 
Poaceae 5 both 
Poaceae 6 without 
Poaceae 7 without 
Poaceae 8 with 
Polygonum sagittatum without 
Polygonum sp. both 
Polystichum acrostichoides both 
Potentilla simplex both 
Prenanthes sp. both 
Ranunculus hispidus without 
Ranunculus recurvatus without 
Ranunculus sp. 1 both 
Ranunculus sp. 2 both 
Rosa multiflora both 
Rubus sp. without 
Salvia sp. with 
Sassafras albidum without 
Senecio vulgaris both 
Smilax glauca without 
Smilax rotundifolia both 
Solidago nemoralis without 
Solidago sp. both 
Thalictrum sp. both 
Thaspium trifoliatum both 
Thelypteris noveboracensis both 
Toxicodendron radicans with 
Tradescantia sp. both 
Trifolium sp. without 
unknown 1 without 
unknown 2  both 
unknown 3  with 
unknown 4 without 
unknown 5 with 
unknown 6 without 
Verbesina alternifolia both 
Viola sororia both 
Vitis labrusca both 
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APPENDIX B 
 
 
Complete set of data taken at Dingle Creek.  Quadrats (Qt) that contained more than one 
individual of Celastrus orbiculatus include multiple values of basal area. 
 

Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
1 with Celastrus orbiculatus 3 35 3.81, 3.76, 2.67 
1 with Berberis vulgaris 1 1 . 
1 with Vitis labrusca 1 0.5 . 
1 with Polystichum acrostichoides 1 9 . 
1 with Lindera benzoin 1 4 . 
1 with Parthenocissus quinquefolia 2 1 . 
1 with Viola sororia 4 1 . 
1 with Leersia virginica 5 1 . 
1 with Carex sp. 2 5 10 . 
1 with Tradescantia sp. 5 7 . 
1 with Lonicera japonica 6 1 . 
1 with Arisaema triphyllum 7 1 . 
1 with Mitchella repens 42 25 . 
1 with Phlox stolonifera 105 25 . 
1 without Rubus sp.  1 5 . 
1 without Trifolium sp. 1 0.5 . 
1 without Polystichum acrostichoides 1 4 . 
1 without Parthenocissus quinquefolia 1 1 . 
1 without Elephantopus carolinianus 1 1 . 
1 without Polygonum sp. 2 1 . 
1 without Lycopus virginicus 2 1 . 
1 without Lindera benzoin 2 5 . 
1 without Lonicera japonica 3 5 . 
1 without Tradescantia sp. 3 10 . 
1 without Arisaema triphyllum 6 1 . 
1 without Viola sororia 13 1 . 
1 without Phlox stolonifera 135 40 . 
1 without Carex sp. 2 . 20 . 
2 with Celastrus orbiculatus 5 30 0.03, 0.23, 

0.30, 0.36, 0.25 
2 with Botrychium biternatum 1 1 . 
2 with Pinus strobus 1 1 . 
2 with Arisaema triphyllum 1 0.5 . 
2 with Lycopus virginicus 3 1 . 
2 with Solidago sp.  3 9 . 
2 with Poaceae 2 9 25 . 
2 with Ranunculus sp. 1 10 1 . 
2 with Lonicera japonica 16 9 . 
2 with Chasmanthium sp. 30 20 . 
2 without Carpinus caroliniana 1 4 . 
2 without Pinus strobus 1 3 . 
2 without Polystichum acrostichoides 1 1 . 
2 without Poaceae 3 1 1 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
2 without Carex sp. 2 1 5 . 
2 without Acer sp. 1 0.5 . 
2 without Lindera benzoin 2 9 . 
2 without Ligustrum sp. 3 9 . 
2 without Arisaema triphyllum 3 1 . 
2 without Fagus sp. 3 1 . 
2 without Ranunculus sp. 1 5 1 . 
2 without Parthenocissus quinquefolia 5 1 . 
2 without Poaceae 4 8 1 . 
2 without Lonicera japonica 11 8 . 
2 without Chasmanthium sp. 12 4 . 
2 without Lycopus virginicus 13 4 . 
2 without Phlox stolonifera 41 7 . 
3 with Celastrus orbiculatus 8 25 0.71, 0.58, 

0.64, 0.53, 
0.43, 0.51, 
0.69, 0.58 

3 with Elephantopus carolinianus 1 1 . 
3 with Oxalis stricta 1 0.5 . 
3 with Smilax rotundifolia 1 0.5 . 
3 with Arisaema triphyllum 1 0.5 . 
3 with Maianthemum racemosum 1 1 . 
3 with Salvia sp. 1 1 . 
3 with Smilax rotundifolia 2 1 . 
3 with Polygonum sp. 3 1 . 
3 with Lycopus virginicus 4 0.5 . 
3 with Athyrium asplenioides 6 20 . 
3 with Phlox stolonifera 8 1 . 
3 with Lonicera japonica 9 1 . 
3 with Poaceae 4 11 4 . 
3 with Mitchella repens 12 1 . 
3 with Ranunculus sp. 2 23 25 . 
3 without Maianthemum racemosum 1 1 . 
3 without Pinus strobus 1 1 . 
3 without Acer sp. 1 0.5 . 
3 without Lindera benzoin 2 1 . 
3 without Carpinus caroliniana 2 0.5 . 
3 without Smilax rotundifolia 2 0.5 . 
3 without Athyrium asplenioides 3 25 . 
3 without Phlox stolonifera 3 1 . 
3 without Poaceae 4 3 1 . 
3 without Thelypteris noveboracensis 6 20 . 
3 without Carex sp. 2 7 9 . 
3 without Poaceae 5 7 9 . 
3 without Viola sororia 9 0.5 . 
3 without Ranunculus sp. 1 26 1 . 
3 without Mitchella repens 63 20 . 
4 with Celastrus orbiculatus 3 30 1.83, 2.29, 6.48 
4 with Polystichum acrostichoides 1 25 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
4 with Pinus strobus 1 1 . 
4 with Lonicera japonica 1 1 . 
4 with Carex sp. 2 1 4 . 
4 with Tradescantia sp. 1 5 . 
4 with Vitis labrusca 1 20 . 
4 with Poaceae 4 2 1 . 
4 with Arisaema triphyllum 2 1 . 
4 with Lindera benzoin 8 25 . 
4 with Phlox stolonifera 33 12 . 
4 without Elephantopus carolinianus 1 5 . 
4 without Carpinus caroliniana 1 1 . 
4 without Prenanthes sp. 1 1 . 
4 without Polystichum acrostichoides 1 4 . 
4 without Medeola virginiana 2 3 . 
4 without Poaceae 4 2 1 . 
4 without Heracleum sp. 2 2 . 
4 without Poaceae 4 2 1 . 
4 without Viola sororia 3 1 . 
4 without Phlox stolonifera 3 1 . 
4 without Lonicera japonica 4 4 . 
4 without Lycopus virginicus 5 1 . 
4 without Lindera benzoin 5 1 . 
4 without Arisaema triphyllum 13 3 . 
4 without Poaceae 6 15 5 . 
4 without Ranunculus sp. 2 25 1 . 
4 without Mitchella repens 72 25 . 
5 with Celastrus orbiculatus 1 10 1.27 
5 with Osmorhiza longistylis 1 0.5 . 
5 with Verbesina alternifolia 1 0.5 . 
5 with Polystichum acrostichoides 1 20 . 
5 with Arisaema triphyllum 1 1 . 
5 with Oxalis stricta 2 0.5 . 
5 with Lonicera japonica 2 0.5 . 
5 with Polygonum sp. 3 0.5 . 
5 with Microstegium vimineum 3 0.5 . 
5 with Ranunculus sp. 1  4 0.5 . 
5 with Thelypteris noveboracensis 6 20 . 
5 with Carex sp. 1 6 1 . 
5 with Chasmanthium sp. 9 0.5 . 
5 with Viola sororia 12 1 . 
5 with Phlox stolonifera 34 10 . 
5 without Osmorhiza longistylis 1 1 . 
5 without Houstonia caerulea 1 0.5 . 
5 without Thelypteris noveboracensis 2 10 . 
5 without Polystichum acrostichoides 2 7 . 
5 without Ranunculus hispidus 2 0.5 . 
5 without Oxalis stricta 3 0.5 . 
5 without Polygonum sp. 3 1 . 
5 without Arisaema triphyllum 6 3 . 



58 

Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
5 without Viola sororia 11 1 . 
5 without Microstegium vimineum 27 25 . 
5 without Phlox stolonifera 130 40 . 
6 with Celastrus orbiculatus 2 25 4.29, 0.53 
6 with Arisaema triphyllum 1 0.5 . 
6 with Senecio vulgaris 1 1 . 
6 with Pinus strobus 1 0.5 . 
6 with Viola sororia  2 0.5 . 
6 with Carex sp. 2 2 1 . 
6 with Thaspium trifoliatum 2 0.5 . 
6 with Microstegium vimineum 3 0.5 . 
6 with Carpinus caroliniana 5 5 . 
6 with Phlox stolonifera 70 25 . 
6 without Botrychium biternatum 1 0.5 . 
6 without Polystichum acrostichoides 1 16 . 
6 without Parthenocissus quinquefolia 1 5 . 
6 without Arisaema triphyllum 1 0.5 . 
6 without Chimaphila maculata 1 0.5 . 
6 without Pinus strobus 1 1 . 
6 without Rubus sp. 2 12 . 
6 without Thelypteris noveboracensis 3 35 . 
6 without Smilax rotundifolia 3 12 . 
6 without Carex sp. 2 6 15 . 
6 without Lonicera japonica 6 4 . 
6 without Carpinus caroliniana 6 5 . 
6 without Microstegium vimineum 9 1 . 
7 with Celastrus orbiculatus 2 35 0.48, 0.56 
7 with Ilex opaca 1 40 . 
7 with Parthenocissus quinquefolia 1 5 . 
7 with Smilax rotundifolia 1 0.5 . 
7 with Polystichum acrostichoides 1 10 . 
7 with Lonicera japonica 1 1 . 
7 with unknown 5 1 1 . 
7 with Lindera benzoin 2 25 . 
7 with Thaspium trifoliatum 2 5 . 
7 with Carpinus caroliniana 3 9 . 
7 with Thelypteris noveboracensis 3 40 . 
7 with Carex sp. 2 6 15 . 
7 with Mitchella repens 8 1 . 
7 with Phlox stolonifera 20 10 . 
7 without Lonicera japonica 1 0.5 . 
7 without Galium sp. 1 0.5 . 
7 without Oxalis stricta 1 0.5 . 
7 without Ilex opaca 1 30 . 
7 without Acer sp. 1 0.5 . 
7 without unknown 4 1 0.5 . 
7 without Parthenocissus quinquefolia 2 1 . 
7 without Carpinus caroliniana 2 5 . 
7 without Polystichum acrostichoides 4 50 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
7 without Lindera benzoin 5 10 . 
7 without Thelypteris noveboracensis 5 25 . 
7 without Mitchella repens 15 1 . 
7 without Phlox stolonifera 100 40 . 
8 with Celastrus orbiculatus 1 12 0.58 
8 with Polystichum acrostichoides 1 7 . 
8 with Verbesina alternifolia 1 9 . 
8 with Lindera benzoin 2 1 . 
8 with Carex sp. 2 3 9 . 
8 with Mitchella repens 4 0.5 . 
8 with Viola sororia 5 0.5 . 
8 with Arisaema triphyllum 5 3 . 
8 with Thelypteris noveboracensis 13 95 . 
8 with Phlox stolonifera 130 50 . 
8 without Lindera benzoin 1 1 . 
8 without Ilex opaca 1 7 . 
8 without Carpinus caroliniana 1 0.5 . 
8 without Ranunculus sp. 1 1 0.5 . 
8 without unknown 1 1 1 . 
8 without Oxalis stricta 2 0.5 . 
8 without Solidago nemoralis 2 1 . 
8 without Carex sp. 2 3 1 . 
8 without Poaceae 7 6 0.5 . 
8 without Thelypteris noveboracensis 7 60 . 
8 without Mitchella repens 8 1 . 
8 without Lonicera japonica 9 3 . 
8 without Phlox stolonifera 130 65 . 
9 with Celastrus orbiculatus 3 20 4.06, 2.54, 5.08 
9 with Viola sororia 1 0.5 . 
9 with Arisaema triphyllum 1 0.5 . 
9 with Galium sp. 1 2 . 
9 with Carpinus caroliniana 1 0.5 . 
9 with Lindera benzoin 1 0.5 . 
9 with Ranunculus sp. 1 1 0.5 . 
9 with Botrychium biternatum 1 1 . 
9 with Smilax rotundifolia 2 0.5 . 
9 with Lonicera japonica 3 1 . 
9 with Thelypteris noveboracensis 6 35 . 
9 with Phlox stolonifera 16 10 . 
9 without Lindera benzoin 1 1 . 
9 without Polystichum acrostichoides 1 9 . 
9 without Poaceae 7 1 0.5 . 
9 without Carex intumescens 1 0.5 . 
9 without Rosa multiflora 1 1 . 
9 without Botrychium biternatum 1 1 . 
9 without unknown 1 1 4 . 
9 without Ranunculus sp. 1  1 0.5 . 
9 without Verbesina alternifolia 1 1 . 
9 without Carex sp. 2 3 1 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
9 without Ranunculus recurvatus 3 1 . 
9 without Thelypteris noveboracensis 4 25 . 
9 without Smilax rotundifolia 4 1 . 
9 without Viola sororia 4 1 . 
9 without Chasmanthium sp. 4 9 . 
9 without Lonicera japonica 5 1 . 
9 without Microstegium vimineum 11 7 . 
9 without Phlox stolonifera 35 9 . 
10 with Celastrus orbiculatus 5 35 0.43, 0.51, 

0.25, 0.53, 0.36 
10 with Parthenocissus quinquefolia 1 0.5 . 
10 with Glechoma hederacea 2 1 . 
10 with Tradescantia sp. 2 5 . 
10 with Rosa multiflora 4 15 . 
10 with Viola sororia 4 3 . 
10 with Carex sp. 2 4 1 . 
10 with Phlox stolonifera 12 1 . 
10 with Lonicera japonica 15 10 . 
10 with Microstegium vimineum 140 85 . 
10 without Tradescantia sp. 1 0.5 . 
10 without Ranunculus sp. 1 1 0.5 . 
10 without Polystichum acrostichoides 2 20 . 
10 without Senecio vulgaris 3 1 . 
10 without Thelypteris noveboracensis 3 10 . 
10 without Galium sp. 3 1 . 
10 without Arisaema triphyllum 5 3 . 
10 without Viola sororia 10 5 . 
10 without Lonicera japonica 11 7 . 
10 without Microstegium vimineum 14 9 . 
11 with Celastrus orbiculatus 2 40 0.79, 0.58 
11 with Solidago sp.  1 1 . 
11 with Pinus strobus 1 0.5 . 
11 with Microstegium vimineum 1 0.5 . 
11 with Smilax rotundifolia 1 0.5 . 
11 with Galium sp. 1 0.5 . 
11 with Poaceae 2 2 5 . 
11 with Lindera benzoin 2 6 . 
11 with Oxalis stricta 2 1 . 
11 with Toxicodendron rydbergii 3 3 . 
11 with unknown 2  3 9 . 
11 with Thelypteris noveboracensis 3 9 . 
11 with Carex sp. 2 3 4 . 
11 with Poaceae 5 3 5 . 
11 with Polystichum acrostichoides 4 50 . 
11 with Leersia virginica 6 16 . 
11 with Viola sororia 11 4 . 
11 with Lonicera japonica 12 5 . 
11 with Phlox stolonifera 33 10 . 
11 without Smilax rotundifolia 1 4 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
11 without Galium sp. 1 0.5 . 
11 without Ilex opaca 1 0.5 . 
11 without Ranunculus sp. 1 1 0.5 . 
11 without Polygonum sagittatum 1 0.5 . 
11 without Phlox stolonifera 1 1 . 
11 without Ranunculus recurvatus 1 0.5 . 
11 without Thalictrum sp. 2 7 . 
11 without Berberis vulgaris 2 1 . 
11 without Polystichum acrostichoides 4 90 . 
11 without Polygonum sp. 5 4 . 
11 without Viola sororia 7 4 . 
11 without Oxalis stricta 8 7 . 
11 without Lonicera japonica 9 4 . 
11 without Microstegium vimineum 70 50 . 
12 with Celastrus orbiculatus 6 20 0.46, 0.38, 

0.41, 0.41, 0.43 
12 with Polystichum acrostichoides 1 25 . 
12 with Senecio vulgaris 1 0.5 . 
12 with Senecio vulgaris 1 0.5 . 
12 with unknown 2  1 1 . 
12 with Parthenocissus quinquefolia 1 0.5 . 
12 with Tradescantia sp. 1 3 . 
12 with Thelypteris noveboracensis 1 1 . 
12 with unknown 5 1 1 . 
12 with Poaceae 4 1 1 . 
12 with Oxalis stricta 2 1 . 
12 with Rosa multiflora 2 1 . 
12 with Arisaema triphyllum 3 1 . 
12 with Lindera benzoin 5 20 . 
12 with Carex sp. 2 17 16 . 
12 with Phlox stolonifera 28 9 . 
12 with Viola sororia 34 10 . 
12 without Polystichum acrostichoides 1 35 . 
12 without Botrychium biternatum 1 0.5 . 
12 without unknown 2  1 1 . 
12 without Ranunculus sp. 1 1 1 . 
12 without Ipomoea sp. 1 1 . 
12 without Lindera benzoin 3 9 . 
12 without Leersia virginica 3 3 . 
12 without Oxalis stricta 4 0.5 . 
12 without Carex sp. 2 8 4 . 
12 without Lonicera japonica 15 3 . 
12 without Phlox stolonifera 22 7 . 
12 without Viola sororia 30 5 . 
12 without Microstegium vimineum . . . 
13 with Celastrus orbiculatus 7 70 0.43, 0.43, 

0.08, 0.08, 
0.30, 0.48, 0.28 

13 with Berberis vulgaris 1 0.5 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
13 with Thaspium trifoliatum 1 0.5 . 
13 with Carpinus caroliniana 1 0.5 . 
13 with Smilax rotundifolia 1 0.5 . 
13 with Tradescantia sp. 2 1 . 
13 with Senecio vulgaris 3 1 . 
13 with Parthenocissus quinquefolia 3 1 . 
13 with Carex sp. 2 4 7 . 
13 with Thelypteris noveboracensis 6 25 . 
13 with Viola sororia 19 7 . 
13 with Microstegium vimineum 50 10 . 
13 with Phlox stolonifera 75 40 . 
13 without Oxalis stricta 1 0.5 . 
13 without Carpinus caroliniana 1 0.5 . 
13 without Phryma leptostachya 1 4 . 
13 without Polystichum acrostichoides 2 6 . 
13 without Smilax rotundifolia 2 5 . 
13 without Pinus strobus 2 1 . 
13 without Senecio vulgaris 4 2 . 
13 without Parthenocissus quinquefolia 4 1 . 
13 without Phlox stolonifera 4 1 . 
13 without Lonicera japonica 6 3 . 
13 without Thelypteris noveboracensis 6 30 . 
13 without Arisaema triphyllum 6 7 . 
13 without Carex sp. 2 13 25 . 
13 without Viola sororia 24 7 . 
13 without Microstegium vimineum 105 50 . 
14 with Celastrus orbiculatus 9 65 0.15, 0.43, 

0.43, 0.15, 
0.15, 0.25, 
0.38, 0.20, 0.46 

14 with Lindera benzoin 1 1 . 
14 with Botrychium biternatum 1 0.5 . 
14 with Parthenocissus quinquefolia 1 1 . 
14 with Toxicodendron rydbergii 1 4 . 
14 with Lactuca sp. 1 1 . 
14 with Rosa multiflora 2 1 . 
14 with Oxalis stricta 3 1 . 
14 with Microstegium vimineum 10 2 . 
14 with Carex sp. 2 19 15 . 
14 with Viola sororia 32 7 . 
14 with Phlox stolonifera 60 20 . 
14 without Parthenocissus quinquefolia 1 1 . 
14 without Pinus strobus 1 0.5 . 
14 without Vitis labrusca 1 7 . 
14 without Elaeagnus umbellata 2 9 . 
14 without Ranunculus recurvatus 2 0.5 . 
14 without Athyrium asplenioides 3 20 . 
14 without Galium sp. 3 4 . 
14 without Oxalis stricta 4 1 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
14 without Lonicera japonica 4 1 . 
14 without Thelypteris noveboracensis 5 25 . 
14 without Carex sp. 2 5 5 . 
14 without Thaspium trifoliatum 7 25 . 
14 without Lycopus virginicus 16 12 . 
14 without Viola sororia 20 7 . 
14 without Phlox stolonifera 40 9 . 
14 without Microstegium vimineum 42 16 . 
15 with Celastrus orbiculatus 1 1 0.13 
15 with Verbesina alternifolia 1 9 . 
15 with Thaspium trifoliatum 1 1 . 
15 with Thalictrum sp. 1 1 . 
15 with Botrychium biternatum 1 0.5 . 
15 with Ranunculus sp. 1 1 0.5 . 
15 with Tradescantia sp. 2 4 . 
15 with Carpinus caroliniana 2 0.5 . 
15 with Smilax rotundifolia 2 1 . 
15 with Senecio vulgaris 2 0.5 . 
15 with Parthenocissus quinquefolia 2 1 . 
15 with Lindera benzoin 3 4 . 
15 with Poaceae 8 4 5 . 
15 with Lonicera japonica 6 2 . 
15 with Carex sp. 2 9 12 . 
15 with Viola sororia 18 2 . 
15 with Mitchella repens 19 16 . 
15 with Microstegium vimineum 40 20 . 
15 with Phlox stolonifera 65 25 . 
15 without Arisaema triphyllum 1 1 . 
15 without Polystichum acrostichoides 1 12 . 
15 without Oxalis stricta 1 1 . 
15 without Microstegium vimineum 1 0.5 . 
15 without Carpinus caroliniana 1 0.5 . 
15 without Elaeagnus umbellata 2 12 . 
15 without Pinus strobus 2 4 . 
15 without Lindera benzoin 3 25 . 
15 without Carex sp. 2 5 25 . 
15 without Ranunculus sp. 1 6 1 . 
15 without Lonicera japonica 8 7 . 
15 without Viola sororia 10 5 . 
15 without Thelypteris noveboracensis 11 88 . 
15 without Phlox stolonifera 85 35 . 
16 with Celastrus orbiculatus 3 2 0.23, 0.15, 0.01 
16 with Botrychium biternatum 1 0.5 . 
16 with Elephantopus carolinianus 1 4 . 
16 with Carpinus caroliniana 1 1 . 
16 with Chasmanthium sp. 1 0.5 . 
16 with Toxicodendron rydbergii 2 2 . 
16 with Polygonum sp. 2 0.5 . 
16 with Microstegium vimineum 2 0.5 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
16 with Lycopus virginicus 2 1 . 
16 with Oxalis stricta 2 0.5 . 
16 with Parthenocissus quinquefolia 3 2 . 
16 with Lonicera japonica 3 2 . 
16 with Lindera benzoin 4 16 . 
16 with Viola sororia 8 1 . 
16 with Carex sp. 2 9 25 . 
16 with Phlox stolonifera 110 30 . 
16 without Lindera benzoin 1 4 . 
16 without Rubus sp. 1 1 . 
16 without Polystichum acrostichoides 1 1 . 
16 without Elephantopus carolinianus 1 35 . 
16 without Thaspium trifoliatum 1 4 . 
16 without Polygonum sp. 1 0.5 . 
16 without Acer sp. 1 0.5 . 
16 without Botrychium biternatum 1 0.5 . 
16 without Arisaema triphyllum 1 0.5 . 
16 without Parthenocissus quinquefolia 2 2 . 
16 without Lonicera japonica 2 1 . 
16 without Carpinus caroliniana 2 0.5 . 
16 without Oxalis stricta 4 0.5 . 
16 without Carex sp. 2 9 30 . 
16 without Viola sororia 10 2 . 
16 without Microstegium vimineum 10 1 . 
16 without Phlox stolonifera 180 50 . 
17 with Celastrus orbiculatus 6 30 0.23, 0.13, 

0.05, 0.28, 
0.43, 0.20 

17 with Lonicera japonica 1 0.5 . 
17 with Smilax rotundifolia 1 1 . 
17 with Chasmanthium sp. 1 2 . 
17 with Lindera benzoin 1 20 . 
17 with Oxalis stricta 2 0.5 . 
17 with Viola sororia 3 0.5 . 
17 with Parthenocissus quinquefolia 4 3 . 
17 with Carex sp. 2 4 9 . 
17 with Microstegium vimineum 8 2 . 
17 with Phlox stolonifera 35 2 . 
17 without Rosa multiflora 1 1 . 
17 without Rubus sp. 1 1 . 
17 without Solidago sp. 1 1 . 
17 without Oxalis stricta 1 0.5 . 
17 without Lindera benzoin 1 20 . 
17 without Geranium maculatum 5 20 . 
17 without Carex sp. 2 5 6 . 
17 without Arisaema triphyllum 6 9 . 
17 without Lonicera japonica 6 3 . 
17 without Microstegium vimineum 9 7 . 
17 without Parthenocissus quinquefolia 9 6 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
17 without Senecio vulgaris 10 5 . 
17 without Viola sororia 12 3 . 
17 without Phlox stolonifera 65 20 . 
18 with Celastrus orbiculatus 3 20 0.36, 0.38, 0.33 
18 with Parthenocissus quinquefolia 1 0.5 . 
18 with Lindera benzoin 1 0.5 . 
18 with Elephantopus carolinianus 1 1 . 
18 with Parthenocissus quinquefolia 1 0.5 . 
18 with Acer sp. 1 0.5 . 
18 with Polystichum acrostichoides 1 10 . 
18 with Potentilla simplex 1 0.5 . 
18 with Botrychium biternatum 1 0.5 . 
18 with Arisaema triphyllum 1 0.5 . 
18 with Viola sororia 2 0.5 . 
18 with Phlox stolonifera 2 1 . 
18 with Oxalis stricta 2 1 . 
18 with Ligustrum sp. 2 1 . 
18 with Thelypteris noveboracensis 10 40 . 
18 with Mitchella repens 23 15 . 
18 without Arisaema triphyllum 1 1 . 
18 without Pinus strobus 1 0.5 . 
18 without Elephantopus carolinianus 1 1 . 
18 without Mitchella repens 1 1 . 
18 without Parthenocissus quinquefolia 1 1 . 
18 without Carex sp. 2 1 1 . 
18 without Smilax glauca 2 10 . 
18 without Athyrium asplenioides 2 25 . 
18 without Carpinus caroliniana 3 1 . 
18 without Berberis vulgaris 3 1 . 
18 without Lonicera japonica 6 2 . 
18 without Thelypteris noveboracensis 10 50 . 
18 without Phlox stolonifera 13 4 . 
19 with Celastrus orbiculatus 5 3 0.41, 0.25, 

0.30, 0.15, 0.01 
19 with Lindera benzoin 1 1 . 
19 with Carpinus caroliniana 1 0.5 . 
19 with Parthenocissus quinquefolia 1 0.5 . 
19 with Chasmanthium sp. 1 1 . 
19 with Galium sp. 2 0.5 . 
19 with Oxalis stricta 3 1 . 
19 with Potentilla simplex 4 2 . 
19 with Thelypteris noveboracensis 4 16 . 
19 with Carex sp. 2 5 5 . 
19 with Viola sororia 10 1 . 
19 with Microstegium vimineum 14 4 . 
19 with Polygonum sp. 19 4 . 
19 with Phlox stolonifera 125 60 . 
19 without Polystichum acrostichoides 1 20 . 
19 without Lycopus virginicus 1 1 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
19 without unknown 2  1 1 . 
19 without Elephantopus carolinianus 1 0.5 . 
19 without Dicanthelium sp. 2 4 . 
19 without Potentilla simplex 3 4 . 
19 without Carex sp. 2 4 2 . 
19 without Poaceae 5 4 2 . 
19 without Viola sororia 5 1 . 
19 without Thelypteris noveboracensis 6 50 . 
19 without Mitchella repens 6 1 . 
19 without Phlox stolonifera 130 65 . 
20 with Celastrus orbiculatus 8 70 0.48, 0.30, 

0.18, 0.33, 
0.23, 0.41, 
0.33, 0.18 

20 with Arisaema triphyllum 1 0.5 . 
20 with Lindera benzoin 1 1 . 
20 with Elephantopus carolinianus 1 1 . 
20 with Pinus strobus 1 0.5 . 
20 with Carpinus caroliniana 2 0.5 . 
20 with Viola sororia 2 0.5 . 
20 with Carex sp. 2 4 5 . 
20 with Leersia virginica 4 1 . 
20 with Lonicera japonica 7 3 . 
20 with Thelypteris noveboracensis 10 50 . 
20 with Phlox stolonifera 34 14 . 
20 without Rubus sp. 1 1 . 
20 without Maianthemum racemosum 1 1 . 
20 without Lindera benzoin 1 2 . 
20 without Leersia virginica 1 0.5 . 
20 without Lonicera japonica 3 4 . 
20 without Carex sp. 2 3 20 . 
20 without Poaceae 5 3 20 . 
20 without Microstegium vimineum 4 1 . 
20 without Viola sororia 6 1 . 
20 without Thelypteris noveboracensis 9 95 . 
20 without Phlox stolonifera 80 35 . 
21 with Celastrus orbiculatus 7 50 0.08, 0.28, 

0.51, 0.10, 
0.28, 0.36, 0.01 

21 with Lindera benzoin 1 12 . 
21 with Ranunculus sp. 1 1 0.5 . 
21 with Carpinus caroliniana 2 1 . 
21 with Arisaema triphyllum 3 0.5 . 
21 with Lonicera japonica 4 1 . 
21 with Thelypteris noveboracensis 5 70 . 
21 with Viola sororia 6 0.5 . 
21 with Carex sp. 2 8 16 . 
21 with Phlox stolonifera 10 1 . 
21 without Smilax rotundifolia 1 15 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
21 without Oxalis stricta 1 0.5 . 
21 without Lindera benzoin 1 0.5 . 
21 without Lonicera japonica 4 1 . 
21 without Carex sp. 2 5 1 . 
21 without Viola sororia 5 0.5 . 
21 without Thelypteris noveboracensis 16 95 . 
21 without Phlox stolonifera 160 70 . 
22 with Celastrus orbiculatus 9 55 0.15, 0.18, 

0.18, 0.28, 
0.28, 0.36, 
0.36, 2.29, 0.25 

22 with Elephantopus carolinianus 1 1 . 
22 with Prenanthes sp. 1 1 . 
22 with Poaceae 5 1 1 . 
22 with Leersia virginica 2 1 . 
22 with Lonicera japonica 5 2 . 
22 with Thelypteris noveboracensis 7 75 . 
22 with Carex sp. 2 10 20 . 
22 with Viola sororia 10 1 . 
22 with Mitchella repens 15 2 . 
22 with Phlox stolonifera 150 90 . 
22 without Maianthemum racemosum 1 0.5 . 
22 without Arisaema triphyllum 1 0.5 . 
22 without Polygonum sp. 1 0.5 . 
22 without Smilax rotundifolia 1 1 . 
22 without Elephantopus carolinianus 1 1 . 
22 without Dicanthelium sp. 2 6 . 
22 without Parthenocissus quinquefolia 2 1 . 
22 without Carex sp. 2 5 7 . 
22 without Viola sororia 6 1 . 
22 without Thelypteris noveboracensis 14 80 . 
22 without Glechoma hederacea 65 60 . 
22 without Phlox stolonifera 65 25 . 
23 with Celastrus orbiculatus 7 9 0.38, 0.36, 

0.01, 0.01, 
0.01, 0.01, 0.01 

23 with unknown 2  1 1 . 
23 with Lycopus virginicus 1 1 . 
23 with Pinus strobus 1 1 . 
23 with Thelypteris noveboracensis 3 16 . 
23 with Thaspium trifoliatum 3 5 . 
23 with Poaceae 2 3 25 . 
23 with Arisaema triphyllum 3 1 . 
23 with Microstegium vimineum 4 1 . 
23 with Elaeagnus umbellata 4 20 . 
23 with Lonicera japonica 8 12 . 
23 with Carex sp. 2 9 30 . 
23 with Viola sororia 25 10 . 
23 with Phlox stolonifera 90 50 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
23 without Elaeagnus umbellata 1 25 . 
23 without Polygonum sp. 1 1 . 
23 without Polystichum acrostichoides 1 7 . 
23 without Acer sp. 1 0.5 . 
23 without Parthenocissus quinquefolia 1 1 . 
23 without Poaceae 2 1 5 . 
23 without Carpinus caroliniana 1 0.5 . 
23 without Rosa multiflora 1 1 . 
23 without Galium sp. 2 1 . 
23 without Carex sp. 2 2 3 . 
23 without Thelypteris noveboracensis 3 5 . 
23 without Viola sororia 5 1 . 
23 without Smilax rotundifolia 8 25 . 
23 without Ranunculus recurvatus 12 2 . 
23 without Phlox stolonifera 50 25 . 
23 without Microstegium vimineum 60 30 . 
24 with Celastrus orbiculatus 4 45 0.41, 0.05, 

0.05, 0.13 
24 with Viola sororia 1 0.5 . 
24 with Ranunculus sp. 1 1 0.5 . 
24 with Berberis vulgaris 1 0.5 . 
24 with Phlox stolonifera 1 0.5 . 
24 with Tradescantia sp. 1 1 . 
24 with Poaceae 1 (bamboo) 2 4 . 
24 with Carex sp. 2 2 3 . 
24 with Poaceae 2 2 4 . 
24 with Thelypteris noveboracensis 6 50 . 
24 with Mitchella repens 12 4 . 
24 without Rubus sp. 1 12 . 
24 without Sassafras albidum 1 4 . 
24 without Tradescantia sp. 1 1 . 
24 without Poaceae 2 1 1 . 
24 without Smilax rotundifolia 2 1 . 
24 without Viola sororia 3 1 . 
24 without Chasmanthium sp. 3 16 . 
24 without Arisaema triphyllum 4 1 . 
24 without Carex sp. 2 4 16 . 
24 without Galium sp. 7 16 . 
24 without Thelypteris noveboracensis 8 90 . 
24 without Phlox stolonifera 80 65 . 
25 with Celastrus orbiculatus 5 20 0.23, 0.18, 

0.01, 0.01, 0.01 
25 with Pinus strobus 1 0.5 . 
25 with Smilax rotundifolia 1 2 . 
25 with Poaceae 1 (bamboo) 2 9 . 
25 with Carpinus caroliniana 2 0.5 . 
25 with Aster sp. 2 0.5 . 
25 with Oxalis stricta 3 0.5 . 
25 with Poaceae 2 3 15 . 
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Qt Treatment Taxon # Shoots % Cover Basal Area (cm) 
25 with Ranunculus sp. 1 3 0.5 . 
25 with Lonicera japonica 4 5 . 
25 with Galium sp. 5 4 . 
25 with Arisaema triphyllum 6 2 . 
25 with Thelypteris noveboracensis 8 85 . 
25 with Phlox stolonifera 30 9 . 
25 without Lindera benzoin 1 2 . 
25 without Berberis vulgaris 1 5 . 
25 without Potentilla simplex 1 0.5 . 
25 without Elaeagnus umbellata 2 3 . 
25 without Viola sororia 2 0.5 . 
25 without Carpinus caroliniana 3 1 . 
25 without Poaceae 1 (bamboo) 3 15 . 
25 without Aster sp. 3 2 . 
25 without Ligustrum sp. 4 5 . 
25 without Botrychium biternatum 6 1 . 
25 without Thelypteris noveboracensis 11 90 . 
25 without Mitchella repens 11 2 . 
25 without Lonicera japonica 13 16 . 
25 without Phlox stolonifera 17 9 . 

 


