The goal of this short note is to observe that the singular part of the second bounded cohomology group of boundedly simple groups constructed in [3] is trivial. Recall that a group G is called m-boundedly simple if every element of G can be represented as a product of at most m conjugates of g or g^{-1} for any $g \in G$.

We recall that bounded cohomology $H^b_2(G)$ of a group G (we will be considering only cohomology with coefficients in the additive group of reals \mathbb{R} with trivial action, so in our notations for cohomology the coefficient module will be omitted) is defined using the complex

$$
\cdots \leftarrow C^{n+1}_b(G) \xleftarrow{\delta^n_b} C^n_b(G) \leftarrow \cdots \leftarrow C^2_b(G) \xleftarrow{\delta^1_b} C^1_b(G) \xrightarrow{\delta^0_b = 0} \mathbb{R} \xrightarrow{\delta^{-1}_b = 0} 0
$$

of bounded cochains $f: G \times \cdots \times G \to \mathbb{R}$, and $\delta^n_b = \delta^n|_{C^n_b(G)}$ is the bounded differential operator. Since $H^b_0(G) = \mathbb{R}$ and $H^b_1(G) = 0$ for any group G, investigation of bounded cohomology starts in dimension 2. One observes that $H^b_2(G)$ contains a subspace $H^b_{2,2}(G)$ (called the singular part of the second bounded cohomology group), which has a simple algebraic description in terms of quasicharacters and pseudocharacters, and the quotient space $H^b_2(G)/H^b_{2,2}(G)$ is canonically isomorphic to the bounded part of the ordinary cohomology group $H^2(G)$. See [2] for background and available results on bounded cohomology of groups.

A function $F: G \to \mathbb{R}$ is called a quasicharacter if there exists a constant $C_F \geq 0$ such that

$$
|F(xy) - F(x) - F(y)| \leq C_F \quad \text{for all } x, y \in G.
$$

A function $f: G \to \mathbb{R}$ is called a pseudocharacter if f is a quasicharacter and in addition

$$
f(g^n) = nf(g) \quad \text{for all } g \in G \text{ and } n \in \mathbb{Z}.
$$

We use the following notation: $X(G) =$ the space of additive characters $G \to \mathbb{R}$; $QX(G) =$ the space of quasicharacters; $PX(G) =$ the space of pseudocharacters; $B(G) =$ the space of bounded functions. Then

$$
H^b_{2,2}(G) \cong QX(G)/(X(G) \oplus B(G)) \cong PX(G)/X(G)
$$

as vector spaces (cf. [2, Proposition 3.2 and Theorem 3.5]). Special interest in $H^b_{2,2}$ is motivated in part by its connections with other structural properties of groups such as commutator length [1] and bounded generation [2].

Theorem 1 If G is a boundedly simple group, then $H^b_{2,2}(G) = 0$.
Proof. In view of (1) it suffices to show that the group \(G \) does not have any nontrivial pseudocharacters. First, we observe that every pseudocharacter is constant on conjugacy classes. Indeed, suppose that \(f \in PX(G) \) and \(|f(gxg^{-1}) - f(x)| = a > 0 \) for some \(x, g \in G \). Then on the one hand
\[
|f(gx^n g^{-1}) - f(x^n)| = |f(gx^n g^{-1}) - f(x^n) - f(g) - f(g^{-1})| \leq 2C_f
\]
is bounded independent of \(n \), on the other hand
\[
|f(gx^n g^{-1}) - f(x^n)| = n|f(gxg^{-1}) - f(x)| = na \to \infty \quad \text{as } n \to \infty,
\]
whence a contradiction.

Suppose that \(G \) is \(m \)-boundedly simple. Then every element \(x \) of \(G \) can be written in the form
\[
x = g_1 \cdots g_k
\]
where \(k \leq m \) and every \(g_i \) is a conjugate of either \(g \) or \(g^{-1} \) for some fixed \(g \in G \), whence \(|f(g_i)| = |f(g)| \) for all \(i = 1, \ldots, k \). Then
\[
|f(x)| = |f(g_1 \cdots g_k) - f(g_1) - \cdots - f(g_k) + f(g_1) + \cdots + f(g_k)| \\
\leq |f(g_1 \cdots g_k) - f(g_1) - \cdots - f(g_k)| + |f(g_1)| + \cdots + |f(g_k)| \\
\leq (m-1)C_f + m|f(g)|
\]
which implies that \(f \) is bounded on \(G \), hence must be trivial. \(\Box \)

References

Department of Mathematical Sciences
University of North Carolina at Greensboro
Greensboro NC 27402
E-mail: igor@uncg.edu