Chaos in music: historical developments and applications to music theory and composition

UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
Jonathan R. Salter (Creator)
The University of North Carolina at Greensboro (UNCG )
Web Site:
Kelly Burke

Abstract: The Doctoral Dissertation submitted by Jonathan R. Salter, in partial fulfillment of the requirements for the degree Doctor of Musical Arts at the University of North Carolina at Greensboro comprises the following: 1. Doctoral Recital I, March 24, 2007: Chausson, Andante et Allegro; Tomasi, Concerto for Clarinet; Bartok, Contrasts; Fitkin, Gate. 2. Doctoral Recital II, December 2, 2007: Benjamin, Le Tombeau de Ravel ; Mandat, Folk Songs; Bolcom, Concerto for Clarinet; Kovacs, Sholem-alekhem, rov Fiedman! 3. Doctoral Recital III, May 3, 2009: Kalliwoda, Morceau du Salon; Shostakovich, Sonata, op. 94 (transcription by Kennan); Tailleferre, Arabesque; Schoen eld, Trio for Clarinet, Violin, and Piano. 4. Dissertation Document: Chaos in Music: Historical Developments and Applications to Music Theory and Composition. Chaos theory, the study of nonlinear dynamical systems, has proven useful in a wide-range of applications to scienti c study. Here, I analyze the application of these systems in the analysis and creation of music, and take a historical view of the musical developments of the 20th century and how they relate to similar developments in science. I analyze several 20th century works through the lens of chaos theory, and discuss how acoustical issues and our interpretation of music relate to the theory. The application of nonlinear functions to aspects of music including organization, acoustics and harmonics, and the role of chance procedures is also examined toward suggesting future possibilities in incorporating chaos theory in the act of composition. Original compositions are included, in both sheet music and recorded form.

Additional Information

Language: English
Date: 2009
Chaos Theory, Fractal, Music, Nonlinear
Music theory $y 20th century.
Chaotic behavior in systems.
Nonlinear acoustics.

Email this document to