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Abstract

The primary goal of the paper is to investigate the Baire property and wéakorability for the
generalized compact-open topology on the spacé of continuous partial functiong: A — Y
with a closed domaim C X. Various sufficient and necessary conditions are given. It is shown, e.g.,
that (P, t¢) is weaklya-favorable (and hence a Baire space) ifs a locally compact paracompact
space and’ is a regular space having a completely metrizable dense subspace. As corollaries we
get sufficient conditions for Baireness and weafavorability of the graph topology of Brandi and
Ceppitelli introduced for applications in differential equations, as well as of the Fell hyperspace
topology. The relationship betweep, the compact-open and Fell topologies, respectively is studied;
moreover, a topological game is introduced and studied in order to facilitate the exposition of the
above results] 2001 Elsevier Science B.V. All rights reserved.
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0. Introduction

Perhaps the first to consider a topological structure on the space of partial maps was
Zaremba in 1936 [27] and then Kuratowski in 1955 [22], who studied the Hausdorff metric
topology on the space of partial maps with compact domain. Ever since these early papers,
spaces of partial maps have been studied for various purposes; in particular, the importance
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of studying topologies on partial maps has been pointed out by Filippov in his paper [12].

This observation complements the recent upsurge of various useful applications of partial
maps in differential equations (see, e.g., [5,12,13,26]), in mathematical economics [3], in
convergence of dynamic programming models [23] and other fields [1,2,4]; the paper of
Kiinzi and Shapiro [20] on simultaneous extensions of partial maps with compact domains
should also be mentioned here.

The so-calledjeneralized compact-open topologyon the space of continuous partial
maps with closed domains has been especially recognized in this context (cf. [5,3,23]),
whence the interest in establishing properties of this topology. Separation axioms for
were characterized in [18], further, (complete) metrizability and second countabitity of
were investigated in [19]. It is the purpose of this paper to investigate other completeness-
type properties, such as wealfavorability and Baireness af, respectively (see Sectionl
for the definitions) and as a consequence, of a new graph topology of Brandi and
Ceppitelli (Section 5). Our results (in Section 4) naturally extend those of [19] on complete
metrizability of t¢ and nicely complement similar results on the compact-open topology
tco [25,24,15] and the Fell topologyr [28,29], respectively.

In the pursuit of our goal we explored two approaches: the first relied on getting game-
theoretical conditions ok and Y that would ensure Baireness, respectively weak
favorability of the generalized compact-open topology and then identify some natural
topological structures that satisfy these conditions. The relevant topological games are
introduced and studied in Section 1.

The second approach made use of some favorable properties of the restriction mapping
relatingz¢ to T andtco, as well as of the already known results on Baireness and weak
a-favorability of tco and . Surprisingly, the theorems resulting from these approaches,
although overlap, do not follow from each other and hence could be of independentinterest
(see Remark 4.5). We also give necessary conditions for the generalized compact-open
topology to be Baire (of second category, in fact).

Throughout the papex andY will be Hausdorff topological space€L(X) will stand
for the family of nonempty closed subsetsXfthe so-called hyperspace &f and K (X)
for the family of (possibly empty) compact subsetsof For any B € CL(X) and a
topological space&’, C(B, Y) will stand for the space of all continuous functions from
B to Y. A partial map is a pai(B, f) such thatB € CL(X) and f € C(B, Y). Denote by
P =P (X, Y)the family of all partial maps. Define the so-calpeheralized compact-open
topologyzc onP as the topology having subbase elements of the form

[U1={(B, f) e P: BNU # ¥},
[K:11={(B,f)eP: f(KNB)CI},

whereU is open inX, K € K(X) and/ is an open (possibly empty) subsetiafWe can
assume that thé's are members of some fixed open baseXfor

A justification for calling z¢ the generalized compact-open topology can be that if
(say) X is T4 andY = R (the reals), therP, t¢) is a continuous open image (under the
restriction mapping) ofCL(X), tr) x (C(X,Y), Tco), Wheretco is the compact-open
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topology[11] on C(X, Y) andzf is the so-calledrell topologyon CL(X) having subbase
elements of the form

V- ={AeCLX): ANV #£0}
with V open inX, plus sets of the form
vt={AeCLX): AcCV},

with V co-compactinX. Itis customary [25] to us€y (X) for (C(X,Y), tco) withY =R
(the reals).

Both the compact-open topology and the Fell topology, respectively have been
thoroughly studied and their properties are well established (cf. [25] for the compact-open
topology and [8] or [21] for the Fell topology). In particular, using some previous results
of McCoy and Ntantu [25], Baireness 6%, (X) was characterized by Gruenhage and Ma
[15] if X is ag-space; moreover, Ma showed [24] that for a locally compéctveak
a-favorability of Cr(X) is equivalent to paracompactnessof

It is also well known that the Fell hyperspa@@L(X), tf) is locally compact provided
X is locally compact, consequently, in this cagd (X), ) is a Baire space. This result
can be generalized, especially, by relaxing the requirement on Hausdorffn&s¢see
[28,29] for details), however, it was unknown if we can keep Hausdorffness, abandon local
compactness ok and still retain Baireness aqiCL(X), tr). We settle this problem by
providing (as a byproduct of our results @p) a Hausdorff non-locally compact space
with a weaklya-favorable Fell hyperspace (cf. Remark 4.6).

The cardinality of the sefl is denoted by|A| and A€ is the complement ofA. For
notions not defined in the paper see [11].

1. Games

In this section we introduce several topological games played by two playansl 3
on a topological spacgX, ).

The first game is the well-knowBanach—Mazur game BM\) played as follows;8
starts by picking somé&/p € 7 \ {¢}, thena picks aU; € 7 \ {#} such thatU/; C Up. In
an even (respectively odd) step> 1, 8 (respectivelyx) chooses &/, € t \ {} with
U, C U,_1. Playera wins provided(), ., U; # @, otherwiseB wins (v stands for the
non-negative integers).

The second game (denotedBWy(X)) is a version of the Banach—Mazur game studied
in [10]. It is played in the same manner B81(X) but the winning condition for is
that(M),_,, U is a singleton for whiciU,: n € w} is a basic system of neighborhoods
(otherwises wins).

The third game called here ttompact-open game K®&) on (X, t) is played as
follows: 8 starts by picking a coupléKo, Up) € K(X) x t such thatlUp, the closure of
Uy, is compact. Them responds by som&j € T with compact closure that is disjoint

new
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to Ko U Up. In stepn > 1, B (respectivelyw) chooses a coupléK,, U,) € K(X) x t
(respectively a set, e ) such thail,, € K(X) (respectivelyV, € K(X)) and

U, N U(Vi UU; UK;)=0 (respectivelyV, N (U /AN U(Ui U Kl-)> =0).
i<n i<n i<n
Playera wins if {U,: n € w} U {V,,;: n € w} is alocally finite family; otherwises wins.

Another game (denoted Op(X)) is a modification olKO(X), where ing’s choice
K, =¢foralln.

Our compact-open gam€O(X) is closely related to the topological ganig X) of
Gruenhage introduced in [14], which can be described as follows: pla&yensd L take
turn in choosing compact sets; in step> 1, K chooses a compact subgét of X and
then L responds by some,, € K(X) that is disjoint toK,,. PlayerK wins a run of the
gameG (X) provided{L,: n € w} is alocally finite family inX; otherwiseL wins.

A (stationary strategyin these games for one of the players is a function, which picks
an object for the relevant player knowing all the previous moves of the opponent as well as
of his own (respectively knowing only the previous move of the opponenttaionary)
winning strategy for a player is a (stationary) strategy winning for the player every run
of the game compatible witd.

The spaceX is calledweakly «-favorable provideda has a winning strategy in the
Banach—-Mazur gam&M(X); further, X is a-favorable provided« has a stationary
winning strategy irBM(X). In a similar fashion, we could define wealdyfavorable and
B-favorable spacesespectively; however, these notions coincide (see [16]).

Proposition 1.1.
(i) If « has a winning strategy in KXX), then so has in KOp(X).
(ii) If B has a winning strategy in Kg0X), then so hag in KO(X).

Proposition 1.2. Let X = P, . X; be a topological sum for some index $esuch that
has a winning strategy in KX;) (respectively in K@(X;)) for eachr € T. Thena has a
winning strategy in KQX) (respectively in KQ(X)).

Proof. Let o, be a winning strategy fax in KO(X,) for eachr € T. Letn be a positive
integer. LetUy, ..., U,, Vo, ..., V,—1 be open sets itX with compact closure irX and
Ko, K1, ..., K, be compactinX. Then

To= {teT: X; N (U(KiUUi)UUVl) ;é@}
i<n i<n
is finite. Define a strategy for o in KO(X) as follows:
a((KO9 UO), VO) ey (K}’h U}’l))
= J (X, N Ko. X, N U0). X, N Vo, ... (X, N Ky, X; N Up))

teTy

which is clearly a winning strategy forin KO(X). O
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A space isalmost locally compacprovided every nonempty open set contains a
compact set with nonempty interiay; is calledhemicompacfl1], provided in the family
of all compact subspaces df ordered by inclusion there exists a countable cofinal
subfamily. A spaceX is ag-spacef for eachx € X there is a sequend&, },<., 0f open
neighborhoods of such that whenever, € G, for all n, the set{x,},, has a cluster
point. Notice that 1st countable or locally compact (ei&m:h-complete) spaces aje
spaces.

Proposition 1.3.
(i) If X is a locally compact paracompact space, therhas a winning strategy in
KO(X).
(i) If X is an almost locally compact, non-locally compagcspace, therg has a
winning strategy in KQ(X).

Proof. (i) A locally compact, paracompact space can be written as a topological sum of
o-compact spaces (cf. the proof of Theorem 5.1.27 in [11]) and hence as a topological
sum of locally compact, hemicompact spaces (see [11, Exercise 3.8.C(b)]). Then by
Proposition 1.2, it suffices to prove thatXf is a 7», locally compact and hemicompact
space, thew has a winning strategy iIKO(X).

To show this, letUo, ..., Uy, Vo, ..., V,—1 € T have compact closures ant, ...,
K, € K(X) for somen € w. Assume thatM = {M;: i € w} is an increasing collection
of compact sets obtained from local compactness and hemicompactriéssiofi that

VK € K(X) AM; € M with K C int M;.

Then{J; ¢, (K; uu)uly,_, Vi cintM;, for somei, > n and hence

i<n

V, = (int Ml-n)\( J&ivuihu UW)
i<n i<n
is an open set with compact closure.
We will show that the strategy defined for each € w via

G((KO, UO), V09 R (K}’h Un)) = Vn

is a winning strategy foe in KO(X).

Indeed, let(Ko, Up), Vo, ..., (K,, Uy), Vy, ... be a run ofKO(X) compatible witho .
If x € X, thenx € intM;, for somei, > n andn € w. Consequently, in¥;, is an open
neighborhood of disjoint from{U;: i > n}U{V;: j >n+1},s0{U,: n€ w}U{V,: ne
w} is a locally finite family; thuse is a winning strategy fos.

(i) Let x € X be a point with no compact neighborhood. £€%,: n € w} be a collection
of countable neighborhoods.efsuch that whenever, € G, for all n, the sefx, },,c, has a
cluster point. Define a strategyfor g in KOg(X) as follows: start by choosing a nonempty
open setl/p with compact closure contained @o. If Ug, Vo, ..., Uy, V, is a run of the
gameKOo(X) (n € w), thenG, 11\ U, (Ui U Vi) is a nonempty open set (Sin€&,1
is not compact) and hence it contains a nonempty opeti,set= o (Uo, Vo, ..., Uy, Vi)
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with compact closure. Pick somg € U, for all n, then the sequende, },,<,, has a cluster
pointy. It is clear then that every neighborhoodyointersects the collectiofU,: n € w}
infinitely many times; thud,U,,: n € w}U{V,: n € w} is notlocally finite andr is therefore
a winning strategy fop in KOp(x). O

Proposition 1.4.
(i) If X is a locally compact space, thenhas a winning strategy in KXX) iff X is
paracompact.
(ii) If X is an almost locally compact g-space, thehas a winning strategy in KCX)
iff X is paracompact and locally compact.

Proof. In both cases, sufficiency follows from Proposition 1.3(i).

(i) Necessity We will define a winning strategy for K in G(X) given a winning
strategyo for « in KO(X). Let Ko = @ be K's first move and letLo be L's response in
G(X). Let Ug be an open set with compact closure containiggPut Vo = o ((Lo, Up)),
K1 = Vo U Up and defined(Lg) = K1. Suppose the gamé(X) has been played up to
the nth step ¢ > 1): Ko, Lo, ..., K, L,. Clearly L, N K,, = @; thus, by regularity and
local compactness df, there exists an open neighborhdgdof L, with compact closure
disjointtoK,,. Putk, 1 = V,, UK, UU,, whereV,, = o ((Lo, Uo), Vo, . .., Va1, (Ly, Up))
and defin@ (Lo, L1, ..., L,) = K,11. Then(Lo, Up), Vo, ..., (Ly, Uy), Vy, ...isarun of
the gameKO(X) compatible witho and hencqdU,: n € w} is a locally finite family as
well as{L,: n € w}. It means that has a winning strategy i (X), which in turn is
equivalent toX being paracompact by a theorem of Gruenhage (see [14]).

(i) Necessitya has a winning strategy iKOp(X) by Proposition 1.1(i), s@ has no
winning strategy irKOp(x) and hence is locally compact by Proposition 1.3(ii). Finally,
paracompactness &f follows from Gruenhage’s theorem as in (i)O

In connection with Proposition 1.3(i) (also Proposition 1.4) it is worth noticing éhat
may have a winning strategy KO(X) even if X is not locally compact or paracompact.
To show this, observe first

Lemma 1.5. If the countable subsets af are closed and discrete, thenhas a winning
strategy in KQX).

Proof. Notice that the only compact subsets Xfare the finite ones. Consequently, a
winning strategys for o in KO(X) consists of choosing the empty set regardlesg’sf
choice. Indeed, i{Ko, Uo), Vo, ..., (Ky, Uy), Vs, ... is @ run ofKO(X) compatible with
o,thenV, =¢foralln € w andU, C X is finite for alln € w. Hence,C =, Ux is a
countable subset of, which is discrete; thugl,,: n € w} U{V,: n € w} is a locally finite
family. O

It easily follows now from Lemma 1.5 that
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Example 1.6. There exists an almost locally compact non-normal, pespaceX such
thate has a winning strategy iKO(X).

Proof. Let X = [0, 1]. Denote byr the natural Euclidean topology a%i and putH =
{0,1,1/2,...,1/n,...}. Then

{{x}: x ¢ H}U{V\K: V € 1, K is a countable subset af}

is a base for some topolog9 on X. Of course(X, O) is a T», almost locally compact
space. Itis easy to verify that X, O) every countable set is closed and discrete, hence it
is not ag-space and by Lemma 1.&,has a winning strategy iKO(X). Finally, (X, O) is

not normal, since it is not even regular. To show this, put {1,1/2,...,1/n,...}. Then

L is a closed set innX, ©) and 0¢ L, but we cannot separafé} and L by disjoint open
setsin(X,0). O

Compare Proposition 1.3(ii) with the following:

Example 1.7. There exists a locally compact spakesuch thats has a winning strategy
in KOp(X).

Proof. A space with the desired properties is the so-called ladder spawethe infinite
limit ordinals inw; described in [15]: leX = w1 andS stand for the infinite limit ordinals
in w1. Define a topology oiX as follows: points inX \ S be isolated and for eache S let
{M, € X\ S: n € w} be an increasing sequence that is cofinal {the “ladder” atk); then
thekth basic neighborhood ofbe {A} U {A,,: n > k}.

It is not hard to show thak is locally compact and that compact sets are at most

countable. Moreover,

e A has a winning strategy iKOp(X): let Up = ¥ be B’s first move and denote
80 =supUp U Vp) + w, whereVy is o’s first move. Letfy:w — 8o\ S be a bijection,
fo,0 =Min{t € w: fo(r) ¢ UpU Vo} and putUs = { fo(r0.0)}. If Uo, Vo, ..., Uy, V,, are
the first 22 moves of the gam&Oq(X) (n > 0), defines, = sup(8,—1 U V,) + .
Let f,:0 — 8, \ (6,—1 U S) be a bijection and for each e I,, = {k < n: ranf; \
Ujgn(Uj U V;) # 0} putt, x =minfr € w: fi (1) ¢ Ujgn(U,- UV;)}. DefinelU, 41 =
{fi(tni): k € In}.

Now, if Uo, Vo, ..., Uy, Vy,... is a run of the game&KOp(X) compatible with the

above strategy oB, thenA\S C |J,,c,(Un U Vi), Wherei = suplJ,,.,(U, U V,,) € S.
Consequently, all the neighborhoodsioivill meet infinitely many ofU,’s or V,,’s. O

Finally, we list some facts about the Banach—Mazur g&Mk X ) and its modification
BMp(X) that will be used in the sequel:

Proposition 1.8. X is nong-favorable iff X is a Baire space, i.e., each countable
intersection of dense and open subsetX @ dense.
In particular, if X is weaklyx-favorable, thenX is a Baire space.
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Proof. See [17, Theorem 3.16].0

Proposition 1.9. Let X be a regular space. Tham has a stationary winning strategy in
BMp(X) iff « has a stationary winning strategy in BM) and X contains a residual
completely metrizable subspace.

In particular, if a regular spaceX contains a residual completely metrizable subspace,
thena has a stationary winning strategy in BJ¢X).

Proof. See [10, Theorem 2.8] for the first part. As for the second park ddie a residual
(hence dense) completely metrizable subspace of a regular Xpaced be a compatible
complete metric forXo. Define a stationary strategy for in BM(X) as follows: if V
is nonempty open irX thenV’ = Xo NV is nonempty open Ko and without loss of
generality assume that thediameter ofV’ is bounded. Choose a nonempfyg-open
subset/’ with half the diameter of that of’ and defines (V) to be anX-open set such
thato (V) C V ando (V) N Xo C U'. Then completeness ¢Xo, d) implies thate wins
every game oBM(X) compatible witho. O

2. m-bases for the generalized compact-open topology

A collectionC of nonempty open sets isabasefor a topological space, provided each
open set contains an element fra@mA topological spaceX is quasi-regular provided
nonempty opens subsetsX¥fcontain the closure of a nonempty open subsex of

Proposition 2.1.
(i) The collectionB of the sets

[Ko:#1N ((Uin () (IUINIT;: L)) @
i<n’ n'<i<n

withn >1,0<n" <n, @ # U; C X open,Ko,U,41,...,U, € K(X), Ko,
Uo, ..., U, pairwise disjoint and) # I; C Y open (forn’ < i < n), forms ar-base
for z¢.
(ii) If X is quasi-regular, ar-base3 can be formed as ifil) with Uy, ..., U, pairwise
disjoint in addition.
(iii) If X is almost locally compact, then the collectiBp of the sets
[Ko: 21N () ([W:1N[T; : 1;]) (1)
i<n
with n > 1, Ko, U; € K(X), ¥ # U; C X open,Ko, U; pairwise disjoint fori < n
and@ £ I; C Y open(i < n), forms ar-base forec.

Proof. (i) Let

V=[Lo:JolN () (IV;INIL;: J;1)
j=1
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be a nonemptyc-basic set, wherdp =@ andJ; #@ forall 1 < j <m. Let

Loo= U ﬂ Lj,
AcAjeA
whereA={AC{0,1,...,m}: A#0 andﬂjeA J; =0}. Observe thaLo C Loo.
If (B, f)eV,thenthereisa&; e BNV; N Lgforall 1< j<m,whenceb; ¢ Loo,
since otherwisgf' (b;) € (¢4 Jj =¥ for someA € A.
Let{vo, ..., vs} ={b;: 1< j <m}. Then by Hausdorffness &f, we can find a pairwise
disjoint collection of open seis, ..., U, such that

v eU] C ﬂ Vi\Loo foralli<n.
vi€Vj\Loo
Fix i < n. By induction on 1< j < m construct a decreasing sequelg ..., G,, of
nonempty open subsets &f such that for all i< j <m

G;NLj#¥ = G;CL,. )

If U/ C L1, put Gy = U/, otherwise letGy = U/ \ L1. Further, assume that we have
already constructed, ..., G; having property (2) forsome & j <m. If G; C L1,
putG;y1=Gj, otherwise leG ;11 = G; \ Lj;1. Observe by (2) that

W#GnC () Ly 3)
JED;
whereD; ={1< j <m: G, NL; #¥}. PutlU; = G, and arrange thafi <n: D; =
#} =1{0,1,...,n'} for some O< n’ < n. Then D; # ¢ for eachn’ < i < n, whence
ﬂjeDi Jj # ¥, sinceG, N Loo C U/ N Loo = . In this case choose a nonempty open
Ii C ijDi JJ
Define

m
Ko:LooUﬁ(( Lj)\Ui>,
i<n j=1

which is clearly a compact set disjoint fr@ign U;. Also, by (3),U; is compact for each
n <i<n.

All we need to show is that £ U C V, whereU is defined in (1). Indeed, to show
that U # ¢, pick someu; € U; for eachi < n andz € I; for everyn’ <i < n. Let
Bo={uo, ...,u,} and definefp: B — Y as

w1, fi<n +1,
fO(ui):{zi, ifn+1<i <n.
Then(Bo, fo) € U.

Finally, take som&B, f) € U. Then by the construction @f;’s (andU;’s) we see that
for eachV; there is aU; with U; C V;, whence(B, f) ﬂ’};l[vj]. Further,Lg C Ko,
S0 (B, f) € [Lo : #]. Moreover, it follows fromB N Ko = @ that BN L; # ¢ implies
BNL;C Uign U;.
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Consequently, the s&f ={i <n: BNL; NU; # @} C{n' +1,...,n} is nonempty.
Thus,D; # @ for all i € C, which means, by (3), thdf; C L; forall i € C. Consequently,
I; c Jjforalli e C. Now using thai B, f) € [U; : I;] foralln’ <i < n, we have

fenLpy=JrenLnuyclJrdntnclJncy;,
ieC ieC ieC
SO(B, f) e[L;: J;j]. Therefore(B, f)e V.
(ii) If U is defined via (1) and¥V; c X is a nonempty open set with; c U; for all

i <n, then theW;’s are pairwise disjoint. Further, the sk = Ko U Un,<i<n(ﬁ,~\ W) is
compact, so
B#EW=[Lo:#1N [ )IW;In () (IWilN[Wi:L])eB and WCU.

i<n’ n'<i<n
(iif) Almost local compactness of provides an open set with compact closure contained
in U; (see (i) for eacti < n’ (denote it byU; again), further, putting; =Y for all i <n’
we can see by (i) that elements of the forrf) fbrm ax-base forrc indeed. O

Proposition 2.2. Let U = [Ko : #] N (Vi1 N [U; : L)) and V = [Lo : #] N
m.jgm([Vj] N [Vj : J;1) be two elements from the-baseBp.

(i) F9#U CV andU;, C Vj, for someig < n and jo < m thenl;; C Jj,.

(i) f »#£U C V, thenKg D Lo and for eachj < m there existsi; < n such that

Uij cV; andlij cJj.

Proof. (i) If there exists some;, € I;, \ Jj,, pick somex;, € U;,. By pairwise disjointness
of the U;'s, we can choose distinot; € U; for i # ip. Now pick arbitraryy; € I; for
i #ip and defineB = {xop,...,x,} and f: B — Y via f(x;) = y;. Then(B, f) € U, but
(B, f) ¢ V, since otherwise

Yip = f(xio) € f(B N Uio) - f(B mV_/o) C Jjoa

which is a contradiction.

(i) Assume that there exists € Lo \ Ko. Pick someb; € U; andy; € I; arbitrarily
(i < n); further, lety = y;, if b= b; for somei andy € Y be arbitrary otherwise. Define
the setBo = {b, bo, ..., b,} and the functionfy: Bo — Y via

vi, if x=b;fori<n,
folx) = {y, if x =0.
Then(Bo, fo) € U \ V, which is a contradiction and hendg C K. Suppose now that
there isjo < m such that for ali < n there existsi; € U; \ V,,. Pick arbitraryz; € I; for
all i <n.ThenforBy={ug,...,u,} and f1: B1 — Y defined asf1(u;) = z; (i <n), we
have(B1, f1) € U \ V, a contradiction. The remaining follows from (i).0

3. Properties of the restriction mapping

The restriction mapping
n:(CL(X), r) x (C(X,Y), 7co) = (P, 1¢)
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is defined asn((B, f)) = (B, f [p). Clearly, n is onto provided continuous partial
functions with closed domain are continuously extendable a¥erThe following
proposition gives some sufficient conditions for this:

Proposition 3.1. There exists a basg for Y such that for eactd € CL(X), V € V, every
functionf € C(A, V) is extendable to somg* € C(X, V), if either of the following holds
(i) XisTgandY C Ris aninterval
(i) X is paracompactand is a locally convex completely metrizable space.

Proof. (i) This is the Tietze Extension Theorem with the open intervals asV .

(i) This is a consequence of Michael's Selection Theorem as presented in [8,
Proposition 6.6.4]. Indeed, the proof goes through under our conditions as welbwith
being the convex open subsetsiof O

Proposition 3.2. If X is a regular space, then is continuous.
Proof. See [18, Proposition 1.5].0

Proposition 3.3. Let X, Y be such that partial continuous functions with closed domains
are continuously extendable ovér; moreover, suppose that there exists an open base
V for Y closed under finite intersections such that for each nonempty £(X) and

V €V, every functionf € C(K, V) is extendable to somg* € C(X, V). Thenp is an
open mapping.

Proof. LetV =V x Vco be anonemptyy x tco-open set, where

m m
Ve=(LytN[V; err and Vco=CX, V)N [ )IL;:J;]€rco
j=1 j=1
with J; € V for eachj; further, denotd/ = [Lo : 91N (\;_1([V;1N[L; : J;]) € 7c. Then
nv)y="u0.
Indeed(V) c U is clear and we will prove thal c n(V): without loss of generality
assume that eadhy; intersects withL ; for some;’ # j. ForM C {1,..., m} put

LMzﬂLj, JM:ﬂ‘]j
jeM jeM
and letM ={M C{1,....,m}: Ly # @ and Ly, N L; = for eachj ¢ M}. Then
Jy €V is nonempty for everyM € M (otherwise f(x) € Jy = ¥ for eachf € Vco
andx € Ly —a contradiction). Denotg = max|M|: M € M} (which is at least 2) and
put Mo ={M € M: |M| =tp}; moreover, for each & ¢ < g define

Mi={M\{j}: MeM;_1, je M} U{M e M: |M|=19—1t}.

Notice thatM,,—1 = {{j}: 1< j <m} and|M| =19 — ¢ for eachM € M;, 0< 1 < to.
Choose(D, g) e U. ThenD € V¢ and if we construct a functiog* € Vo such that
g*Ip=g, then(D, g) = n((D, g*)) € n(V) and we are done. For evety € M, extend
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glpnL, to somegy € C(Ly, Jy) providedD N Ly # @; otherwise, defing (x) = yu
for eachx € Ly, whereyy, is a fixed element of/y;. Observe that this defings,’s for
eachM € My. Now, by induction onr, we can construct for each¢ < g andM € M,
a functiongy; € C(Ly, Jy) so thatgy, = g on D N Ly andgy = gp on Ly for each
M € M;_1withM c M.

Indeed, assume thgt,, has been defined for all’ € M;_1, where O< ¢ < fo. Let
M € M,. If in addition M € M, then g, satisfies our conditions, since there is no
M’ € M,;_1 containingM. Suppose therefore thaf € M, \ M. Then in view of the
induction hypothesis, the function

g/(x)z{g(x)’ xeDNLy,
e (x), xe€Ly, M eM;_1,MCM
is well-defined onD’ = DN Ly U J{Ly: M' € M;_1, M C M’} C Lys; moreover,
g € C(D', Jy). Hence we can exteng to somegy; € C(Ly, Jy) and our conditions
will be satisfied.
Finally, using the fact that continuous partial functions with closed domains are
continuously extendable ovéf, we can find ag* € C(X,Y) so thatg* = ¢ on D and
g* = gyjy for each 1< j <m (note thatM;,_1 = {{j}: 1< j <m}andL{;; =L; for
eachj). O

Corollary 3.4.

(i) Let X,Y be such that partial continuous functions with closed domains are
continuously extendable ovér; moreover, suppose that there exists an open base
VY for Y closed under finite intersections such that for each nonermipty/C(X)
andV €V, every functionf € C(K, V) is extendable to somg* € C(X, V).
Theny is open, continuous and onto.

(i) If X is paracompactand is locally convex completely metrizable o#ifis 7, and
Y c Ris aninterval, them is open, continuous and onto.

Proof. Compare Propositions 3.1-3.30

4. Baireness and weaky-favorability of the generalized compact-open topology

Theorem 4.1. Let X, Y be such that partial continuous functions with closed domains are
continuously extendable ov&r, moreover, suppose that there exists an open bafes Y
closed under finite intersections such that for each nonekipty/C(X) andV €V, every
function f € C(K, V) is extendable to somg* € C(X, V). Then
(i) (P, ) is aBaire space, ifCL(X), tr) x (C(X,Y), tco) is a Baire space.
(i) (P,zc) is (weakly «-favorable, if (CL(X), tr) as well as(C(X,Y), tco) are
(weakly «-favorable.

Proof. (i) Use Corollary 3.4(i) and the fact that continuous, open and onto mappings
preserve Baire spaces (see [17, Theorem 4.7]).
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(ii) (Weakly) a-favorable spaces are productive and are preserved by continuous, open

and onto mappings, hence Corollary 3.4(i) applies.

Theorem 4.2.Let X be an almost locally compact space and assume théias a
stationary winning strategy in BMY). Then

(i) (P, 1c) is a Baire space i has no winning strategy in KQX);

(i) (P, 1c) is weaklyx-favorable ifa has a winning strategy in KCX).

Proof. Let oy be a stationary winning strategy farin BMg(Y). Let ox be the function
assigning to an opefi#= U C X an open sefl # V C X with compact closure such that
VcUu.

(i) Let o be a strategy fop in BM(P). We will define a strategy fg8 in KO(X) making
use ofo as follows: let

Vo=[Loo:#1N [ (Vo 1N Vo, : Jo1) € Bo
Jj<mo
be the first step ofg in BM(P) for somemg € w. Then let (Ko, Wp) be the first
step of 8 in KO(X), whereKo = Lo o and Wg = U,jgmo Vo,j. Suppose thatKo, Wo),
W1, (K2, W2), ..., (Ky,—1, Wy—1), W,, are the firstn + 1 steps of the gam&O(X) for
someodd n € w. Also assume that in the ganBM(P) the firstn moves were the sets
VoD ViD---DV,_1,whereforeackh <n—1

Vi=I[Lio: 210 () (Vi 1N Ve : Ji ;1) € Bo, (5)
J<my

with mg < my < --- < my,_1 (see Proposition 2.2(ii)). We want to make sure on each
stage that8’s strategy inKO(X) mirrors B’'s strategy inBM(P) so that for eacteven
1<k<n-1

Ki=Lro and W= U Vi,i \ U Vi—1,j- (6)
J<mg J<mg-1
For eachj < m,_1 define

Vi j=0x(Va—1j) and J, ; =oy(Ju-1,) (7)
and if W, # @, putV, ,,, ,+1=0x(W,) andJ, ,, ,+1=7Y. Finally, let

Loo=Ly-10Y | J Var1j\ Vaj) € K(X), ®)

jgmn

wherem, = m,_1 + 1 if W, # @, otherwisem, = m,_1. ThenV,, (defined as in (5) for
k =n) is a well-defined response afin BM(P) (see (7), (8)). If

Vaiti1=0Vo,...,Vy) )

is the next choice o in BM(P) and if V.11 is expressed in the form (5) far=n + 1
and somen,, 11 > m,, then we can defing’s next step(K,,+1, W,,+1) in KO(X) using (6)
fork=n+ 1.
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This defines a strategy fg# in KO(X), which is not winning by our assumption on
KO(X). Thereforep can play so that the collection

{W,: n € w} is locally finite
We will show thatg loses the corresponding gameBM(P): for n € w let
En+l: {] < Mp41: Vn+l’j N ( U Vn,j’) :@}
j/gmn

Observe by (8) that foj < m,41 eitherV, 1 ; C Uj’ém,, Va,jo Of j € Eqq1. Without
loss of generality we can assume thigt 1 # ¢ for all n € w and that for allj ¢ E, 11
(j < mpuq1) there exists somg’ < m,, suchthat, ;1 ; C V, .

Then we can define the following collections of pairwise disjoint sets:

Woo={Vo ;. j <mo} and
Wittn41 ={Vat1,j: j € Eny1} fOrneo.
Notice thatW,, = JW,., for alln € w. Fork > n put
Wik ={Vk,j: j <mpandVy ; C Wy}
Thenforallk € w
U Wk = {Vij: J <my) (10)
n<k
andW, r+1 is a refinement oiV, x for all k > n. In view of (7)
B, = ﬂ UWn,2k+1= ﬂ (UWn,2k> (11)
k>(n-1)/2 k>(n-1)/2

is a nonempty closed subsetWf, for all n € w.

Also, if x € B,, there exists a unique decreasing sequéncg € W, « (k > 2n) such
that x € (2, Vk.ji- Since in view of (7),J2,j5,. - -» Ji ji - -~ is @ run of BMo(Y)
compatible withoy, there exists a unique € (>, Jk,j for which {Ji j,: k > 2n} is
a basic system of neighborhoods. Lfebe the function that assignsto x in this manner;
then f is defined omB = J,,.,, Bn-

Claim1. B € CL(X).
Proof. Indeed, it was shown th&W,: n € w} is a locally finite collection, consequently,

{Bn: n € w} is locally finite as well, sinceB, C W, for all n € w; thus,B = J 1S
closed. O

new B

Clam2. feC(B,Y).

Proof. Let U be nonempty open iv andy = f(x) € U. Let J2, j,,, ..., Jk j,, ... be
a decreasing sequence of open sets intersectifig}ithat is a neighborhood-base for
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Thenthere is somig > 2n with y € Ji, j,, C U. Consider the set = BN Vy, j, . Whichis
open inB and containg . Further, ifx’ € V then there exists a unique decreasing sequence
{V,w-k/: k > 2n} such th<';1tj,i0 = jiko; SO, by Proposition 2.2(i),

/
Fee () Jijy € Jiof, = Jro.itg € U-
k>2n

It means thatf ~1(U) is open inB and hencef € C(B,Y). O
Claim 3. (B, f) €[ \,ee Vn-

Proof. Fix n € w. Since By C Wy, we have thaiB, N L, o =¥ for all k > n; further, if
k <nthenB; C | UWk.n C (Ly0)¢. HenceBN L, o=0.

It is also clear from (10) and (11) thd& NV, ; # @ for all j < m,. Finally, f(B N
Vo) C Juj (j <my) by the definition off. O

(ii) Let oxo be a winning strategy far in KO(X). Define a strategy for « in BM(P) as
follows: for all k < n (n even) defind/ via (5), whereVo> V1D --- D V,. Forj <m,
defineV, 11 ; andL,4+10 as in (7) and (8), respectively replacingoy n + 1. For each
k € w, let Wy be defined as in (i) (see (6)) and put

Vistm+1 = 0ko((Lo,0. Wo), W1, (L2,0, W2), ..., Wa_1, (Ln,0, Wy))

and letJ,, 11 m,+1 =Y. Finally, form, 1 =m, +1letV,_ 1 be given by (5) withk =n +1
and definer via (9).

It is not hard to show thaV,,+1 C V, and analogously to (i) we can prove (through
Claims 1-3) that is a winning strategy fo& in BM(P). O

The following corollary extends and complements results of [28,29] concerning
Baireness and-favorability of the Fell topology:

Corollary 4.3. Let X be an almost locally compact space. Then
(i) (CL(X), tF) is a Baire space i has no winning strategy in KXX);
(i) (CL(X), tr) is weaklyx-favorable ifa has a winning strategy in KCX).

Proof. Observe that ifY = {y} is a singleton, then(P, z¢) is homeomorphic to
(CL(X), r) and hence Theorem 4.2 appliesa

A collection/C of nonempty compact subsetsXiis called a moving off collection if, for
any compact set C X, there exist som& € K disjoint to L. Following [15], we say that
X has themoving off propertyMOP) provided every moving off collection of nonempty
compact sets contains an infinite subcollection which has a discrete open expangion in

Corollary 4.4.
(i) LetX be alocally compact paracompact space. Kdbe a regular space having a
completely metrizable residual subspace. Ttenz¢) is weaklya-favorable.
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(ii) Let X be aTy, locally compact space with the MOP aliid=R. Then(P, z¢) is a
Baire space.

Proof. (i) Compare Theorem 4.2(ii), Proposition 1.4(i) and Proposition 1.9.

(ii) If X is locally compact then the Fell topologZL(X), tr) is also locally compact
[8, Corollary 5.1.4] and hence weakdyfavorable; further, it has been shown in [15] that
Cr(X) is a Baire space X is a locally compact space with the MOP. Itis also known (see
[17, Theorem 5.1(ii)]), that the product of a weaklyfavorable space and a Baire space
is a Baire space; therefore, in view of Proposition 3.1(i) and Theorem 4B(i)c) is a
Baire space. O

Remark 4.5. Observe that Theorem 4.2(i) and Theorem 4.1(i) overlap but do not follow
from each other. Indeed, the space from Example 1.6 is not regular, hence Theorem 4.1(i)
does not apply (ifY contains at least two distinct points). However, by Theorem 4.2(i),
(P, t¢) is a Baire space if (sayy is a regular space having a dense completely metrizable
subspace.

On the other hand, X is the space from Example 1.7, thgrhas a winning strategy in
KOo(X) (and hence irKO(X) as well); thus, Theorem 4.2(i) is useless. Howevwehas
the MOP (see [15, Example 4.1]) and it can be shown under-fMACH) thatX is T4. It
follows then by Corollary 4.4(ii), that under (MA— CH) and withY =R, (P, t¢) is a
Baire space.

Remark 4.6. The spac& from Example 1.6 also provides an example @hanon-locally
compact space such th@L(X), tr) is weaklyx-favorable (see Corollary 4.3).

Lastly, we will explore some necessary conditions for Baireness (for being of second
category even) ofP, 7¢).

Lemma 4.7. Let X be an almost locally compact space atidan open subset with non-
compact closure inX. LetG be the family of nonempty open subsetXofvith compact
closure contained iV andJ be a nonempty open subsetrtofThen the set

HU.NH= ] (to1n[o: 1)
0eg
is open and dense (P, t¢).

Proof. H(U, J) is clearly open. Further, let
H=[K:01n (") (IU:1NIT:: L))
i<n
with K, U; € K(X), 9 # U; C X, U; open,K, U; (i <n) pairwise disjointandi £ I; C Y
open(i < n), be an element of the-baseBy (see (1) in Proposition 2.1). For every< n
choosex; € U; andy; € I;. The setL = (K U Uign U;) is compact, thusl/ \ L # ¢.
There is anO € G such thatO is compact,0 c U \ L. Choosex € O andy € J. Put



L. Hola, L. Zsilinszky / Topology and its Applications 110 (2001) 303—-321 319

B = {x,xo,...,x,} and definef on B as follows: f(x) = y and f(x;) = y; for each
i<n.Then(B, f)e HNHU,J). O

Proposition 4.8. Let X be an almost locally compact space akdcontain an infinite
locally finite collection of open se{®.g.,Y be a non-compact paracompact spadeet
U C X be a nonempty open set with a countably compact closure. Thencompact
if (P, tc) is of second categorgi.e., countable intersections of dense open subsets are
nonempty.

In particular, an almost locally compact, countably compact spaces compact, if
(P, t¢) is of second category.

Proof. Suppose thal/ is not compact. LetJ, C Y: n € w} be a locally finite collection

of nonempty open sets. Then Lemma 4.7 implies ti#at,= H(U, J,) is dense and
open in(P, t¢) for eachn € w. Since the generalized compact-open topologyis of
second category, we have thaY,., H, # #, hence there exists som€, g) € (", Hy.
Consequently, for every € w there isc, € C N U with g(c,) € J,. Then continuity ofg
implies that{c,: n € w} has no cluster point, a contradiction with countable compactness
ofU. O

In view of Proposition 1.3(ii) and Proposition 1.1(iiY;, is locally compact ifX is an
almost locally compacg-space such thag has no winning strategy iKO(X). Further,
by Theorem 4.2(i), if8 has no winning strategy iKO(X), then(P, t¢) with (say)Y =R
is a Baire space. It may be of interest therefore to find out under what conditions does
Baireness of P, t¢) imply local compactness of. The following proposition gives an
answer in the framework of Proposition 1.3(ii):

Proposition 4.9. Let X be an almost locally compact g-space andaontain an infinite,
locally finite collection of open sets. (P, 7¢) is of second category, theX is locally
compact.

Proof. Suppose that we can find a point X with no compact neighborhoods . Let
{G,: n € w} be a sequence of open neighborhoods sfich that whenever, € G, then
{x,: n € w} has a cluster point. Further, Ief, C Y: n € w} be a locally finite collection
of nonempty pairwise disjoint open sets.

By Lemma 4.7, the setd,, = H(G,, J,) are dense and open {®, 7¢) for eachn € w;
thus, there exists som&, g) € (e, Hn- If x, € C NG, is such thag(x,) € J, for all
n € w, then the nefx,: n € w} has a cluster point € C, which contradicts continuity
ofg. O

Remark 4.10. Being ag-space is necessary in the preceding proposition. Indeed, the space
X in Example 1.6 is an almost locally compact, npispace (hence a non-locally compact
space) such thaf, z¢) is a Baire space (see Theorem 4.2).
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5. An application

Let (X, d) be a metric space. FaB € CL(X) and f € C(B,R") let I"(f, B) denote
the graph of the partial functiofB, f) € P; further, letG = {I"(f, B): (B, f) € P}. For
compactk C X andI'(f, B), I'(g, C) € G define

IOK(F(f’ B)a F(g’ C))
=max{e(I'(f, BNK), (g, C)), e(I"(g. C N K), ['(f. D))},

wheree is the excess functional axi x R” induced by the box metric af and the Euclid-
ean metric ofiR”™. Anet{I"(fs;, Bs) € G: s € X'} is said to beg-convergenttd™ ( fo, Bo) €
G (see [6,7]), provided for eacki € K(X) the numerical netox (I"(fo, Bo), I'(fs, Bs)):

s € X} converges to zero. Clearly, the Hausdorff metric convergengg implies t;-
convergence and the two coincideXifis compact.

It was shown in [6], that after identifying partial functions with their respective
graphs,tg-convergence is always topological; in particular, the generalized compact-
open topologyrc topologizeszg if X is locally compact. Therefore, in view of our
Corollary 4.4(i) and Proposition 1.8 we have

Theorem 5.1.Let X be a locally compact metric space. Thé@, 7g) is weakly a-
favorable and hence a Baire space.

Remark 5.2. Note that, ifX is a hemicompact metrizable space, thi€nzg) is a Polish
space (cf. [19, Theorem 2.8]).
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