Characterizing the Pathogenic, Genomic, and Chemical Traits of Aspergillus fischeri, a Close Relative of the Major Human Fungal Pathogen Aspergillus fumigatus

UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
Nicholas Oberlies, Patricia A. Sullivan Distinguished Professor of Chemistry (Creator)
Huzefa A. Raja, Postdoctoral Fellow (Creator)
The University of North Carolina at Greensboro (UNCG )
Web Site:

Abstract: Aspergillus fischeri is closely related to Aspergillus fumigatus, the major cause of invasive mold infections. Even though A. fischeri is commonly found in diverse environments, including hospitals, it rarely causes invasive disease. Why A. fischeri causes less human disease than A. fumigatus is unclear. A comparison of A. fischeri and A. fumigatus for pathogenic, genomic, and secondary metabolic traits revealed multiple differences in pathogenesis-related phenotypes. We observed that A. fischeri NRRL 181 is less virulent than A. fumigatus strain CEA10 in multiple animal models of disease, grows slower in low-oxygen environments, and is more sensitive to oxidative stress. Strikingly, the observed differences for some traits are of the same order of magnitude as those previously reported between A. fumigatus strains. In contrast, similar to what has previously been reported, the two species exhibit high genomic similarity; ~90% of the A. fumigatus proteome is conserved in A. fischeri, including 48/49 genes known to be involved in A. fumigatus virulence. However, only 10/33 A. fumigatus biosynthetic gene clusters (BGCs) likely involved in secondary metabolite production are conserved in A. fischeri and only 13/48 A. fischeri BGCs are conserved in A. fumigatus. Detailed chemical characterization of A. fischeri cultures grown on multiple substrates identified multiple secondary metabolites, including two new compounds and one never before isolated as a natural product. Additionally, an A. fischeri deletion mutant of laeA, a master regulator of secondary metabolism, produced fewer secondary metabolites and in lower quantities, suggesting that regulation of secondary metabolism is at least partially conserved. These results suggest that the nonpathogenic A. fischeri possesses many of the genes important for A. fumigatus pathogenicity but is divergent with respect to its ability to thrive under host-relevant conditions and its secondary metabolism.

Additional Information

Language: English
Date: 2019
comparative genomics, evolution of virulence, fungal pathogenesis, laeA, secondary metabolism, specialized metabolism

Email this document to