
QTL DETECTION FROM STOCHASTIC PROCESS BY BAYESIAN
HIERARCHICAL REGRESSION MODEL

Yi Chen

A Thesis Submitted to the
University of North Carolina Wilmington in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

Department of Mathematics and Statistics

University of North Carolina Wilmington

December 12, 2007

Approved by

Advisory Committee

Chair

Accepted by

Dean, Graduate School

ABSTRACT

The problem of identifying the genetic loci contributing to variation in a quantitative

trait (called QTL) has been researched for a number of years, and is a growing

field in statistical genetics[10]. Most research focuses on the problem with only

one observation per genotype. For years, plant biologists have condensed replicates

within lines to one genotype to use these conventional methods. In this paper we

extend and apply one of the most widely used Markov Chain Monte Carlo Model

Comparison(MC3) algorithms, incorporated in a Bayesian hierarchical regression

setting. This algorithm is then applied to simulation data in order to validate the

model. Use of Posterior Model Probability and Activation Probability will be used

for model comparison. Furthermore, based on Acceptance Probability, we perform

stochastic search through the model space to identify potential QTL.

TABLE OF CONTENTS

ABSTRACT . ii

LIST OF TABLES . iv

LIST OF FIGURES . v

ACKNOWLEDGMENTS . vi

1 INTRODUCTION . 1

1.1 Overview . 1

1.2 Model Selection and Search Algorithm 5

2 BACKGROUND . 7

2.1 Bayesian Statistics and Hierarchical Modeling 7

2.1.1 QTL Bayesian Hierarchical Regression Model 8

2.2 Stochastic Process by MCMC and Gibbs Sampler 12

3 ALGORITHM . 15

3.1 Notation and Assumption . 15

3.2 Model Comparison . 16

3.3 Model Search by Stochastic Process 18

3.4 Acceptance Probability . 19

3.5 Activation Probability . 20

4 SIMULATION . 22

4.1 Data Set . 22

4.2 Simulation . 25

4.3 Output . 25

5 CONCLUSION AND DISCUSSION 31

REFERENCES . 33

APPENDIX . 36

A. QTL detection from stochastic process Mathlab code 36

iii

LIST OF TABLES

1 Full marker origin information matrix 23

2 Quantitative trait matrix . 24

3 Model Probability . 27

4 Best Model Chains . 28

5 Marker Activation Probability . 29

iv

LIST OF FIGURES

1 Human chromosome 7 . 4

2 Bayesian Hierarchical Model . 9

v

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Susan Simmons, for her great insight, guid-

ance, patience, encouragement and being there for me every step of the way. This

could not have been possible without her. I appreciate Dr. Karl Ricanek for helping

me improve the algorithm designing and coding. I would also like to thank Dr. Ed-

wards Boone and Dr. Ann Stapleton, for assisting me in my understanding of the

definitions and theories relevant to this thesis.

I also really appreciate all the faculty members and fellow students in the Depart-

ment of Mathematics and Statistics and other departments for sharing their love

and knowledge of mathematics and statistics with me. Last but not least, I would

like to give the credits to my parents and all friends.

vi

1 INTRODUCTION

1.1 Overview

A quantitative trait locus, also known as a QTL, is a region of DNA that is as-

sociated with a particular phenotypic trait. By definition, a quantitative trait is

either continuous, such as yield of crop, or discrete, for example, cotyledon opening.

The QTL on a genome is a location contributing significantly to the variation of a

quantitative trait.

Though not necessarily genes themselves, QTL are stretches of DNA that are closely

linked to the quantitative trait. Furthermore, a single phenotypic trait is usually

determined by many QTL, which are often found on different chromosomes[15, 29].

And most traits of interest are governed by more than one gene. Therefore, defining

and studying the entire locus of genes related to a trait gives hope of understanding

what effect the genotype of an individual might have in the real world. Knowing the

number and effect of such loci help us to understand the genetic basis of traits, and

of their evolution in populations over time[1, 4, 6, 18]. Moreover, it may also tell

which traits are controlled by a few genes of large effect as opposed to many genes

of small effect, so that knowledge of these loci may aid in the design of selection

experiments to improve these traits.

In fact, there are already some successful examples showing us benefits of identifying

associations between regions on the genome and a trait. In 1989 a breakthrough was

made for the disease of cystic fibrosis, although this is not quantitative trait, the

benefits of knowing this location are profound. Location (or locus) 7q31.2(Figure

1) is the location of the single gene responsible for the disease. And it is located in

region q31.2 on the long (q) arm of human chromosome 7[27]. The disease arises

1

when an individual has two recessive copies at this location, while an individual

with one dominant and one recessive is said to be a carrier of the disease. Hence,

we could make use of genetic screening to determine such disease. A good example

of associating regions on the genome with a quantitative trait is the Green Revo-

lution in which wheat and rice were genetically mutated. Through mutating genes,

such as sd1, researchers are able to produce crops resistant to lodging and produce

significant increases in yields[28]. Even though we already know lots of benefits con-

cerning QTL, the problem of detecting QTL is still under research, and the methods

available are increasing. In the past three decades we have witnessed an increased

interest in QTL detection. The simplest approach, with data on an experimental

cross, is to perform an analysis of variance (ANOVA) on each marker[1]. Unfortu-

nately, when this approach was first introduced, there were not many markers on

the genetic map, and ANOVA approaches were shown to be modestly effective[1, 4].

In addition, this method usually looks at one marker at a time, and disregards in-

formation from other markers. More power can be gained by considering more than

one marker at a time, but the question becomes which markers should be modeled

together?

For overcoming ANOVA weaknesses, one method used was interval mapping, which

uses mapping distances and creates pseudo-markers between existing markers[1].

Many methods have been proposed throughout the 1990’s that use interval map-

ping, such as the most popular method Composite interval mapping(CIM) which

is developed by Jensen[16, 17] and Zeng[18, 19]. By using interval mapping and

multiple regression on marker genotypes, CIM is very useful in identifying QTL in

one-dimensional search. A number of software packages have been published and

used, such as the rQTL package developed by K.W. Broman, John Hopkins[4], and

QTL Cartographer by Z.-B. Zeng’s group, North Carolina Sate University[2, 16, 17],

2

both of which are practical tools for QTL detection. Some researchers view identi-

fying QTL as a model selection problem, and use strategies from multiple regression

analysis, such as backward elimination based on AIC and stepwise selection[1]. A

number of other methods are available, including Bayesian analysis methods, or use

of genetic algorithms[1, 20]. Regardless of whether or not interval mapping is used,

most methods use a regression setting when trying to determine which markers as-

sociate with the genetic trait. And this idea invokes the assumption of additivity.

This research provides a method to detect QTL in plant experiments. Plant QTL

experiments take less time and cost less money than human and mice experiments,

while the benefits are just as significant and useful. For example, we could improve

the immunity of plants against different diseases, and thus increase yield to feed the

increasing population. Plus, it is easier to control other factors which may affect

the experiment, including the design, environment, reproduction, and etc. However,

plant experiments have more complexity since replicate observations by independent

genetic clones could be present for each genotype.

As genetic maps become more dense in plant experiments, a shift away from in-

terval mapping has been observed[6]. The more dense the genetic maps become,

the less effective interval mapping is. In fact, some of the recent genetic maps have

too many markers for the conventional interval mapping systems. In addition, there

are still some other serious issues which should be considered for QTL detection

in plant experiments, such as the hierarchical structure of the data which increases

computational complexity. Because most of the current methods can handle only

one observation per genotype, most plant researchers average the observations within

each line. The averaging leads to loss of information regarding the variance within

each line[12]. Considering these issues, we model the data by a Bayesian hierarchi-

3

Figure 1: Human chromosome 7

4

cal model, and use a stochastic MC3 algorithm to search through possible regression

models in order to locate markers which are potential QTL.

1.2 Model Selection and Search Algorithm

There has been an increase in the consideration of model search algorithms for QTL

detection lately[10]. Model selection can be viewed as the principal problem in iden-

tifying multiple QTL methods[20]. Considering the case of dense markers, relatively

complete genotype data, and assumption of additivity, the question becomes which

of the markers should be included in the model[20].

Considering the goal, our algorithm focuses on how to efficiently search through

different models in the complex model space and how to select better linear models

by model comparison in order to locate the best subset of markers as candidate QTL.

Unlike usual model selection methods, such as forward, backward, or stepwise re-

gression technique, our algorithm makes use of stochastic process to search different

possible models in the model space. More importantly, using Bayesian modeling, the

new algorithm is able to handle multiple replicates within a genotype situation and

to locate all potential QTL simultaneously, no matter how many markers associate

with the quantitative trait (as long as the number of markers in the model is less

than the number of lines). Two criterion are very important to the new algorithm

• Criterion for comparing and selecting better models

• Strategies for efficiently searching through the large model space.

5

To define these two critical criterion of our algorithm, we will introduce Posterior

Model Probability P (kq|D), Model Selection Vector ~M , Activation Proba-

bility p(βj 6= 0|D), and Acceptance Probability αji. Section 3 describes these

quantities and how they are used to answer the critical criterion stated above. Before

introducing the quantities, we will introduce the background and assumptions for

our research in Section 2. Then, we will apply our algorithm to a simulated data set,

and display the output from the analysis in Section 4. Finally, we will discuss our

algorithm advantages and identify some issues for future improvement in Section 5.

6

2 BACKGROUND

2.1 Bayesian Statistics and Hierarchical Modeling

One of the fundamental differences between Bayesian statisticians and frequentists is

that Bayesian statisticians regard parameters as random quantities. Unlike frequen-

tists who assume that parameters are fixed, unknown quantities, Bayesian statis-

ticians assume parameters are random variables with a probability distribution.

Bayesians choose a prior distribution for the parameters which should be a first

guess as to what the probability distribution of the parameter in question is. Prior

distributions can be vague or noninformative when not much prior information is

known, or more explicit if experts are able to provide information on the parameters.

Information from the sample is combined with the prior distribution, and by using

Bayes’ Theorem, an updated or posterior distribution for the parameter is obtained.

Assuming the unknown parameter is θ, p(θ) is called the prior probability distribu-

tion, which is interpreted as the knowledge about the parameter before combining

it with the information details from the samples[24]. The distribution of the sample

data is represented as p(Y = y|θ). Using the prior probability distribution and the

information from the data, the posterior probability can be found by Bayes’ theorem

p(θ|Y = y) =
p(Y = y|θ)p(θ)∫

Θ

p(θ)p(Y = y|θ)dθ
(1)

where Θ is the sample space of the the parameter θ. This posterior probability dis-

tribution summarizes the knowledge about the parameters after combining the prior

information with the sample information. A Bayesian analysis is based on inferences

from the posterior distribution[5, 24, 25]. The Bayesian approach is distinct with

respect to its flexibly in both incorporating prior information and using posterior

probabilities[26].

7

Bayesian hierarchical modeling is one of the best approaches in dealing with the

situation when the observed data involves multiple levels, such as QTL detection

in plant experiment. For example, suppose the observed data yij is from a plant

experiment, where yij is the jth crop yield from the ith genotype. In the first level,

the distribution of observed data from any ith genotype is assumed to be indepen-

dently distributed with a mean represented by the parameter θi and a variance σ2
i

which are both believed to be connected to the quantitative trait. The probability

density function of the data given the parameters θi and σ2
i is written as p(yij|θi, σ2

i),

and is known as the likelihood function. By a linear regression model, the mean θi

is assumed to be a normal distribution with some other parameters in the second

level. Therefore, the Bayesian hierarchical model constructs a relationship between

multiparameters by way of the layered data structure[26].

2.1.1 QTL Bayesian Hierarchical Regression Model

For our QTL algorithm, the Bayesian hierarchical model is built in the following

fashion(Figure 2):

Level 1. For any ith(i = 1 . . . L) genotype, where L is the number of total genotypes

in the experiment, there are ni observations. ni’s must be greater than 2 and

they are not necessarily the same for different genotypes. A natural choice for

the observed data yij, where j = 1 . . . ni, is the normal distribution conditional

on the mean θi and variance σ2
i :

yij|θi, σ2
i ∼ N(θi, σ

2
i) for i = 1 . . . L; j = 1 . . . ni.

8

Figure 2: Bayesian Hierarchical Model

9

Level 2. With the assumption of additivity, a linear regression model includes vari-

ables which represent different candidate markers[21]. One possible linear re-

gression model in plant experiment with L genotypes, we define

θi = β0 + β1x1i + β2x2i + . . .+ βMxMi + εi

Where M is the number of candidate markers included in the model, i =

1, . . . , L, and xki(k = 1, . . . ,M) are origin information of the markers which are

contained in a genotype matrix, X. Therefore, for any ith mean, θi(i ∈ [1, L]),

it is assumed to be normally distributed given the mean based on the genotype

matrix X, ~β and variance τ 2:

θi|~β, τ 2 ∼ N(X~β, τ 2)

In addition, we set the prior distribution for parameters, ~β, σ2
i , and τ 2[27].

p(βj) ∼ N(0, 100)

p(σ2
i) ∼ Inv − χ2(1)

p(τ 2) ∼ Inv − χ2(1)

For both σ2
i and τ 2, the choice for the degrees of freedom of the Inv−χ2 is 1, since

this creates a prior distribution with infinite variance[10].

Considering the hierarchical model and prior distribution assumptions, there are 4

full conditional posterior distributions, p(~θ|~β, ~σ2, τ 2, y), p(~σ2|τ 2, ~θ, ~β, y), p(~β|~θ, ~σ2, τ 2, y),

p(τ 2|~θ, ~β, ~σ2, y)[12]. These 4 full conditional posterior distributions can be derived

10

by Bayes’ theorem as following[12],

p(~θ|~β, ~σ2, τ 2, y) =
p(τ 2, ~θ, ~β, ~σ2|y)

p(τ 2, ~β, ~σ2|y)

∝ exp

L∑
i=1

−1

2

(
1

1
τ2

+
ni
σ2
i

)
θi − ~xi.~β

τ2 +
∑ni
j=1 yij

σ2
i

1
τ2 + ni

σ2
i

2

 (2)

θi|τ 2, ~β, ~σ2, y ∼ N

 ~xi.
~β

τ2
+

∑ni
j=1

yij

σ2
i

1
τ2

+
ni
σ2
i

, 1
1
τ2

+
ni
σ2
i

p(~σ2|τ 2, ~θ, ~β, y) =
p(y|~θ, ~σ2)p(~σ2)∫
p(y|~θ, ~σ2)p(~σ2)d ~σ2

∝
L∏

(σ2
i)
−(

σ2
0+ni
2

+1)exp

{
−

L∑
i=1

(
1

2σ2
i

)[ni∑
j=1

(yij − θi)2 + 1

]}
(3)

σ2
i |τ 2, ~θ, ~β, y ∼ Inv −Gamma

[
σ2
0+ni

2
,

∑ni
j=1(yij−θi)2+1

2

]

p(~β|~θ, ~σ2, τ 2, y) =
p(~θ|X~β, τ 2)p(~β)∫
p(~θ|X~β, τ 2)p(~β)d~β

∝ exp

{
−1

2

[
~β −

(
I

100
+
X ′X

τ 2

)
X ′~θ

τ 2

]′(
I

100

X ′X

τ 2

)
[
~β −

(
I

100
+
X ′X

τ 2

)
X ′~θ

τ 2

]}
(4)

Where σ2
0 = 1, and I is an identity matrix.

11

~β|~θ, ~σ2, τ 2, y ∼ N

[(
I

100
+ X′X

τ2)X
′~θ
τ2 , (

I
100

+ X′X
τ2

)−1
]

p(τ 2|~θ, ~β, ~σ2, y) =
p(τ 2, ~θ, ~β, ~σ2|y)

p(~θ, ~β, ~σ2|y)

∝ (τ 2)−(
L+τ20

2
+1)exp

{
− [(~θ −X~β)′(~θ −X~β) + 1]/2

τ 2

}
(5)

where τ 2
0 = 1, and L is the number of genotypes in the plant experiment

τ 2|~θ, ~β, ~σ2, y ∼ Inv −Gamma
[
L+τ2

0

2
, (~θ−X~β)′(~θ−X~β)+1

2

]

2.2 Stochastic Process by MCMC and Gibbs Sampler

The implementation of Bayesian analysis has received much attention since the

1990’s when computer and numerical algorithms could compute posterior probabili-

ties [11, 26]. Monte Carlo Markov Chain(MCMC) methods are a class of algorithms

for generating samples, especially in high-dimensional space. Each sample is gener-

ated by using information from the previous sample to produce a Markov chain to

approach to the target distribution, known as Stationary distribution. Hence, only

the current state is necessary for generating a subsequent state or states in such a

process. Furthermore, the Markov chain generated by MCMC algorithm describes

at successive times the states of the system[1].

One particular MCMC method, Gibbs Sampler, is a powerful numerical instru-

ment that is widely used for this broad class of Bayesian analysis, especially when

12

multiple variables are involved[9, 11]. The algorithm uses parameter-by-parameter

updating. For example, in our problem, there are 4 parameter vectors involved in

the posterior distribution: ~β, τ 2, ~θ, ~σ2. Using the Gibbs Sampler, samples from the

posterior can be generated by

1. β
(t+1)
j ∼ p(βj|y, τ 2(t), θ

(t)
i , σ

2
i

(t))

2. τ 2(t+1) ∼ p(τ 2|y, β(t+1)
j , θ

(t)
i , σ

2
i

(t))

3. θ
(t+1)
i ∼ p(θi|y, β(t+1)

j , τ 2(t+1), σ2
i

(t))

4. σ2
i

(t+1) ∼ p(σ2
i |y, β

(t+1)
j , τ 2(t+1), θ

(t+1)
i)

This auto correlated sequence, called Gibbs sequence, eventually ”forgets” the ini-

tial stage of the chain, such as ~β(0), τ 2(0), ~θ(0), ~σ2
(0)

, and converges to a stationary

posterior distribution p(~β, τ 2, ~θ, ~σ2|y). And this stationary distribution is the target

distribution we are trying to simulate[11, 12]. However, a key issue in the suc-

cessful implementation of the sampler is the number of run(steps) until the chain

approaches stationarity, which is known as the burn-in period. Therefore, the first

few thousands samples should be thrown out[11]. Since we have drawn a large num-

ber of samples, the full posterior probabilities, which are computationally difficult to

calculate because of high-dimensional functions, can be approximated by averaging

samples, which is referred to as the Monte Carlo Integration[11].

In addition to fitting hierarchical models to complex data sets, MCMC algorithms

can also be applied to stochastically search for the best model. In QTL detection

problem, the number of possible additive models is 2M if there are M genetic can-

didate markers. For example, there are 38 candidate markers in Bay-0 × Shahdara

recombinant inbred lines from Arabidopisis thaliana, giving 238, or 274,877,906,944,

possible regression models. A stochastic search is one of the best ways to deal with

a very, very large model space. During the stochastic search, an acceptance proba-

13

bility α is used to decide how to move through the parameter space, and is defined

as:

α = min[1, the ratio of posterior probabilities of two models]

which is analogous to the Metropolis-Hastings algorithm[10]. With the rule about

moving to different models, the stochastic search eventually gives Markov chains

which can show the ’walking’ path through the model space during the search, and,

more importantly, locate better fit-in models given the data.

By running MCMC long enough, the stochastic search can provide marginal poste-

rior probabilities of βj 6= 0 (j ∈ [1,M]), p(βj 6= 0|D), by averaging model parameter

posterior probabilities[26] we can determine which one or ones are potential QTL.

14

3 ALGORITHM

3.1 Notation and Assumption

Phenotype matrix, denoted by Y , is the observation data matrix which stores quan-

titative trait data from the experiment. The element yij in the phenotypic matrix

Y , gives the phenotypic value corresponding to the ith genotype, also called line,

and the jth replicate. Also, in the phenotypic matrix Y , there should be at least 2

replicates for each genotype; however, it is not necessary to have the same number

of replicates in each line. That is, for any ith and jth line(i 6= j), in the phenotypic

matrix Y data set, if there are ni and nj replicates, both ni and nj should be at

least 2, but ni may or may not be same as nj. Considering the hierarchical model

built in Section 2, all replicates are normally distributed with means and variances

dependent on the line information, that is,

yij ∼ N(θi, σ
2
i)

The explanatory data matrices, known as the marker origin information matrices,

denoted by Xm. Each one of the matrices is a subset of the Full marker information

matrix, XF , which contains all candidate marker origin information in the exper-

iment. Unlike the general binary case, we use -0.5 or 0.5 to record marker origin

information which represents whether the marker is from parent I or parent II in the

marker origin information matrices.

In addition, in order to generate a Gibbs sequence and obtain samples from the

stationary posterior distribution, we assume that parameters are initialized as fol-

lowing

• θ(0)
i : sample average of observed data in the ith line

15

• σ2(0)
i : sample variance of observed data in the ith line

• τ 2(0) : variance between sample means

• ~β(0) : estimates from a regression model based on the marker origin information

matrix.

These estimates, along with the full conditional posterior distributions in Section 2,

create samples from the posterior distribution. Due to the large dimensionality of

the problem, we use 100,000 samples after a burn-in period of 2,000 samples[9, 11].

3.2 Model Comparison

Given the quantitative trait data Y , finding which model or models are better than

the others in the model space is one of the most essential questions for QTL detection.

Considering M candidate markers, the more likely the qth(q ≤ 2M) linear model

fit the data set, the more potential marker or markers the model includes. That

is, mathematically, it is important to find out the posterior probability of the qth

model among the whole model space, given the data D. The marginal posterior

probability P (kq|D), called Posterior Model Probability[12], is the criterion for model

comparison. By Bayes’ rule, the Posterior Model Probability for the qth model

P (kq|D) can be derived from

P (kq|D) =
P (D|kq)× P (kq)∑|K|
i=1 P (D|ki)× P (ki)

(6)

where |K| is the number of models in the model space. Since, for any model in

the model space, we assume each of them is equally likely to be chosen, that is,

P (kr) = P (ks), for all r, s ∈ |K|. Thus, it is necessary to calculate P (D|kq), which

is the probability of observing the data given the qth model. This quantity can be

16

calculated by using the following integral,

P (D|kq) =

∫
P (D|kq, ~Ψq)P (~Ψq|kq)d~Ψ (7)

where Ψq is the vector of parameters involved on the the qth model. This quantity

turns out to be computationally intensive[10, 12].

Because it is computationally difficult, the probability P (D|kq) can be approxi-

mated by Monte Carlo integration. Monte Carlo integration decomposes original

function into the product of a function of x and probability density function p(x),

then expresses the original integral as an expectation of the function of x over the

density p(x). Thus, with a large number of random variables from the density func-

tion p(x), the original integral can be approximated by averaging the sum of the

function of random variables[22]. The Gibbs Sampler provides samples from the

joint posterior distribution used in Equation (7). Therefore, the quantity P (D|kq)

could be approximated by averaging the joint posterior probabilities produced by

the Gibbs Sampler procedure[12], that is,

∫
p(D|kq, ~Ψq)p(~Ψq|kq)d~Ψ ≈

1

t

TG∑
j=m

p(D|kq, ~Ψ(j)
q) (8)

where j is index of time in Gibbs Sampler procedure, m is the index of the first time

after burn-in period in the Gibbs Sampler procedure, TG is the index of the ending

time for the Gibbs Sampler, and ~Ψ
(j)
q is the vector of parameters in the jth time of

the Gibbs Sampler procedure for the qth model.

17

3.3 Model Search by Stochastic Process

Besides the model comparison criterion, it is also very important to define some

practical and effective strategies to search randomly through a subset of all possible

models in the large model space for QTL detection research. For any candidate

marker, it is either in the regression model or not. Therefore, there are 2M possible

models if M markers are considered as candidate QTL. Instead of the common

searches, such as forward, backward, or stepwise regression, we use Monte Carlo

Markov Chain Model Comparison, MC3, a widely used stochastic search algorithm.

We define the Model Selection Vector for the qth model as ~Mq. The length of ~Mq,

M is equal to the number of total candidate markers in the experiment, which is

equivalent to the number of columns in the Full Marker Information Matrix XF .

Each sth (s ≤ M) element in ~Mq corresponds to its sth marker counterpart. And

the value of the sth element is either 0 or 1, and defines whether the sth marker is

included in qth model or not. For example, suppose there are 5 markers , L lines

and ni observations for each line. If ~Mq is [1,0,0,1,0], the qth chosen model would

include markers 1 and 4, that is,

θi = β0 + β1x1i + β4x4i + εi.

where i = 1, . . . , L.

The stochastic search first begins by randomly choosing ~Mq, and calculating the

Posterior Model Probability p(kq|D) of this model. Then, the algorithm randomly

chooses a location along ~Mq. At the chosen location, that value of the element

is switched either from 0 to 1, or from 1 to 0. Referring the example above, if

the vector ~Mq is [1,0,0,1,0], the ~Mq+1 for the (q + 1)th model could be [0,0,0,1,0],

[1,1,0,1,0], [1,0,1,1,0], [1,0,0,0,0], or [1,0,0,1,1]. Say that the 3rd location is chosen.

18

Then the new Model selection vector ~Mq+1 is [1,0,1,1,0]. The new model would in-

clude marker 1, 3, and 4, and the Posterior model probability p(kq+1|D) is calculated

for this model.

Therefore, during the model search procedure, it is possible to randomly search

through different possible models in the huge model space by the Model Selection

Vector ~M which is obtained randomly based on the previous one. Meanwhile, by us-

ing the Model Selection Vector ~M , subsets of marker information for the each model

can be chosen from Full Marker Information Matrix XF as the predictor data.

3.4 Acceptance Probability

With Posterior Model Probability P (kq|D) for the qth model, we can easily identify

which model or models provide a better fit for the given quantitative trait data, and

to locate potential markers associated with the quantitative trait. The posterior

model probability can also be used to assist in the stochastic search through the

model space. We create the ratio of the Posterior Model Probability of the new model

to the one which is best so far, named Acceptance Probability. An Acceptance

Probability, defined as αi+1,i, is the probability that the ith model, which is best

so far, should be replaced by the (i+ 1)th model. By Metropolis-Hasting algorithm,

an Acceptance Probability αi+1,i is defined as minimum between 1 and the ratio of

Posterior Model Probabilities of the (i + 1)th model to the ith model which is the

best-fit model given data[10, 11], that is,

αi+1,i = min

[
1,
p(ki+1|D)

p(ki|D)

]
(9)

19

The Acceptance Probability αi+1,i is similar to transition probability in a Markov

Chain, which is the probability that the chain moves from one state to another state.

The chain may become stuck at a locally optimum model (i.e. transition probabil-

ities approaches 0), therefore, it is important to have different chains. In general,

10 or more different chains and more than 1,000 steps for each chain are necessary[1].

The way our algorithm decides if the chain should move to the new model is by

defining the acceptance probability as a success probability p of a Bernoulli trial.

Suppose the ith model is best so far and the new model (i+ 1)th model is the model

in question, by using Acceptance Probability αi+1,i as the success probability, we

randomly generate a bernoulli random variable with success probability αi+1,i. If

the number is 1, then the chain moves to the new model. That is, if this move

occurs, the new model, the (i + 1)th model, would replace the ith model which is

the best-fit model given the data. A tally for each best model is kept. This tally

indicates the frequency in which each model is defined as the best-fit model.

3.5 Activation Probability

After recording this information for each chain, it becomes possible to locate which

candidate marker or markers show the most potential as QTL. Given the quantitative

trait data set, we calculate the Activation Probability for each marker by p(βj 6=

0|D), which is defined as

p(βj 6= 0|D) =

|K|∑
i=1

p(βj 6= 0|ki, D)p(ki|D) (10)

20

where |K| is the total length of all the chains, and kq is the qth model. Moreover,

by Bayesian model averaging[23], βj 6= 0 is dependent on whether the jth marker is

included in best models or not. That is, the Activation Probability of jth candidate

marker is the weighted frequency of the jth marker showing up in the best models

during the model search procedure. That is,

p(βj 6= 0|D) =

|K|∑
i=1

Ij×p(ki|D), where Ij =

 1, if the jth marker is in the ith model

0, otherwise

(11)

21

4 SIMULATION

4.1 Data Set

We apply our new algorithm to a simulated data set. We assume that there is only

one QTL which is located on the 4th marker among a total of 10 candidate markers,

and there are 20 different genotypes in a plant experiment. We randomly generate

all markers origin information by 0.5 and -0.5 which indicates markers are either

from parent A or parent B. The Full Marker Information Matrix XF in the simula-

tion is shown as Table 1.

For each genotype in the simulation, the number of the quantitative trait observa-

tions for ith genotype, denoted by ni, is randomly chosen between 2 and 15, shown

on the 2nd column of the phenotypic matrix Y (Table 2). Table 2 illustrates the

first 4 genotypes and the last 3 genotypes with ni = 14, 5, 15, 10, 3, 10, and 15,

respectively. Any observation yij in the matrix Y , which is the ith line, jth replicate

(i ∈ [1, 2, . . . , 20], j ∈ [1, . . . , ni], where ni is the number of replicates of ith line), is

generated based on the ith line, 4th marker origin information, that is,

yij = 35 + 10× xi4 + εij, (i ∈ [1, 2, . . . , 20], j ∈ [2, . . . , ni]) (12)

where xi4 is the ith line, 4th marker information from XF (Table 1), ni is the num-

ber of replicates in the ith line, and εij is random draw from the standard normal

distribution, which is a normal with mean 0 and standard deviation 1.

22

Full Marker Information Matrix XF

Genotype X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5
2 -0.5 0.5 -0.5 0.5 0.5 0.5 -0.5 0.5 0.5 -0.5
3 0.5 -0.5 0.5 0.5 0.5 -0.5 0.5 -0.5 0.5 0.5
4 0.5 -0.5 -0.5 0.5 -0.5 -0.5 0.5 0.5 0.5 -0.5
5 -0.5 0.5 0.5 -0.5 0.5 0.5 -0.5 -0.5 -0.5 0.5
6 0.5 0.5 0.5 -0.5 0.5 -0.5 -0.5 -0.5 -0.5 0.5
7 0.5 -0.5 -0.5 -0.5 0.5 0.5 0.5 0.5 -0.5 0.5
8 0.5 -0.5 0.5 0.5 0.5 0.5 -0.5 0.5 0.5 -0.5
9 0.5 -0.5 -0.5 -0.5 0.5 0.5 0.5 -0.5 -0.5 0.5
10 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 0.5 0.5 -0.5
11 -0.5 0.5 0.5 -0.5 -0.5 0.5 -0.5 -0.5 0.5 0.5
12 -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5
13 -0.5 0.5 0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 0.5
14 -0.5 0.5 -0.5 0.5 -0.5 0.5 0.5 0.5 -0.5 -0.5
15 0.5 -0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5
16 -0.5 -0.5 0.5 0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5
17 -0.5 -0.5 0.5 0.5 0.5 -0.5 -0.5 -0.5 0.5 -0.5
18 -0.5 -0.5 -0.5 -0.5 0.5 0.5 -0.5 -0.5 -0.5 -0.5
19 -0.5 -0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 -0.5 -0.5
20 -0.5 0.5 0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.5

Table 1: Full marker origin information matrix

23

Phenotypic Matrix Y
ni Observation 01-08

1 14 29.5674 30.2944 28.3959 30.0000 30.6232 28.8122 30.1286 29.6694
2 5 38.3344 38.6638 40.2573 39.6821 40.7990
3 15 40.1253 40.7143 38.9435 41.0950 40.9409 40.9863 38.8322 40.4978
4 10 40.2877 41.6236 41.4151 38.1260 39.0079 39.4814 39.5394 41.4885

...
18 3 30.0593 28.7975 28.9909
19 10 39.9044 39.9802 39.9805 41.4435 39.1783 39.7389 38.7081 39.3935
20 15 29.1677 29.8433 29.9518 29.6490 29.7344 30.9535 29.9271 28.6526

Observation 09-15
1 14 30.4694 29.5350 30.6353 28.9819 30.4855 29.4588
2 5
3 15 40.0359 40.7283 40.5512 41.5210 39.7238 41.0727 38.4825
4 10 39.3725 42.1122

...
18 3
19 10 40.0558 41.1902
20 15 29.6321 28.8838 29.2957 28.8929 30.2809 29.8839 31.2698

Table 2: Quantitative trait matrix

24

4.2 Simulation

Using the method described previously, we calculated posterior model probabilities

by running the Gibbs Sampler 102,000 times for each model with a burn-in of 2,000.

The remaining 100,000 samples are used to estimate the posterior model probability.

To avoid incidences where a chain becomes stuck at a local optimum model dur-

ing model search, there are a total of 50 chains for the simulation, and each one of

them has a different starting model which is defined as the best model at the very

beginning of the chain. For each chain, we randomly search 2,000 different possible

models based on the Model Selection Vector ~M and Acceptance Probability. During

the whole search and comparison procedure, we record the number in which each

model is defined as the best model. Afterwards, we calculate the weighted frequency,

or activation probability, of each marker included in the different best model. Any

markers with activation probability greater than 0.5 is identified as a potential QTL.

4.3 Output

The program is written in MatLab (R) 2007b (V7.5.0.342) and executed on Intel(R)

Core(TM)2 CPU 6400 @ 2.13GHz, 1.00GB of RAM PC with the operation system

Microsoft Windows XP Professional SP2. The simulation takes approximately 17

hours. The output from the algorithm is shown in Model Probability (Table 3),

Best-Fit Models Chain (Table 4), and Marker Activation Probability (Table

5).

25

In the table Model Probability (Table 3), each column corresponds(from left to

right) to Model Index1,Posterior Model Probability, and the number of models de-

fined as the best model. By comparing the last 2 columns in the Model Probability

table, we could determine which model or models are a better-fit to the hierarchical

linear model for the given data, which are best-fit models in the simulation. In the

simulation, the model 217, which is the regression model including markers 3, 4, 6,

7, and 10, is one of the best models with the highest posterior probability. And the

model 332, which has markers 2, 4, 7, and 8 in the model, is one with the highest

frequency as the best model during stochastic search.

In the table Best-Fit Model Chains (Table 4), each column shows the ”best-fit”

model path of each chain by using model index. It shows either the chain stays

with the current ”best-fit” model or replaces it by the new model. According to the

table Best-Fit Model Chains, we could visualize that, in the different chains, the

best models move among the models which are a better fit to the hierarchical model

given the data shown in Table 3.

The table Marker Activation Probability (Table 5) includes a list of models sorted

by the number of times when each model is chosen as the best model. For each

model in the table, the first 10 columns are the Model Selection Vector ~M , and the

11th column is the number of the model when it is defined as the best model during

the whole search and comparison procedure. The Activation Probabilities are shown

at the last line of the table. Considering all candidate markers, we treat the markers

with Activation probabilities more than 50% as the QTL[8, 10, 12]. Besides, it is

apparent that the models which include the 4th marker and 8th are much more fre-

quently defined as the best model than the others in the simulation. Therefore, they

1the Model Selection Vector value converted from binary to decimal

26

Index Posterior Model Probability Frequency

0 0.0000 26
1 0.0000 30
2 0.0000 18
3 0.0000 33

...
217 0.090972 254

...
332 0.041887 272

...
1022 0.0002 95
1023 0.0000 69

Table 3: Model Probability

27

Time Chain 1 Chain 2 . . . Chain 49 Chain 50

1 407 411 . . . 775 584
2 407 410 . . . 791 586
3 471 411 . . . 791 842

...
999 215 418 . . . 872 71
1000 211 386 . . . 876 70
1001 431 407 . . . 876 70

...
1998 221 934 . . . 334 580
1999 220 950 . . . 335 580
2000 216 438 . . . 463 580

Table 4: Best Model Chains

28

Model Selection Vector
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Freq

0 1 0 1 0 0 1 1 0 0 272
1 1 0 1 1 1 0 0 0 1 263
0 0 0 1 0 1 1 0 0 1 255
...
1 1 1 0 0 0 0 1 1 1 65
0 0 0 0 0 1 0 1 0 0 65
...
1 0 1 0 1 0 1 0 0 0 5
1 0 1 0 0 0 1 0 0 0 4
1 0 1 0 1 1 0 0 0 1 3

Activation Probability
0.4590 0.4952 0.4604 0.7818 0.4582 0.4834 0.4668 0.5106 0.4759 0.4922

Table 5: Marker Activation Probability

29

should be considered as the QTL among the all candidate markers. Furthermore,

by comparing the marker origin information in the Full marker information matrix

XF , we notice that there is 75% similar between 4th marker’s origin information

and 8th markers’s. And, the 4th marker’s Activation Probabilities is much higher

than the other’s, on the contrary, the 8th’s is very close to 50%. More importantly,

Activation Probabilities for true QTL should be much higher than markers that are

not associated with the quantitative trait.

30

5 CONCLUSION AND DISCUSSION

In this research, we have shown how to use a stochastic search algorithm to search

through a model space by usingMC3 with the Acceptance probabilities in a Bayesian

hierarchical regression setting. We approximate each model posterior model proba-

bility by using Monte Carlo integration with samples generated via the Gibbs Sam-

pler algorithm. More importantly, with the idea of Bayesian model averaging, we

are able to locate which locus or loci are more important in predicting a quantita-

tive trait by using Activation Probabilities, which is the weighted frequency of each

marker in the best models during the whole stochastic search. By using Bayesian

hierarchical modeling, our algorithm has shown to be very effective for the QTL

detection problem. In addition, unlike the other methods which require one obser-

vation per genotype, our algorithm can handle multiple replicates in each genotype,

and the situation where the number of replicates in different genotypes are different,

which makes the algorithm more flexible.

We ran a simulation study for the algorithm, and the results satisfy our assumption.

Also, we identify some issues which could be considered as plans for improvement.

• Since there are 2M possible regression models when there are M candidate

markers, the number of possible models becomes very large which is definitely

an issue for computing. Clustering may be a good idea in this situation, that

is, group markers and try to restrict the analysis to regions with potential

QTL.

• For the ideal simulation data set, we update all posterior distribution by Gibbs

Sampler only 102,000 times, and consider first 2,000 times as the burn-in pe-

riods. However, it might not be long enough for the real data. Therefore, we

may apply Gibbs Sampler to draw 500,000 samples and throw out first 100,000.

31

• In addition, it will cost much more computing time when there are plenty of

different genotypes from the real experiment. In this case, MatLab may not

be the best choice for the whole algorithm. We plan to make use of MatLab

advantages in matrices and vectors, and compute different probabilities by

other language, such as FORTRAN, which has abundant packages for different

distributions and is more efficient for simulation.

• There are a lot of studies showing the importance of interactions between QTL.

The next step for this research is incorporating interactions in the QTL model.

32

REFERENCES

[1] Broman K.W., A model selection approach for the identification of quantitative

trait loci in experimental crosses. Journal of Royal Statistical Society. 64, Part

4, pp.641-656, 2002.

[2] Lander E.S, Botsterin D., Mapping Mendalian factors underlying quantitative

traits using RFLP linkage maps. Genetics 121:185-199, 1989.

[3] Berry CC., Computationally Efficient Bayesian QTL Mapping in Experimental

Crosses. ASA Proceedings of the Biometrics Section, pp.164-169, 1998.

[4] Broman KW, Wu H, Sen S, QTL Mapping in experimental crosses.

Bioinformatics,19:889-890, 2003.

[5] Gelman A., Carlin A.J, Stern H.S and Rubin D.B., Bayesian Data Analysis, 2nd

edn, Chapman Hall/CRC, Boca Raton London New York Washington, D.C.,

2004.

[6] Broman K.W, The Genomes of Recombinant Inbred Lines. Genetics Society of

America, DOI:10.1534/genetics.104.035212, 2004

[7] Loudet O, Chaillou S, Daniel-Vedele F, Bay-0 × Shahdara recombination inbred

line population: a powerful tool for the genetic dissection of complex traits in

Arabidopsis, Theoretical and Applied Genetics, Vol. 104, 1173-1184, 2002.

[8] Boone E.L , Ye K, Smith E.P, Evaluating the Relationship Between Ecologi-

cal and Habitat Conditions Using Hierarchical Models, Journal of Agriculture,

Biological, and Environmental Statistics, Vol. 10, Number 2 Page 1-17, 2005

[9] Berg B.A, Markov Chain Monte Carlo Simulations and Their Statistical Anal-

ysism. World Scientific ISBN 981-238-935-0, 2004.

33

[10] Boone E.L, Simmons S.J, Ye K, Stapleton A.E, Analyzing Quantitative Trait

Loci for the Arabidopsis thaliana using Markov Chain Monte Carlo Model Com-

position with restricted and unrestricted model spaces. Statistical Methodology

3 (2006) 69-78

[11] Walsh B., Markov Chain Monte Carlo and Gibbs Sampling. Lecture Note for

EEB 581, version 26, April, 2004.

[12] Bao H, Bayesian Hierarchical regression model to detect Quantitative trait loci.

UNCW, 2006

[13] Lee P.M, Bayesian statistics: an introduction, Edward Arnold, A division of

Hodder and Stoughton, LONDON MELBOURNE AUCKLAND, 1989

[14] Congdon P, Applied Bayesian Modelling, John Wiley and Sons Ltd, 2003

[15] Lynch M, Walsh B, Genetics and Analysis of Quantitative Traits, Sinauer As-

sociates, Inc., Sunderland, MA, 1998.

[16] Jansen R.C, Interval mapping of multiple quantiative trait loci. Genetics ;

135:205-11,1993.

[17] Jansen R.C. and Stam P., High resolution of quantitative traits into multiple

loci via interval mapping. Genetics ; 136:1447-55,1994.

[18] Zeng Z.B., Theoretical basis for separation of multiple linked gene effects in

mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA; 90:10972-6,1993.

[19] Zeng Z.B., Precision mapping of quantitative trait loci Genetics ; 136:1457-

68,1994.

[20] Broman K.W., Review of statistical methods for QTL mapping in experimental

crosses Lab Animal ; 30(7):44-52, 2001.

34

[21] Simmons S.J. and Stapleton A.E, Bayesian hierarchical models to detect quan-

titative trait loci Chance; VOL.19,NO.3:11-14, 2006.

[22] Walsh B., Markov Chain Monte Carlo and Gibbs Sampling, Lecture Notes for

EEB ; 581:Version 26, 2004.

[23] Congdon P, Bayesian Statistical Modelling, 2nd Edition, John Wiley & Son.

Ltd.

[24] Michael Lavine, ISDS, Duke University, Durham, North Carolina, What is

Bayesian statistics and why everything else is wrong

[25] Younan Chen, Keying Ye, Department of Statistics, Virginia Tech, Blackburg,

A Bayesian Hierarchical Approach to Dual Response Surface Modelling.

[26] David B. Dunson, Practical Advantages of Bayesian Analysis of Epidemiologic,

American Journal of Epidemiology ; VOL. 153. No. 12:1222-6, 2001

[27] Cystic Fibrosis Mutation Database. Cystic Fibrosis Consortium Web site. Avail-

able at http://www.genet.sickkids.on.ca/cftr. Accessed May 12, 2005.

[28] Hedden P., Green Revolution Genes, Rothamsted Research, Harpenden, Hert-

fordshire, UK, Plant Physiology ; Chapter20:Essay20.2, August, 2006.

[29] Lynch M, Walsh B. Genetics and Analysis of Quantitative Traits, December

1997.

35

APPENDIX

A. QTL detection from stochastic process Mathlab code

%Parameter Beta

function [vecOutBetaInit] = funcBetaInit(matxArgMarker, . . .

matxArgRgrnResp, matxArgRespMS)

matxRgrnMarker=funcRgrnMarker(matxArgMarker,matxArgRespMS);

vecOutBetaInit=inv(matxRgrnMarker’*matxRgrnMarker) . . .

*(matxRgrnMarker’)*matxArgRgrnResp;

function [vecOutBetaUdtMiu, matxOutBetaUdtCov] = funcBetaUdtParas(. . .

matxArgRgrnSlt, vecArgTheta, doubleArgThetaVar, doubleArgBetaVar)

matxMTM=(matxArgRgrnSlt’*matxArgRgrnSlt) . . .

/doubleArgThetaVar;

matxSizeMTM=size(matxMTM);

matxMTM=matxMTM+(speye(matxSizeMTM(1,1))/doubleArgBetaVar);

matxOutBetaUdtCov=inv(matxMTM);

vecOutBetaUdtMiu=matxOutBetaUdtCov . . .

*((matxArgRgrnSlt’*vecArgTheta)/doubleArgThetaVar);

function [vecOutBetaUdt] = funcBetaUdt(matxArgRgrnSlt, . . .

vecArgTheta, doubleArgThetaVar, doubleArgBetaVar)

[vecBetaUdtMiu, matxBetaUdtCov]= funcBetaUdtParas(matxArgRgrnSlt, . . .

vecArgTheta, doubleArgThetaVar, doubleArgBetaVar);

matxBetaUdtCovCHFAC=chol(matxBetaUdtCov);

vecSizeBeta=size(vecBetaUdtMiu);

36

vecOutBetaUdt=matxBetaUdtCovCHFAC*randn(vecSizeBeta(1,1),1)+vecBetaUdtMiu;

%Parameter Sigma

function vecOutStdGammaRnd=funcStdGammaRnd(vecGammaAlpha,intArgNoLine)

vecGammaAlphaFlr=floor(vecGammaAlpha);

vecGammaAlphaRmd=vecGammaAlpha-vecGammaAlphaFlr;

vecOutStdGammaRnd=(vecGammaAlphaRmd>0).*(gamma(1+ . . .

vecGammaAlphaRmd).*rand(intArgNoLine,1).^(1 . . .

./(vecGammaAlphaRmd+(vecGammaAlphaRmd==0))));

for i=1:intArgNoLine

vecOutStdGammaRnd(i,1)=vecOutStdGammaRnd(i,1). . .

+sum(-log(rand(vecGammaAlphaFlr(i,1),1)));

end

function [vecOutSigmaAlpha] = funcSigmaAlpha(matxArgRespMS, . . .

intArgNoLine, doubleArgSigmaNull)

vecOutSigmaAlpha=ones(intArgNoLine,1)*doubleArgSigmaNull. . .

+(matxArgRespMS(:,1)/2);

function [vecOutSigmaInit]=funcSigmaInit(matxArgRespMS,intArgNoLine)

%add one more argument: intArgNoLine

%change the argument: matxArgResp by matxArgRespMS;

if(sum(matxArgRespMS(:,1)==1)==0)

vecOutSigmaInit=(matxArgRespMS(:,3)-((matxArgRespMS(:,2).^2). . .

./matxArgRespMS(:,1)))./(matxArgRespMS(:,1)-1);

else

vecOutSigmaInit=zeros(intArgNoLine,1);

37

for rowLp=1:1:intArgNoLine

if(matxArgRespMS(rowLp,1)==1)

vecOutSigmaInit(rowLp,1)=1;

else

vecOutSigmaInit(rowLp,1)=(matxArgRespMS(rowLp,3) . . .

-((matxArgRespMS(rowLp,2)^2)/matxArgRespMS(rowLp,1))). . .

/(matxArgRespMS(rowLp,1)-1);

end

end

end

function [vecOutSigmaUdtNum] = funcSigmaUdtNum(matxArgRespMS,vecArgTheta)

vecOutSigmaUdtNum=0.5*(1+(matxArgRespMS(:,3)-(2*vecArgTheta. . .

.*matxArgRespMS(:,2))+(matxArgRespMS(:,1).*(vecArgTheta.^2))));

function [vecOutSigmaUdt] = funcSigmaUdt(matxArgRespMS,. . .

intArgNoLine, vecArgTheta, vecArgSigmaAlpha)

vecSigmaUdtNum=funcSigmaUdtNum(matxArgRespMS, vecArgTheta);

vecSigmaUdtDen=funcStdGammaRnd(vecArgSigmaAlpha,intArgNoLine);

vecOutSigmaUdt=vecSigmaUdtNum./vecSigmaUdtDen;

%Parameter Theta

function [vecOutThetaInit, matxOutRespMS] = funcThetaInit(matxArgResp)

matxOutRespMS=funcSampleMS(matxArgResp);

vecOutThetaInit=matxOutRespMS(:,2)./matxOutRespMS(:,1);

function [vecOutThetaUdtMiu, vecOutThetaUdtSD] = . . .

38

funcThetaUdtParas(matxArgRgrnSlt, matxArgRespMS,...

vecArgBeta, doubleArgThetaVar, vecArgSigma)

vecRespEst=matxArgRgrnSlt*vecArgBeta;

vecOutThetaUdtSD=realsqrt((doubleArgThetaVar*vecArgSigma). . .

./(matxArgRespMS(:,1)*doubleArgThetaVar+vecArgSigma));

vecOutThetaUdtMiu=(vecOutThetaUdtSD.^2). . .

.*(vecRespEst/doubleArgThetaVar+matxArgRespMS(:,2)./vecArgSigma);

function [vecOutThetaUdt] = funcThetaUdt(matxArgRgrnSlt, . . .

matxArgRespMS, intArgNoLine, vecArgBeta, doubleArgThetaVar, vecArgSigma)

[vecThetaUdtMiu, vecThetaUdtSD]=. . .

funcThetaUdtParas(matxArgRgrnSlt, matxArgRespMS, . . .

vecArgBeta, doubleArgThetaVar, vecArgSigma);

vecOutThetaUdt=vecThetaUdtMiu+vecThetaUdtSD.*randn(intArgNoLine,1);

%Parameter Tau

function [doubleOutThetaVarInit]=funcThetaVarInit(vecArgTheta)

matxThetaMS=funcSampleMS(vecArgTheta’);

doubleOutThetaVarInit=(matxThetaMS(1,3). . .

-((matxThetaMS(1,2)^2)/matxThetaMS(1,1)))/(matxThetaMS(1,1)-1);

function [doubleOutThetaVarNum]=funcThetaVarUdtNum(matxArgRgrnSlt,. . .

intArgNoLine, vecArgTheta, vecArgBeta)

matxResidual=vecArgTheta-matxArgRgrnSlt*vecArgBeta;

doubleOutThetaVarNum=(matxResidual’*matxResidual+intArgNoLine)/2;

function [doubleThetaVar] = funcThetaVarUdt(matxArgRgrnSlt,. . .

39

intArgNoLine, vecArgTheta, vecArgBeta, doubleArgThetaVarAlpha)

doubleThetaVarNum=funcThetaVarUdtNum(matxArgRgrnSlt,. . .

intArgNoLine, vecArgTheta, vecArgBeta);

doubleThetaVarDen=funcStdGammaRnd(doubleArgThetaVarAlpha, 1);

doubleThetaVar=doubleThetaVarNum/doubleThetaVarDen;

%Likelihood function

function [doubleOutLikelihood, indicOutCounter] = . . .

funcLikelihood(matxArgRgrnSlt, matxArgRespMS, ...

vecArgTheta, vecArgBeta, doubleArgThetaVar, vecArgSigma, ...

doubleArgThetaVarAlpha, vecArgSigmaAlpha, doubleArgBetaVar, doubleAdjLE)

vecEstMarker=matxArgRgrnSlt*vecArgBeta;

doubleLikeliPart1=0-sum(log(vecArgSigma). . .

.*vecArgSigmaAlpha);

doubleLikeliPart1=doubleLikeliPart1. . .

-sum((1./(2*vecArgSigma)));

doubleLikeliPart1=doubleLikeliPart1. . .

-sum(((vecArgTheta-vecEstMarker).^2)/(2*doubleArgThetaVar));

vecResidual=matxArgRespMS(:,3). . .

-(2*matxArgRespMS(:,2).*vecArgTheta). . .

+(matxArgRespMS(:,1).*(vecArgTheta.^2));

vecResidual=vecResidual./(2*vecArgSigma);

doubleLikeliPart2=0-sum(vecResidual);

doubleOutLikelihood=doubleLikeliPart1+doubleLikeliPart2;

40

doubleOutLikelihood=doubleOutLikelihood. . .

-(doubleArgThetaVarAlpha*log(doubleArgThetaVar));

doubleOutLikelihood=doubleOutLikelihood. . .

-(1/(2*doubleArgThetaVar));

doubleOutLikelihood=doubleOutLikelihood. . .

-((1/(2*doubleArgBetaVar))*(vecArgBeta’*vecArgBeta));

doubleOutLikelihood=doubleOutLikelihood+abs(doubleAdjLE);

if doubleOutLikelihood>10

indicOutCounter=1;

doubleOutLikelihood=-999999.000000000000;

else

indicOutCounter=0;

end

%Gibbs Sampler

function [doubleOutLLike] =funcLLike(matxArgModelSlt,. . .

matxArgMarkerFull, matxArgRgrnResp, matxArgRespMS, . . .

intArgNoLine, intArgNoMarker, intNoTimesGS, intNoBP, . . .

oubleArgInitThetaVar, vecArgInitSigma, . . .

doubleArgThetaVarAlpha, vecArgSigmaAlpha, doubleArgBetaSigma, . . .

doubleArgAdjLE, intArgFuncChoose)

matxMarkerSlt=funcMarkerSelect(matxArgMarkerFull, . . .

matxArgModelSlt, intArgNoMarker);

if(isempty(matxMarkerSlt)~=1)

41

matxRgrnSlt=ones(intArgNoLine,1);

matxRgrnSlt=[matxRgrnSlt,matxMarkerSlt];

else

matxRgrnSlt=ones(intArgNoLine,1);

end

vecBeta=funcBetaInit(matxMarkerSlt, matxArgRgrnResp, matxArgRespMS);

doubleThetaVar=doubleArgInitThetaVar;

vecSigma=vecArgInitSigma;

switch(intArgFuncChoose)

case 0

doubleMLE=-999999999999999999;

for t=1:1:intNoTimesGS

vecTheta=funcThetaUdt(matxRgrnSlt, matxArgRespMS, . . .

intArgNoLine, vecBeta, doubleThetaVar, vecSigma);

doubleThetaVar=funcThetaVarUdt(matxRgrnSlt, . . .

intArgNoLine, vecTheta, vecBeta, doubleArgThetaVarAlpha);

vecBeta=funcBetaUdt(matxRgrnSlt, vecTheta, . . .

doubleThetaVar,doubleArgBetaSigma);

vecSigma=funcSigmaUdt(matxArgRespMS, . . .

intArgNoLine, vecTheta, vecArgSigmaAlpha);

if(t>intNoBP)

[doubleLLE, intCounter] = . . .

funcLikelihood(matxRgrnSlt, matxArgRespMS, vecTheta, . . .

vecBeta, doubleThetaVar, vecSigma, . . .

42

doubleArgThetaVarAlpha, vecArgSigmaAlpha, . . .

doubleArgBetaSigma, doubleArgAdjLE);

if(intCounter~=1 && doubleLLE>doubleMLE)

doubleMLE=doubleLLE;

end

end

end

doubleOutLLike=doubleMLE;

case 1

doubleAvgLE=0;

for t=1:1:intNoTimesGS

vecTheta=funcThetaUdt(matxRgrnSlt, . . .

matxArgRespMS, intArgNoLine, vecBeta, . . .

doubleThetaVar, vecSigma);

doubleThetaVar=funcThetaVarUdt(matxRgrnSlt, . . .

intArgNoLine,vecTheta, vecBeta, doubleArgThetaVarAlpha);

vecBeta=funcBetaUdt(matxRgrnSlt, vecTheta, . . .

doubleThetaVar, doubleArgBetaSigma);

vecSigma=funcSigmaUdt(matxArgRespMS, . . .

intArgNoLine, vecTheta, vecArgSigmaAlpha);

if(t>intNoBP)

[doubleLLE, intCounter] = . . .

funcLikelihood(matxRgrnSlt, matxArgRespMS, vecTheta, . . .

vecBeta, doubleThetaVar, vecSigma, doubleArgThetaVarAlpha, . . .

vecArgSigmaAlpha, doubleArgBetaSigma, doubleArgAdjLE);

if(intCounter~=1)

43

doubleAvgLE=doubleAvgLE+exp(doubleLLE);

end

end

end

doubleOutLLike=doubleAvgLE/(intNoTimesGS-intNoBP)

otherwise

disp ’Error’;

end

%Model search

function ranInt = funcRandInt(outputRow,outputCol,outputRange,varargin)

if isequal(size(outputRange),[1 2]) . . .

&& ~isequal(outputRange(1),outputRange(2)-1),

warning(’To specify a range [low high] use [low:high].’)

end

if ~isequal(round(outputRange),outputRange),

warning(’Specified RANGE contains noninteger values.’)

end

if ~isequal(length(outputRange),length(outputRange(:))),

error(’Range must be a vector of integer values.’)

end

numElements = outputRow*outputCol;

if isempty(varargin),

44

ranInt = zeros(outputRow,outputCol);

randIx = floor((length(outputRange))*rand(size(ranInt))) + 1;

ranInt = outputRange(randIx);

if ~isequal(size(randIx),size(ranInt)),

ranInt = reshape(ranInt,size(randIx));

end

elseif isequal(varargin{1},’noreplace’),

if numElements > length(outputRange),

error(’Not enough elements in range to . . .

sample without replacement.’)

else

% Generate full range of integers

XfullShuffle = outputRange(randperm(length(outputRange)));

% Select the first bunch:

ranInt = reshape(XfullShuffle(1:numElements),outputRow,outputCol);

end

else

error(’Valid argument is ’’noreplace’’.’)

end

function [matxOutMarkerSelected]=. . .

funcMarkerSelect(matxArgMarkerFull,matxArgModelSlted,intArgNoMarker)

matxOutMarkerSelected=[];

for i=1:1:intArgNoMarker

45

if(matxArgModelSlted(1,i)==1)

matxOutMarkerSelected=[matxOutMarkerSelected, . . .

matxArgMarkerFull(:,i)];

end

end

function [matxOutModelFull]=funcModelFull(intArgNoMarker, intArgNoLine)

intNoRgrnVar=intArgNoMarker+1;

intTimesML=intNoRgrnVar/intArgNoLine;

if(intNoRgrnVar<=intArgNoLine)

matxOutModelFull=ones(1,intArgNoMarker);

else

matxOutModelFull=zeros(1,intArgNoMarker);

if(((fix(intTimesML)-1)*intArgNoLine) . . .

< intNoRgrnVar <= (fix(intTimesML)*intArgNoLine))

intNoZeros=fix(intTimesML);

matxOutModelFull(1:intNoZeros+1:intArgNoMarker)=1;

end

end

function [intOutModelValue, matxOutModelSlted] = . . .

funcModelSelect(intArgNoMarker)

intModelVal=0;

46

matxModelSelected=zeros(1,intArgNoMarker);

for j=1:1:intArgNoMarker % j: the power for every column;

doublePro=rand;

if(rand(1)<doublePro)

matxModelSelected(1,j)=1;

else

matxModelSelected(1,j)=0;

end

weight=2^(intArgNoMarker-j); % the weight of every column;

if(matxModelSelected(1,j)==0)

continue;

else

intModelVal=intModelVal+matxModelSelected(1,j)*weight;

end

end

intOutModelValue=intModelVal;

matxOutModelSlted=matxModelSelected;

function [intOutModelVal,matxOutModelSwitch]=. . .

funcModelSwitch(intArgModelVal, matxArgModelSltOrg)

matxSizeModelSltOrg=size(matxArgModelSltOrg);

intNoMarkers=matxSizeModelSltOrg(1,2);

if(matxSizeModelSltOrg(1,1)~=1)

end

47

intModelVal=0;

intIndexSwitch=funcRandInt(1,1,[1:intNoMarkers]);

switch matxArgModelSltOrg(1,intIndexSwitch)

case 0

intModelVal=intArgModelVal+2^. . .

(intNoMarkers-intIndexSwitch);

matxArgModelSltOrg(1,intIndexSwitch)=1;

case 1

intModelVal=intArgModelVal-2^. . .

(intNoMarkers-intIndexSwitch);

matxArgModelSltOrg(1,intIndexSwitch)=0;

otherwise

disp(’Error’);

end

matxOutModelSwitch=matxArgModelSltOrg;

intOutModelVal=intModelVal;

%Transform X, Y to appropriate format

function [matxOutRgrnMarker] = . . .

funcRgrnMarker(matxArgMarker, matxArgRespMS)

intNoRep=sum(matxArgRespMS(:,1));

if(isempty(matxArgMarker))

matxOutRgrnMarker=ones(intNoRep,1);

else

vecSizeMarker=size(matxArgMarker);

48

matxOutRgrnMarker=zeros(intNoRep,vecSizeMarker(1,2)+1);

intIndexRow=1;

for rowMarker=1:1:vecSizeMarker(1,1)

for times=1:1:matxArgRespMS(rowMarker,1);

matxOutRgrnMarker(intIndexRow,:)=. . .

[1,matxArgMarker(rowMarker,:)];

intIndexRow=intIndexRow+1;

end

end

end

function [vecOutRgrnResp] = funcRgrnResp(matxArgResp, . . .

matxArgRespMS, intArgNoLine)

%matxRespMS=funcSampleMS(matxArgResp);

%matxSizeRespMS=size(matxRespMS);

vecOutRgrnResp=[];

for rows=1:intArgNoLine

intIndexCol=1;

for cols=1:1:matxArgRespMS(rows,1)

vecOutRgrnResp=[vecOutRgrnResp;. . .

matxArgResp(rows,intIndexCol)];

intIndexCol=intIndexCol+1;

end

end

function [matxOutSampleMS] = funcSampleMS(matxParaMatx)

49

matxSizeParaMatx=size(matxParaMatx);

matxSampleMS=zeros(matxSizeParaMatx(1,1),3);

for rowParaMatx=1:1:matxSizeParaMatx(1,1)

n=0;

ysum=0;

y2sum=0;

for colParaMatx=1:1:matxSizeParaMatx(1,2)

if(isnan(matxParaMatx(rowParaMatx,colParaMatx))~=1)

n=n+1;

ysum=ysum+matxParaMatx(rowParaMatx,colParaMatx);

y2sum=y2sum+matxParaMatx(rowParaMatx,colParaMatx)^2;

end

end

matxSampleMS(rowParaMatx,1)=n;

matxSampleMS(rowParaMatx,2)=ysum;

matxSampleMS(rowParaMatx,3)=y2sum;

end

matxOutSampleMS=matxSampleMS;

%Main function

function [matxOutQTL, matxOutBestLog, matxOutActPro]=. . .

funcQTL2(intArgTimeDiffStart, intArgTimeStoc, matxArgMarkerFull,. . .

matxArgResp, intNoTimesGS, intArgBP, doubleArgBetaVar, . . .

doubleArgThetaVarNull, doubleArgSigmaNull)

matxSizeMarkerFull=size(matxArgMarkerFull);

vecSizeResp=size(matxArgResp);

intNoMarker=matxSizeMarkerFull(1,2);

50

intNoLine=vecSizeResp(1,1);

matxOutQTL=sparse(2^intNoMarker,4);

matxBestMarker=[];

intBestModelValue=-999;

matxOutBestLog=zeros(intArgTimeStoc,intArgTimeDiffStart);

%doubleNowAvgLLike=0;

doubleBestAvgLLike=0; %Not necessary

[vecTheta,matxRespMS]=funcThetaInit(matxArgResp);

doubleThetaVar=funcThetaVarInit(vecTheta);

vecSigma=funcSigmaInit(matxRespMS,intNoLine);

vecRgrnResp=funcRgrnResp(matxArgResp,matxRespMS,intNoLine);

doubleThetaVarAlpha=doubleArgThetaVarNull+intNoLine/2;

vecSigmaAlpha=ones(intNoLine,1)*doubleArgSigmaNull . . .

+(matxRespMS(:,1)/2);

matxModelFull=funcModelFull(intNoMarker,intNoLine);

doubleAdj=funcLLike(matxModelFull, matxArgMarkerFull, . . .

vecRgrnResp, matxRespMS, intNoLine, intNoMarker, . . .

intNoTimesGS, intArgBP, doubleThetaVar, vecSigma, . . .

doubleThetaVarAlpha, vecSigmaAlpha, doubleArgBetaVar, 0, 0)

51

for intLoopDS=1:1:intArgTimeDiffStart

[intModelVal, matxModelSlt]=funcModelSelect(intNoMarker);

while(matxOutQTL(intModelVal+1,2)==1)

[intModelVal, matxModelSlt]=funcModelSelect(intNoMarker);

end

matxOutQTL(intModelVal+1,2)=1;

for intLoopStoc=1:1:intArgTimeStoc

disp ’funcQTLV2.m(117)new stochastic’;

disp ’======================’;

intLoopDS

intLoopStoc

intBestModelValue

intModelVal

disp ’======================’;

if(matxOutQTL(intModelVal+1,3)~=0)

doubleNowAvgLLike=matxOutQTL(intModelVal+1,1);

else

doubleNowAvgLLike=funcLLike(matxModelSlt, . . .

matxArgMarkerFull, vecRgrnResp, matxRespMS, intNoLine, intNoMarker, . . .

intNoTimesGS, intArgBP, doubleThetaVar, vecSigma, . . .

doubleThetaVarAlpha, vecSigmaAlpha, doubleArgBetaVar, doubleAdj, 1);

matxOutQTL(intModelVal+1,1)=doubleNowAvgLLike;

matxOutQTL(intModelVal+1,3)=1;

end

52

if intLoopStoc==1

doubleBestAvgLLike=doubleNowAvgLLike;

matxBestMarker=matxModelSlt;

intBestModelValue=intModelVal;

matxOutBestLog(1,intLoopDS)=intBestModelValue;

matxOutQTL(intModelVal+1,4)=matxOutQTL(intModelVal+1,4)+1;

[intModelVal, matxModelSlt]=. . .

funcModelSwitch(intBestModelValue, matxBestMarker);

else

if(doubleBestAvgLLike~=0)

doubleProMove=doubleNowAvgLLike/doubleBestAvgLLike;

else

if doubleNowAvgLLike>0

doubleProMove=doubleNowAvgLLike;

else

doubleProMove=0;

end

end

if(doubleProMove>1)

doubleProMove=1;

end

if(rand(1)<doubleProMove)

intDec=1;

53

else

intDec=0;

end

if(intDec==1)

disp ’current model is better than the best one’;

matxBestMarker=matxModelSlt;

intBestModelValue=intModelVal;

matxOutBestLog(intLoopStoc,intLoopDS)=. . .

intBestModelValue;

matxOutQTL(intModelVal+1,4)=. . .

matxOutQTL(intModelVal+1,4)+1;

[intModelVal, matxModelSlt]=. . .

funcModelSwitch(intBestModelValue, matxBestMarker);

else

disp ’current model is worse than the best one’;

matxOutBestLog(intLoopStoc,intLoopDS)=. . .

intBestModelValue;

matxOutQTL(intBestModelValue+1,4)=. . .

matxOutQTL(intBestModelValue+1,4)+1;

intNoModelValuePre=intModelVal;

while(intNoModelValuePre==intModelVal)

[intModelVal, matxModelSlt]=. . .

funcModelSwitch(intBestModelValue, matxBestMarker);

end

end

end

54

end

end

matxOutActPro=sparse(1,intNoMarker);

for intValModel=0:1:(2^intNoMarker-1)

if(matxOutQTL(intValModel+1,3)~=0)

intCurValModel=intValModel;

for j=0:1:(intNoMarker-1)

weight=2^(intNoMarker-j-1);

if(intCurValModel<weight)

continue;

else

matxOutActPro(1,j+1)=. . .

matxOutActPro(1,j+1)+matxOutQTL(intValModel+1,4);

intCurValModel=intCurValModel-weight;

end

end

end

end

matxOutActPro=matxOutActPro/(intArgTimeDiffStart*intArgTimeStoc);

save([datestr(now,’yyyymmddHHMMSS’),’.mat’],. . .

’matxOutQTL’, ’matxOutBestLog’, ’matxOutActPro’,’doubleAdj’,’-mat’);

55

