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Abstract: 

This paper focuses on the well-known Diaz and O'Rourke [M. Diaz and J. O'Rourke, Algorithms 
for computing the center of area of a convex polygon, Visual Comput. 10 (1994), 432–442.] 
iterative search algorithm to find the Simpson Point of a market, described by a convex polygon. 
In their paper, they observed that their algorithm did not appear to converge pointwise, and 
therefore, modified it to do so. We first present an enhancement of their algorithm that improves 
its time complexity from O(log2ϵ) to O(n log 1/ϵ). This is then followed by a proof of pointwise 
convergence and derivation of explicit bounds on convergence rates of our algorithm. It is also 
shown that with an appropriate interpretation, our convergence results extend to all similar 
iterative search algorithms to find the Simpson Point – a class that includes the original 
unmodified Diaz–O'Rourke algorithm. Finally, we explore how our algorithm and its 
convergence guarantees might be modified to find the Simpson Point when the demand 
distribution is non-uniform. 

Keywords: competitive location | geometric optimisation | Simpson Point | centre of area | 
iterative algorithms 

Article: 

1. Introduction 

The problem of finding the Simpson Point, also referred to as the (1|1)-Centroid, belongs to the 
area of competitive location theory, whose models have been studied extensively since the days 
of Hotelling 16 with applications in fields as diverse as economics, marketing, voting theory, 
operations research and regional science. Recent comprehensive surveys of the models in this 
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area can be found in 6 9 19. A seminal model in this area is that of Hakimi 12 who assumes the 
following scenario: two competing firms vie for a common market by locating their own 
facilities to sell an identical product. Of the two competing firms, one is designated as 
the leader that decides to locate p of its own facilities first. The leader is aware of the fact that 
after it has entered the market with p facilities, the rival firm, denoted as the follower, will 
locate r of its own facilities in such a manner as to take away as much market share from the 
leader as possible. Given this, the decision problem facing the leader is to find optimal locations 
for its own pfacilities such that the maximum market share that is lost to the follower is as small 
as possible – Hakimi refers to this as the (r|p)-centroid problem. In general, when r, p≥2, these 
problems are complex, for example, Hakimi 12 has shown that when the market is given by a 
network, with the customers located at the nodes, the (1|p)-centroidproblem, or even computing 
an approximate solution for it, is NP-hard. In the context of a voting theory, the (1|1)-
centroid problem is studied under a different name, namely, finding the Simpson solution 21 to a 
voting game – it is this name that we will use throughout the paper. The Simpson solution is the 
point in policy space against which the fewest voters can be mustered. This special case has been 
extensively studied in the literature. When the market is given by a network, with the customers 
located at the nodes, Hansen and Labbé 14 have given a polynomial algorithm to determine the 
Simpson point. The case where the market is given by a set of discrete points, which represent 
the customers, has been studied by Carrizosa et al. 2 3, Durier 8, Drezner 5, Drezner and 
Zemel 7, Tovey23 and Michelot 18. The case where the market is given by a polygon with a 
continuous distribution of customers has also received attention. When the demand distribution 
is uniform, the Simpson Point of a convex polygon is identical to the Center of Area of that 
polygon. This problem has the flavour of computational geometry. The literature of geometry 
has several classical results on this case - see for example, 1 10 11 15 17 22 24. Our point of 
departure in this paper is the work done by Diaz and O'Rourke 4, where they present simple, 
iterative search algorithms to compute the Center of Area of a convex polygon. 

We consider a market area described by a convex polygon and explain the problem equivalences 
when the demand is uniformly distributed over the market area. The basic iterative algorithm 
enunciated by Diaz and O'Rourke 4 for this problem computes smaller and smaller convex sets 
inside the polygon that are guaranteed to contain the centre of the area. Diaz and 
O'Rourke 4 observed that the convex sets could fail to converge to a point and proposed a 
modification that converges pointwise. We present an enhancement of their algorithm that 
significantly reduces its time complexity from  to . We also 
derive explicit bounds on pointwise convergence of our or any similar algorithm. In doing so, we 
also show that Diaz and O'Rourke's 4 original unmodified algorithm actually does produce a 
series of points that converges to the Simpson point at a guaranteed convergence rate. In 
addition, we show that its convex sets fail to converge to a point only in an easily identifiable 
and exactly solvable special case. Finally, we explore how our modification might be extended to 
find the Simpson Point of the convex polygon when the demand distribution is non-uniform and 



derive a convergence guarantee, albeit weaker than pointwise – to the best of our knowledge, 
there is no discussion in the literature of this version of the (1|1)-centroidproblem. 

The remainder of the paper is divided as follows. The next section presents the notation used in 
the paper and the basic results that are to be used later. This is followed by Section 3, which 
discusses the enhancement to the basic iterative algorithm. The last portion of that section then 
discusses how our iterative algorithm can be modified when the demand distribution is non-
uniform. Section 4 gives the pointwise convergence analysis and the convergence analysis for 
the non-uniform case. 

2. Preliminaries – notation and basic results 

In this section, we present definitions, notation, and some basic results. There are two firms 
competing for a common market area, by locating one facility each that sells an identical product 
(with respect to price, quality, etc.) to the customers. The market area itself is given by a convex 
polygon P with an inelastic demand uniformly distributed over it. Relocation of the facilities is 
assumed to be prohibitively expensive in the short run, thus presupposing that they are similar to 
heavy industries such as factories, stores, etc. One of the two firms, the leader, has decided to 
locate its facility first. The leader is aware that after it has entered the market, its competitor, 
which we refer to as the followerfirm, will then locate its own facility with the aim of capturing 
as much market share from the leader as possible. The decision problem facing the leader is to 
locate its facility so as to minimize the market area that would be lost to the follower, assuming 
that the follower maximizes its market share – the point in the market that achieves this is 
referred to as the Simpson point or (1|1)-centroid of P and we denote it by x*. The cost of 
transportation is assumed to be strictly increasing with distance (given as per the Euclidean 
norm), customers therefore patronize the closest facility, with all ties being broken in favour of 
the original entrant into the market, i.e. the leader. 

The bounded P has n vertices v 1, , where the numbering is given in the clockwise 
order. The edges of Pare thus given by the line segments , whose 
union constitutes the boundary of P, which is denoted by bd(P). The interior of P, which we 
assume is non-empty, is denoted by In(P). The line defined by two distinct points x and y will be 

denoted  and the halfspaces defined by that line will be denoted  and . Which 
halfspace is which will be defined as needed. In general, we employ the convention that ‘-’ faces 
inwards towards the centre of P. Consider any two distinct points y, z∈bd(P). If the line 
segment  intersects the interior of P, it is referred to as a cut of P, since it divides P into two 
smaller convex polygons. In order to define these two smaller polygons, left-arc[y, z] 
(respectively, right-arc[y, z]) is defined as the section of bd(P) that consists of all points onbd(P) 
that are encountered in a clockwise (respectively, counterclockwise) traversal of bd(P) 
from y to z, including these two points themselves. Given this, the convex polygon whose 
boundary is the union of  and left-arc [y, z] (respectively, right-arc [y, z]) is denoted as Left[y, 



z] (respectively, Right [y, z]). For example, in Figure 1, Left[v 7, v2] (respectively, Right[v 7, v 2]) 
has vertices v 7, v 1 and v 2 (respectively, v 2, v 3, v 4, v 5, v 6 and v 7). 

 

Figure 1. Convex polygon P. 

The area of any polygon S will be denoted by A(S). Since the demand distribution is uniform, the 
demand generated in S is assumed to be proportional to A(S). The term ‘larger of two given 
polygons’ will refer to the one with the greater area. Consider now a point x∈P and any 
cut  of P that passes through x. The point z is determined by P, xand y and is denoted z(x, y, 
P). This set of all such cuts  is parameterized by y as y ranges over the setbd(P). 
Let y’ denote the value of y in bd(P) that maximizes  (note that the 
maximum is attained because bd(P) is compact and the area function is continuous). 
Define . Thus, H(x) denotes the larger of the two most unequal 
(in terms of area) pair of smaller polygons that any cut through x can partition P into. (Along 
similar lines, when the demand distribution is non-uniform, H(x) will be defined by considering 
all the sets that any cut through x can partition P into, and choosing the one with the maximum 
demand.) 



With H(x) defined as above, then following Hotelling's 16 ‘Principle of Minimum 
Differentiation’, if the leader locates at the point x∈P, the follower can be expected to locate at a 

distinct but arbitrarily close point q in H(x) such that  is normal to . Hence, the 
leader must be prepared to lose the entire set In(H(x)) to the follower and be left with the market 
region . Since , an alternate definition of the Simpson pointx* 
could be 

 

When defined as above, the Simpson point x* is referred to as the Centre of Area of P (as distinct 
from the centre of mass) in the geometry literature. Diaz and O'Rourke 4 study the centre of area 
problem for a convex polygon and begin by giving an O(n) time algorithm to compute H(x) for 
any given point x∈P. They also give an O(n 6) combinatorial algorithm to compute x* – 
however, given its procedural and time complexity, they also present an iterative search 
algorithm, it is this latter algorithm that is the basis of our paper. We need three facts to describe 
their algorithm. The first two lemmas are immediate; the third is a classical result. 

Lemma 2.1 

4 For any convex polygon P with A(P)>0, . 

Lemma 2.2 

4 For any convex polygon P, . 

Lemma 2.3 

10 13 Given a polytope P ’ in d-dimensions with a volume of unity, let x denote its 
centroid (centre of mass). Then any hyperplane through x divides P ’ into two polytopes, the 
larger of which has a volume of no more than . 

In terms of our function H(), Lemma 2.3 states that if y∈P is the centroid of polygon P, 
then . Based on these facts, the basic iterative algorithm proposed by Diaz 
and O'Rourke 4 proceeds as follows: at the first step, choose an x (1) as the centroid of P and 
calculate H(x (1)). By Lemma 2.2, ; hence, denote theSimpson_Polygon at step 
one, S (1), by H(x (1)). In the second step, choose a point x (2) as the centroid of S (1) and 
find H(x (2)). Now we know that . Thus, at the 
end of step two, update S (2) to . By repeating this procedure, we get 
successively smaller Simpson_Polygonsthat are guaranteed to contain x*. Assuming that the 
termination criterion is to produce a Simpson_Polygon that has an area no more than ϵ A, where ϵ 
is the required error bound, this idea is summarized as the following algorithm. 



Algorithm Find_Simpson _I(from 4) Begin Step 1: i = =0. Set S (i)=P. Step 2: While
 do    {    i = i+1.    Choose x (i) as the centroid of S (i−1).    

Compute H(x (i)).    Set     } End 

As for the performance of algorithm Find_Simpson _I of Diaz and O'Rourke, note that Lemma 
2.3 guarantees that at least 4/9ths of the area of the Simpson_Polygon is removed at any 
iteration i. Hence, the area of S (i) is given as 

 

Therefore, in order to produce a Simpson_Polygon with area  or less, at 
most  iterations of the algorithm are needed. However, the number of vertices of 
the Simpson_ Polygon can increase by one on every iteration; hence the total time taken by 
algorithm Find_Simpson _I to produce a Simpson_Polygon of area no more than

 is . A second problem with algorithm Find_Simpson _I is that, 
as noted by Diaz and O'Rourke, it can fail to exhibit pointwise convergence, i.e. converge in 
diameter as well as area. As mentioned previously, Diaz and O'Rourke have demonstrated that 
pointwise convergence can be guaranteed asymptotically by modifying the implementation of 
the algorithm. We will show in Section 4 that the unmodified algorithm, appropriately 
interpreted, does converge pointwise even though the diameter may not converge to zero. 

3. An improved version of algorithm Find_Simpson _I 

In this section, we discuss an enhancement of algorithm Find_Simpson _I that reduces its time 
complexity. This improvement is brought about by controlling the number of vertices 
of Simpson_Polygon. To facilitate this enhancement, we first need the concept of a k-Core of a 
convex polygon. 

3.1. k-Core of P 

For every given value of k, where k is any positive integer less than n−2, we define a convex 
polygonal subset of Pcalled the k-Core of P, and designated as k-Core(P), as follows. For 
each i=1… n let {i+k+1} denote (i+k) mod (n)+1. Then define 

 

See Figure 1 for an example of the 1-Core of a given convex polygon. Note that k-Core(P) may 
be empty. Regardless of the time required to compute, it can be obtained as follows. 
Let  denote the closed halfspace defined by the line through v i and v {i+k+1} that 
contains the polygon . Then the k-Core(P) could also have been defined as 



 

Thus finding the k-Core(P) reduces is finding the intersection of n linear inequalities, which can 
be accomplished in O(nlog n) time, a standard result from computational geometry (20). 
Therefore, 

Lemma 3.1 

Given a convex polygon P with n vertices, and an integer k≥1, the k -Core(P) can be computed in 
O(n log n) time. 

We will want the k-Core to have a non-empty interior. The next lemma gives a sufficient 
condition. 

Lemma 3.2 

Given any convex polygon P with n vertices and an integer k≥1, if n≥3k+3, then the k -Core of P 
has non-empty interior. 

Proof 

For convenience let R(i) denote . For each i the polygon R(i) 
contains n−k vertices of P. Therefore, for any three polygons R(a), R(b), R(c), the multiset of 
their vertices from P has cardinality 3(n−k). It follows from n≥3k+3 that . 
Since no vertex can have multiplicity more than three in the multiset (as there are only three 
polygons), there must exist at least three vertices with multiplicity 3, i.e. that are common to all 
three polygons. Since no three vertices of P can be collinear,  must 
moreover have non-empty interior. Therefore,  has non-empty 
interior. Since this is true for every triple a, b, c, by Helly's Theorem for finite sets of open 
convex sets, 

 

This intersection is non-empty and open and hence it has a non-empty interior. 

We will now prove a geometric property of the k-Core that will be useful in containing the 
number of vertices in theSimpson_Polygon generated by algorithm Find_Simpson _I. Consider 
any point  and any cut that passes through x. 
Since , y and z must occur on different edges of P. Now consider 



the open set obtained by omitting the two endpoints y and z from left-arc[y, z] – we claim there 
are at leastk+1 vertices of P in this open set. 

If, on the contrary, there were k or fewer vertices of P in the open halfspace , then for 
convenience of labeling those vertices  where m≤k+1, consider the cut  and 
the polygon R(1) (using the notation from the proof of Lemma 3.2) it defines. On the one 
hand, y is in the half-open interval [v 1, v 2) and z is in the half-open interval (v m , v m+1]. 
Therefore x, which is on the segment , is in  and hence not in In(R(1)). (It could be on the 
boundary of R (1) if y=v 1 and z=v k+1). On the other hand, by definition . 
Hence , a contradiction. 

Since there are at least k+1 vertices in this open segment that is obtained from left-arc[y, z], the 
polygon Right[y, z] will have at most  vertices. 
Since , we have bounded the number of vertices of both polygons 
formed by any cut through any interior point. 

Lemma 3.3 

Given any convex polygon P with n vertices, for any k≥1, any cut through any point 
in  partitions P into two polygons, each of which has no more 
than (n−k+1) vertices. 

3.2. An enhancement of algorithm Find_Simpson_I 

Using the concept of k-Core given previously, we can now embellish algorithm Find_Simpson_I 
so that its time complexity reduces to . In order to do so, we use Lemma 2.3 to state 
that. 

Lemma 3.4 

Consider any cut  of a convex polygon P with Simpson solution 
x*. If  (respectively, 
, then  (respectively, . 

Proof 

Suppose  (refer to Figure 2). 
Let  be arbitrary. Let  denote the cut through x that is 
parallel to the cut . Obviously, , implying 
that  whence . By 
definition of H(x), we have . But by Lemma 2.3, the 
centroid w of P is a better location than x, as , thereby proving the non-
optimality of x. The complementary case is immediate because . 



Given Lemma 3.4, we now define Initial Triangle(P) as a triangle inside P that is constructed as 
follows (refer to Figure 2). Starting from vertex v 1 of P, proceed clockwise on bd(P) 
from v 1 until the point p is reached with the property that . 
Proceeding further clockwise from p, denote by q and r two more points on the boundary of P, 
such that . In a clockwise traversal of the boundary 
of P that begins at p and ends at v 1, r must be encountered strictly after q, otherwise P would 
contain three disjoint regions, , , and , with total 
area 12A(P)/9. This implies, in turn, that the two line segments  and  will intersect in the 
interior of P – denote their point of intersection as s. The Initial Triangle is defined to be the 
triangle (v 1, p, s). Note that the Initial Triangle (i) has an area no more than A(P)/9, (ii) can be 
computed in O(n) time, and (iii) is guaranteed, by Lemma 3.4, to contain x*, 
since . 

The second idea that we will use to modify algorithm Find_Simpson _I is the k-Core(P) with k=2 
(any larger k would also work). Recall that at iteration i of the algorithm, the Simpson_ Polygon 
is given by S (i). Let the number of vertices in S (i) be denoted by n (i). Then by Lemmas 3.2 and 
3.3 for the case of the 2-Core(S (i)), we have 

Corollary 3.5 

If n (i)≥9, i.e., the Simpson_Polygon at iteration i has at least nine vertices, the 2-Core(S (i)) has 
an non-empty interior. Further, every point in the interior of this 2-Core has the property that 
any cut of P through this point divides S (i) into two smaller polygons, each of which has at 
most (n (i)−1) vertices. 

Based on the ideas of the Initial Triangle and Corollary 3.5, the specialized version of 
algorithm Find_Simpson _I, is presented below. 

Find_Simpson_ II Begin 1 i = 1. Set S (i) = Initial 
Triangle(P) 2 while  do   {   2.1 (Vertex reduction loop)    If 
(n (i)>8, i.e., S (i) has more than 8 vertices and therefore n (i)=9)    {    2.1.1 Find 2-
Core(S (i)). Choose x (i+1) as any point in the interior of this 2-Core.    2.1.2 Find H(x (i+1)).    
2.1.3 Set .    } 2.2 (Area reduction loop) If (n (i)≤8)    {    
2.2.1 Choose x (i+1) as the centroid of S (i).    2.2.2 Find H(x (i+1)).    
2.2.3 Set     } 2.3 i = i + 1 End. 

To calculate the time complexity, we have already noted that the Initial Triangle in step 1 can be 
found in O(n) time. Consider now the main while-do loop. At the first iteration we have n (1)=3. 
Step 2.1 if executed decreases the number of vertices by at least one (Corollary 3.5); if executed 
can increase the number of vertices by at most one. Therefore n (i)≤9 in every iteration. 
Moreover, Step 2.2 will be executed at least once every two consecutive iterations of the while-



do loop, hence . The O (1) bound on n (i) will easily guarantee that each 
iteration of the while-do loop can be completed in O(n) time. Steps 2.1.1 and 2.2.1 
take  time. As previously stated, the polygon H(x) in steps 2.1.2 and 2.2.2 can be 
found in O(n) time by the algorithm of Diaz and O'Rourke (1994). Further, 
given S (i) with n (i) vertices, steps and will take  time, as they require us to 
find the intersection of two convex polygons 20. (We can actually reduce this to O (1) since all 
we need of H(x) is the line through x, but the preceding step time dominates.) 

Since each iteration takes O(n) time and , then in order to produce 
a Simpson_Polygonwith area  or less, at most  iterations 
are needed. In Section 4, we show that convergence in area of order  yields convergence 
pointwise of order ϵ. Our main theorem then follows. 

Theorem 3.6 

Given a convex polygon P with a uniform demand distribution, and an error bound ϵ, algorithm 
Find_Simpson_II produces a polygon inside P of area no more than ϵ A, that is guaranteed to 
contain x*, in  time. Moreover, the algorithm produces a point x that is guaranteed 
to be within distance ϵ of x*, in  time. 

 
Figure 2. Initial triangle of P. 

3.3. Non-uniform demand distribution 

Here we will explore the case where the demand distribution over P is non-uniform. Our 
discussion is restricted to the high level. We assume the existence of subroutines to perform 
computations such as H(x) in time  on convex polygons with n vertices. We will 
assume that the demand distribution is continuous and positive over the domain of P. It can be 
verified that Lemmas 2.1, 2.2, 3.1, 3.2, 3.3, and Corollary 3.5 hold true even in this case. 
However, Lemmas 2.3 and 3.4 do not work in general when area is replaced by non-uniform 



demand. (Likewise, the results on the pointwise convergence may not hold). Thus, we cannot 
begin with an Initial Triangle that is guaranteed to contain the Simpson point. We will begin 
instead with a Simpson_Polygon that is given by P itself, and use the results of Lemmas 3.2 and 
3.3 to produce one with no more than nine vertices. Then onwards, the algorithm will be 
executed similar to algorithm Find_Simpson_II. 

Algorithm Find_Simpson_ III(Non-Uniform Demand) Begin 1: i = 1. 
Set S (i) = P 2: while  do  {   2.1 (Vertex reduction loop)     If 
(n (i)>8, i.e., S (i) has more than 8 vertices)    {    2.1.1 Let .    
2.2.2 Find δ(i)-Core(S (i)). Choose x (i+1) as any point in the interior of this δ(i)-Core.    
2.1.2 Find H(x (i+1)).    2.1.3 Set     } 2.2 (Area reduction 
loop) If (n(i)≤8)    {    2.2.1 Choose x (i+1) as the centroid of S (i).    
2.2.2 Find H(x (i+1)).    2.2.3 Set     } 2.3 i=i+1 } End. 

To analyse the time complexity of algorithm Find_Simpson_III, assume that n≥10. Then for the 
initial few, say i ′, iterations of the while-do loop of step 2, only the Vertex Reduction Loop of 
step 2.1 will be executed, until . Hence, we will now estimate i ′ and the time taken by 
the algorithm in the first i ′ steps. To that end, note that by our choice of , 
and by Lemma 3.3, it is assured that for steps 1 through i ′, 

 

Given the above recurrence relation for i ′ such that , obviously . 
Hence, O(log n) iterations of the while-do loop will be necessary to obtain a Simpson polygon 
with at most nine vertices. Since each iteration will take  time, 
the total time spent by the algorithm in the first i ′steps is . 

However, at iteration , we are guaranteed that the Simpson_Polygon will have no more 
than nine vertices. From then on, the analysis of the algorithm will be identical to that of 
algorithm Find_Simpson_II, i.e., it will be assured that for every two consecutive iterations of the 
while-do loop of step 2 (which will take O(τ (n)) time), at least 4/9ths of the area of 
the Simpson polygon will be removed from future consideration. Thus, even if we conservatively 
assume that , the total amount of time taken by 
algorithm Find_Simpson_III to produce aSimpson polygon of area no more 
than  is . This leads to the following proposition. 



Proposition 3.10 

Given a convex polygon P with a non-uniform demand distribution, and an error 
bound ϵ, algorithm Find_Simpson_III produces a polygon inside P of area no more than ϵ A, 
that is guaranteed to contain x*, in  time. 

When the demand of the region , Lemma 4.3 in the next section easily 
combines with Proposition 3.10 to guarantee pointwise convergence of the algorithm, but the 
rate of convergence is not as explicit as one would like, because it depends on the size of the 
gap , which is not known in advance. 

One practical approach to handling non-uniform demand distributions in practical application is 
to approximate the non-uniform demand by a set of convex sub-polygons of P with uniform 
demands. The principal effect of this approximation will be to speed up the implementation 
algorithm Find_Simpson_III by reducing , which, in turn, will speed up the 
calculation of H(x). The improvement in computing time will depend on the number of such 
approximating sub-polygons; nonetheless, in practice, we would expect their numbers to not be 
excessive. As expected, such an approximation would result in an approximate, rather than, 
optimal, Simpson Point. Therefore, in practical applications, a decision maker can make trade-
offs between the accuracy desired and the number of approximating sub-polygons that would be 
needed. Finally, another advantage of this approximation is that it will not affect the convergence 
results in Section 4. 

4. Analysis of convergence 

In this section, we show that both our algorithm and Diaz and O'Rourke's 
original Find_Simpson_I algorithm have good convergence properties. We have already seen 
that the area of the search regions S (i) decreases geometrically. As Diaz and O'Rourke point out, 
however, the trouble is that the regions might be long and thin. They showed that for even the 
very simple case of a rectangle, the S (i) produced by their algorithm may converge to a line 
segment rather than a point. 

It turns out that their algorithm's convergence is better than they claimed. First, only in the 
case  can it occur that the S (i) does not converge to a point (Lemma 4.1). 
This simple case could be detected and dealt with separately. Second, even when the S (i) fails to 
converge, the sequence of best candidate points from among  converges to the 
Simpson point (Theorem 4.1). The same convergence properties hold for our enhanced 
algorithm. 

4.1. Notation 

P and S will denote convex polygons in the plane. As usual, the line segment with endpoints x, 
y is denoted  and the line containing it is denoted . If H is a hyperplane (line) the two 



halfspaces it defines are denoted H + and H−. A(S) as usual denotes the area of 
polygon S;  denotes the length of a line segment ;  denotes 
the diameter of polygon S. 

If voters are uniformly distributed on polygon P, recall that the largest customer demand that can 
be mustered against x∈P is the polygon H(x). Define 

 

Our algorithm (either Find_Simpson_I or Find_Simpson_II) seeks x*, the Simpson point of P, 
i.e., the point x∈P that minimizes α P (x). Our key definition follows. 

Definition 4.1 

Make the convention for any line G defining a side of polygon S⊆ P that the normal to G points 
away from S, i.e., . A convex polygon S is an α-Simpson polygon of convex polygon P if 
S⊆ P and each side of polygon S is defined by a line G such that . The 
definition applies to our algorithm in the following way. As usual let  be the sequence 
of points generated in the first i steps. Let 

 

Let (i) be the point at which the minimum is attained – thus . If H(x (j)) is defined 
by line G then by definition, 

 

Therefore, the algorithm produces a sequence of  -Simpson polygons S (i). It also produces a 
sequence  of associated candidate solutions. (The candidate point is contained in the 
polygon – actually it is on the boundary – because it cannot be cut off by another line G with 
smaller value . (Note that the sequence is not necessarily the sequence 
of candidates  rather it is the sequence of the best candidates found so far.) We 
summarize the preceding observations. 

Claim 4.1 

Find_Simpson_I and Find_Simpson_II each produces a sequence of α i − Simpson 
polygons i=1…, and candidate points  i contained in the respective polygons S (i), 
with . 



The rest of the analysis depends only on these properties, so we can drop the superscript i. 

4.2. Claims and lemmas 

Claim 4.2 

For any points x, y in convex polygon S s.t.  and any distinct points p, q in S such 
that  is perpendicular to , we have . In particular, for any 
point r∈S the distance from r to is at most . 

Proof 

 The quadrilateral  by convexity. It has an area . 

Claim 4.3 

Let x, y in convex polygon S be s.t. . Then there exists a 
side  of S contained in  such that  makes acute angle less 
than  with line . Symmetrically S has a different 

side  in  whose defining line makes acute angle less than θ with line . 

Proof 

Denote the extreme points of S as  travelling 
clockwise fromx. It is possible that m=1 (or later symmetrically n=1) in which case the 
side  makes angle 0 with itself. Otherwisem>1. Let x t be an x i at maximum distance to . 
By Claim 4.2 this distance is at most . Without any loss of generality, assume x t is 
closer to y than to x. Then the angle formed by points x t , x, y has tangent at most 

 

Finally, by convexity of S,  (informally, the point x t−1 lies ‘above’ the 
segment , hence the line defining side  makes at least as small an angle with  as 

possible. Repeat the argument to find a side ofS on the other side of . 

Claim 4.4 

Let F and G be lines defining edges of S as proved to exist in Claim 4.3. Let 
. Then 



 

Proof 

Let F (resp. G) intersect  at f (resp. G). Define triangle F Δ as follows: it has vertex f, and 
incident to f it has two sides, one lying in F and containing x t , the other lying in  and 
containing y, each of length D(P). Similarly define triangle G Δ. Visually there are two cases, 
depending on whether f and g are both on the same side of  or whether , but in either 
case . Hence, . Now , so 

 

The area of G Δ is bounded by the same quantity and the claimed bound follows. 

Lemma 4.1 

Let  and let S be an αˆ- Simpson polygon of P. Then 

 

Proof 

Let F and G be lines according to claim 4.3. As in Claim 4.4, let . By 
inclusion–exclusion, 

 

(The second inequality holds because F and G are lines defining sides of S, and S is an αˆ-
Simpson polygon of P). Combining this inequality with the upper bound on A(Q) from Claim 
4.4 gives the result. 

Lemma 4.1 tells us that the diameter of the inner (Simpson) polygon shrinks as its area shrinks, 
at rate square root of the reduction in area. However, Lemma 4.1 only guarantees this if the 
candidate value αˆ is bounded away from 1/2, and we do not know α* in advance. It is very easy 
to check for the case : determine the horizontal and vertical lines that bisect the area 



of P (any two non-parallel normal vectors will do). Let y be the intersection of these two lines. 
Then y is the only possible solution. In other words, either  or . 
Even when , Lemma 4.1 does not give a satisfactory convergence rate because α* may 
be very close to (1/2). We will need another lemma to get rid of the  term. 

Lemma 4.2 

Let S be any convex polygon in the plane. Let line H divide S into regions each with area at least 
t times the area of S, i.e., let H be such 
that  and  where 0<t≤(1/2). Then 

 

Proof 

Consider the set of lines parallel to H, which have non-empty intersection with S. Parameterize 
these lines by , where d H is the length of the projection of S onto the normal 
(line perpendicular to H). Note d H≤D(S). Define , the length of the line 
segment formed by line H x and S. Thus 

 

Let 0< <d H be the value for which H=H . Thus  and 

 

Observe that the function f(x) is concave. This follows from the convexity of S. We consider two 
cases. 

Case 1 

. In this case, by concavity of f, . Hence, 

 

Case 2 



. By concavity of f, . Hence, 

 

4.3. Convergence 

Theorem 4.1 

Let  and let S containing  be an αˆ-Simpson polygon of P. Then the 
distance between  and x*, the Simpson point of P, is at most 

 

Proof 

As given in the statement of the theorem,  and x* is the optimum point 
with . Consider the line segment . Let H 1 (resp. H 2) be the line 
perpendicular to T through  (resp. x*). Denote by H i +the halfspace not containing T, for i=1, 2. 
Then  and . Therefore, every 
line H perpendicularly intersecting T satisfies the condition of Lemma 4.2 with . By 
that lemma, for each such H, . Therefore, the area 
in P ‘between’ H 1 and H 2 satisfies 

 

Hence, 

 

From this and , we obtain 



 

Because in our successive relaxation algorithm S always contains both  and x*, we 
have L(T)≤D(S). Combining the square of this inequality with the inequality (4), and 
applying Lemma 4.1, we have, 

 

Theorem 4.1 tells us that any algorithm which generates a sequence of Simpson polygons, with 
area converging to 0, must also converge pointwise. To apply Theorem 4.1 to our algorithm, we 
can take β=(5/9) because the initial triangle provides a value no larger. Given that after 
2m iterations, , we conclude the following. 

Corollary 4.4 

Algorithm Find_Simpson_II pointwise converges at rate 

 

where m is the number of iterations. 

Similarly, Theorem 1 applies to the original Diaz-O'Rourke algorithm. We can take β=(5/9) 
again because of the centroid property stated earlier. 

Corollary 4.5 

Algorithm Find_Simpson_I pointwise converges at rate 

 

where m is the number of iterations. 

4.4. Extensions to the non-uniform case 



Some of the convergence properties extend readily to the case of non-uniform convergence. The 
main idea is to use some of the results about area unchanged and to alter some other results using 
bounds on voter population density. 

Assume that a continuous probability measure μ (x) is defined on P. By compactness of P, μ 
attains a maximum value . Retaining the definitions of length L() and area A(), define 

the demand of a region as . The definition of α P () changes to 

 

since V(P)=1. The definition of Simpson polygon changes to the following. 

Definition 4.2 

A convex polygon S is an α-Simpson polygon of convex polygon P if S⊆ P and each side of 
polygon S is defined by a line G such that . Claims 4.2, 4.3, and 4.4 are all in 
terms of A() and remain unchanged. Lemma 4.1 and its proof change as follows: 

Lemma 4.3 

Let  and let S be an αˆ-Simpson polygon of P. Then 

 

Proof 

Let F and G be lines according to Claim 3. As in Claim 4, let . By inclusion–
exclusion, 

 

(The second inequality holds because F and G are lines defining sides of S, and S is a αˆ-
Simpson polygon of P). On the other hand, . 

Combining these two inequalities with the upper bound on A(Q) from Claim 4.4 gives the result. 

If μ(x)>0, there are finite non-zero bounds on minimum density and ratio of densities as well. 
However, this does not seem to be sufficient to generalize Lemma 4.2 and Theorem 4.1. 

5. Conclusions and future research 



We have investigated the problem of finding the Simpson Point, also called the (1| 1)- Centroid, 
of a convex polygon where the demand is continuously distributed over it. We have presented an 
enhancement of the Diaz and O'Rourke's iterative search algorithm for finding the Center of 
Area that solves the version of the problem when the demand distribution is uniform, reducing 
the time requirements from  to . We have also proved 
pointwise convergence (at unchanged time order cost) for both our version and Diaz and 
O'Rourke's original algorithm. Last, we outlined a high level modification of our enhanced 
algorithm for the problem when the demand distribution is continuous but non-uniform, which 
runs in time  and pointwise converges if the value is bounded away 
from 1/2. 

One immediate avenue for future research is to address the problem of finding the Simpson Point 
of a uniformly distributed population on a non-convex polygon. This problem is asymptotically 
close to a special case of non-uniform continuous distributions on convex polygons. Although 
Diaz and O'Rourke have developed an algorithm to find the Center of Area of non-convex 
polygons, it is not known yet if that also resolves the Simpson Point problem in the uniform 
and/or the non-uniform demand distribution case. Another avenue is to develop representations 
of non-uniform distributions and associated low-level subroutines to calculate centroids, H(x), 
etc. Yet another open question is whether pointwise convergence, with a rate independent of the 
gap , holds in these more general settings. 
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