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Abstract: 

Many econometric problems can benefit from the application of parallel computing techniques, 
and recent advances in hardware and software have made such application feasible. There are a 
number of freely available software libraries that make it possible to write message passing 
parallel programs using personal computers or Unix workstations. This review discusses one of 
these—the LAM (Local Area Multiprocessor) implementation of MPI (the Message Passing 
Interface). 
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1 INTRODUCTION 

Parallel computing involves using multiple central processing units (CPUs) to solve one 
computational problem. For many years researchers have used parallel computing when working 
on computationally challenging problems such as nuclear weapons simulation. More recently, 
economists have applied parallel computing to large-scale matrix problems (Nagurney and 
Eydeland, 1992; Chabini et al.,1994), the solution of non-linear dynamic models 
(Coleman, 1993), and simulation (Liu and Rubin, 1996). Nagurney (1996) provides an overview 
of the application of parallel computing to economics. 

In addition to these applications, parallel computing can be used to reduce the time it takes to 
solve estimation problems in econometrics. While this review will not discuss the details of the 
estimation process, a simple illustration is helpful.1 Consider estimating the parameters of a 
maximum likelihood model with data on 4800 independent observations. Suppose that a four 
processor Unix workstation is available to solve the problem, and let Ts be the amount of time it 
takes to solve the problem in serial. If the data can be broken up into 1200 person subsets so that 
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all four processors are used to solve the problem at the same time, the time it takes to find a 
solution may be approximately one fourth of Ts. 

There are a number of ways to take advantage of parallelism. First, some Fortran compilers have 
a compilation switch that will automatically parallelize loops under certain conditions. Second, 
High Performance Fortran is an extension to the Fortran 90 specification that allows data to be 
distributed across multiple processors (Koelbel et al., 1994). Finally, message-passing software 
allows one to send messages from one processor (or computer) to another. As one might expect, 
there is a tradeoff between the cost and benefit of each of these options. For example, the cost of 
writing a message-passing parallel program is higher than the cost of flipping a switch at compile 
time, but the payoff can be much greater. 

Because of its greater potential and flexibility, this review focuses on installing and using a 
message-passing library. I provide a detailed discussion of one of the message-passing libraries: 
the LAM (Local Area Multicomputer) implementation of MPI (The Message Passing Interface). 
LAM was originally developed at the Ohio Supercomputing Center at Ohio State University and 
is now being developed at the Laboratory for Scientific Computing at the University of Notre 
Dame (http://www.mpi.nd.edu/lam/). It has been tested using single and multiprocessor PCs 
running Linux and OpenBSD and single and multiprocessor Unix workstations running AIX, 
HP-UX, IRIX, and Solaris.2 The next section provides some background on MPI including a 
simple program. Section 3 discusses how to obtain, configure, and install LAM. Section 4 details 
how to start LAM; how to compile, run, and debug parallel jobs; and how to terminate jobs and 
shut down LAM. Finally, Section 5 presents timings from a simple maximum likelihood problem 
that demonstrate the potential time saving from parallel computing. 

2 THE MESSAGE PASSING INTERFACE 

2.1 Background 

In 1992, a group of researchers from industry and academia formed the Message Passing 
Interface Forum (MPIF) with the intent of developing a standard for portable message-passing 
parallel programs. At the time the MPIF convened, there were a number of options for writing 
parallel computer code. Proprietary programming languages were available for specific parallel 
computers; Parallel Virtual Machine (PVM) was a widely used, freely available message-passing 
library; and there were a number of other somewhat less widely used free libraries.3 Each of 
these languages and libraries had similar functionality, but they were incompatible with each 
other, and a goal of the MPIF was to make it easier to write portable message-passing programs. 

The MPI-1 standard, available at http://www.mpi-forum.org/, was released by the MPIF in June 
1994 and essentially contains a superset of the features of the existing parallel libraries and 
languages. The MPIF continued to meet after the adoption of the MPI-1 standard, and the MPI-2 
standard was released in 1997. The new standard incorporates recent advances such as parallel 
I/O into the specification. Gropp, Lusk, and Skjellum (1999) provide a helpful introduction to 



MPI-1; Gropp, Lusk, and Thakur (1999) discuss the new features in MPI-2; and the MPI web 
site http://WWW.ERC.MsState.Edu/labs/hpcl/projects/mpi/ lists a number of other books and 
tutorials. 

There are a number of different implementations of MPI. Some of these are developed by 
computer manufacturers and are tuned for the company's specific hardware. Others are freely 
available and run on many different hardware platforms. Two of these are the MPICH 
implementation developed at Mississippi State University and Argonne National Laboratory 
(http://www.mcs.anl.gov/mpi/mpich/) and LAM. LAM was chosen for this review because it is 
straightforward to install and use, because it has a graphical user interface, XMPI, which is not 
discussed here because of space limitations, and because there is an active e-mail list where one 
can turn for help.4 

2.2 Example MPI Program 

Although the focus of the review is on the software used for parallel programming rather than the 
actual syntax of MPI itself, it may be helpful to begin by examining a simple message-passing 
MPI program. The example program uses the ‘master/slave’ model. In this model, the parallel 
job consists of multiple copies of the same executable. When the job is run, each copy is 
assigned a unique identification number (its ‘rank’), and the work within the program is divided 
up based on the rank of the process. In the following example, the process with my_rank=0 is the 
master, and the process with my_rank=1 is the slave. The slave passes the number 10 to the 
master, and the master prints the number. 

• program parallel 

• implicit none 

• include ‘mpif.h’ 

• integer ier, my_rank, status (MPI_STATUS_SIZE), np, number 

• call MPI _INIT (ier) 

• call MPI _COMM_SIZE(MPI_COMM_WORLD,np,ier) 

• call MPI_COMM_RANK(MPI_COMM_WORLD,my_rank,ier) 

• if (my_rank.eq. 0) then 

• call MPI_RECV(number,1,MPI_INTEGER,1,0,MPI_COMM_WORLD, 

• & status,ier) 

• write (6,*) ‘Number is’,number 



• else if (my_rank.eq. 1) then 

• call MPI_SEND (10, 1, MPI_INTEGER, 0, 0, MPI_COMM_WORLD, ier) 

• end if 

• call MPI_FINALIZE (ier) 

• stop 

• end 

The first three calls to MPI subroutines initialize MPI for this particular run, find out the number 
of copies of the program (given when the parallel job is started), and find out the rank of the 
process in the parallel job, respectively. If the rank is 1, the process calls MPI_SEND to send a 
message to the master. The first four arguments are what is to be sent (in this case the number 
10, but it could also be an array), the number of elements (1), the MPI data-type 
(MPI_INTEGER), the rank of the receiving process (0 in this case since the number is sent to the 
master), and three other arguments which are not important in the present discussion. 

The master calls the subroutine MPI_RECV to receive the message. It stores the message in a 
buffer called number. The second argument is again the number of elements (1); the third is the 
data-type (MPI_INTEGER); and the fourth argument is the rank of the sending process (1). The 
last four arguments are not important in the present discussion. After receiving the message, the 
master prints the value of number. Finally, after the work is finished, both the master and the 
slave call MPI_FINALIZE to ‘tidy up’. 

Perhaps surprisingly, these six subroutine calls are all of the MPI that one needs to know in order 
to write message-passing parallel programs to solve maximum likelihood problems. 

3 OBTAINING AND INSTALLING LAM 

3.1 Obtaining the Software 

LAM is available at no cost from http://www.mpi.nd.edu/lam/download/. At the present time, the 
latest stable version of LAM is 6.5. The source code is available in compressed tar files. If 
gunzip is available, download the file lam-6.5.tar.gz to, for example, /usr/local/src. The 
commands gunzip lam-6.5.tar.gz and tar xvf lam-6.5.tar create a source tree at /usr/local/src/lam-
6.5. Basic installation instructions are available in LAM Team (2001a) and in the README, 
INSTALL, and RELEASE_NOTES files in the source directory. 

3.2 Building LAM 



A configure script must be run to determine machine-specific settings and to ensure that the 
necessary system files and tools are available. To use the default configuration values, change 
directories to /usr/local/src/lam-6.5 and type./configure. 

There are a number of reasons to choose non-default configure script options. For example, by 
default LAM uses rsh to remotely access other computers even though rsh is insecure. This 
option (and many more) can be changed on the command line. For example, the appropriate 
command to configure LAM using ssh for remote access is ./configure --with-rsh=“ssh -x”. 

After the configure script runs successfully, installing LAM is straightforward. While in the 
directory /usr/local/src/lam-6.5, type make at the command line to compile the source code. 
Assuming there are no errors, typing make install copies the executables and other supporting 
files to the installation directory (by default /usr/local/lam). 

If there are error messages when the configure script runs (or when compiling LAM or running 
parallel programs), there are a number of places to obtain help. The LAM FAQ (LAM 
Team, 2001b) has some discussion of configuration and is located 
athttp://www.mpi.nd.edu/lam/faq/. If the FAQ is not helpful, one can search the LAM mail 
archive (http://www.mpi.nd.edu/ MailArchives/lam/). Failing that, submitting a question to the e-
mail list will likely result in an answer from one of the developers or from another user. 

3.3 Considerations for Network Installation 

While LAM can run parallel jobs on a single multiprocessor computer, it is also frequently used 
to create a parallel computer out of a cluster of networked workstations or PCs.5 Installing LAM 
on a cluster is no harder than installing it on a single machine. However, it is important to be 
aware of a few issues before beginning. Most importantly, using LAM on a cluster is easiest if 
one of the machines is an NFS server from which home directories will be exported to other 
machines. If the home directories are not NFS-mounted, then the executable may have to be 
manually copied to each machine. Ideally, the installation directory for LAM will also be NFS 
exported. If this is not possible, it is best if the installation directory is the same on each of the 
machines. Finally, as noted above, ssh may be preferred over rsh for security reasons. 

4 RUNNING PARALLEL PROGRAMS 

There are three steps involved in running a parallel job: ‘booting’ LAM, compiling the Fortran or 
C code, and submitting the executable. Before any of these steps can be completed, however, the 
directory where the LAM executables are located should be added to the user's path. The default 
location for the executables is /usr/local/lam/bin. 

4.1 Booting LAM 

http://onlinelibrary.wiley.com/doi/10.1002/jae.595/full#note5


LAM uses something called a boot schema (or hosts file) to define the machines that make up 
the parallel computer. The default boot schema is called lam-bhost.def, and it is located in 
/usr/local/lam/etc. 

The default boot schema contains only the local machine. While this is appropriate if LAM will 
be run on a single multiprocessor, it is not correct if the parallel computer will consist of a cluster 
of machines. To understand what a more typical boot schema file looks like, suppose that the 
multicomputer consists of three machines named itchy, scratchy, and krusty. In this case the boot 
schema would have three lines: 

• itchy cpu=2 

• scratchy 

• krusty 

where the option cpu=2 indicates that itchy has two processors. It is also acceptable to include a 
separate line for each processor rather than the number of processors (i.e. the hosts file could 
have two lines for itchy). 

The command lamboot boots the computer described in the default boot schema. The option −v 
provides more verbose output, and if there is a problem booting, the option −d provides detailed 
debugging output. A non-default hosts file may be specified by including the file name on the 
command line: lamboot ./config1 boots LAM using the boot schema config1 located in the 
current directory. 

4.2 Compiling Programs 

Compiling a Fortran program to use LAM is straightforward. LAM creates compiler ‘wrappers’ 
to compile Fortran, C, and C++ programs called mpif77, mpicc, and mpiCC, respectively, that 
automatically link the necessary LAM libraries. The wrapper compilers accept the same flags as 
the underlying Fortran, C, or C++ compilers. 

Assuming the example program above is called parallel.f, the command mpif77 parallel.f will 
create an executable called a.out from the Fortran source file parallel.f. 

4.3 Running a Parallel Job 

The command to run a job is mpirun. The syntax of mpirun makes it straightforward to run a job 
on all (or a subset) of the available nodes or CPUs, but also allows for complex jobs. The LAM 
FAQ contains discussion of the syntax used to run more complex jobs. In some cases these jobs 
require an ‘application schema’ which is similar to a boot schema and defines which 
executable(s) run on which node(s). 



In the most common case, the parallel job consists of multiple copies of the same executable. 
The syntax for running R copies of the executable a.out is mpirun -np R a.out. The processes are 
assigned to computers or processors according to the ordering in the hosts file. For example, 
given the form of the hosts file above, mpirun -np 2 a.out runs a parallel job with two processes 
on itchy while mpirun -np 3 a.out runs a parallel job with two processes on itchy and one on 
scratchy. If the hosts file did not indicate that itchy is a multiprocessor, the latter command 
would run a parallel job with one process on each of the three machines. Finally, Version 6.5 
introduces a shortcut for running jobs on multiprocessor computers. The command mpirun C 
a.out runs the executable a.out on all available processors. Thus, given the hosts file above, 
mpirun C a.out runs four copies of the executable a.out—two on itchy and one on each of 
scratchy and krusty. 

4.4 Aborting Jobs and Stopping LAM 

In the event that a job must be terminated (or to ‘clean up’ after a job that has died), the 
command lamclean can be used to terminate all user processes related to the job and to remove 
any temporary files that may exist. LAM itself is stopped by using the command lamhalt. 

4.5 Debugging 

Until recently, debugging a program in LAM meant inserting print statements liberally 
throughout the program because it was not possible to run a parallel job under a debugger. 
Naturally this added greatly to the difficulty of debugging complicated programs. Beginning 
with Version 6.3.2, it is now possible to use mpirun to launch non-MPI programs such as 
debuggers. 

To debug a parallel program, a short, executable script must be created. This script will be run by 
mpirun, and it will launch the debugger. Consider the following script (adapted from the LAM 
FAQ): 

• # !/bin/csh -f 

• xterm -e dbx $ * 

• exit 0 

The first line identifies the script as a csh script; the second line opens an xterm running dbx; and 
the third is the exit code. 

The syntax for mpirun looks a little different when running the debugger. Let the script be called 
run_dbx.csh. The syntax to debug the executable a.out on 2 nodes is 

• mpirun -np 2 -x DISPLAY run_dbx.csh a.out 



where -x DISPLAY is the syntax to export the environment variable DISPLAY to the remote 
nodes before executing the program. This mpirun command runs two copies of run_dbx.csh each 
of which opens an X-terminal running dbx to debug the executable a.out. 

It is best to limit the number of processes to two when debugging. It becomes a challenge to keep 
track of (and switch among) three or more separate windows, and two processes are usually all 
that is necessary to debug message-passing problems. 

Debugging a parallel program is similar to debugging a serial program. However, there are a 
number of places where the processes must synchronize before any of them can proceed. For 
example, each process must call MPI_INIT before any of them can execute code beyond 
MPI_INIT. A typical strategy is to run the above script with two debugging windows and step 
through the initial calls to MPI_INIT, MPI_COMM_WORLD, and MPI_COMM_RANK in each 
debugging window in order to find out each process's rank. Once each rank is known then 
breakpoints can be set as usual. 

5 EXAMPLE 

A simple example demonstrates the time savings that are possible when using MPI. Consider 
estimating the parameters of a five-choice multinomial logit model using maximum likelihood. 
For each choice there are five explanatory variables, and there are 4800 independent 
observations.6 

The test platform is a Sun E420R server configured with four 450 Mhz processors and four 
gigabytes of RAM and running Solaris 8 and LAM 6.3.3 (a beta version of 6.5). LAM is 
compiled with gcc 2.95.2 and uses the sysv rpi for communication, and the Sun Workshop 5.0 
Fortran compiler is used to compile the estimation code with the compiler options -fast -
xtarget=ultra2. Because the parameters can be estimated in serial in only a few seconds on this 
machine, this problem does not require parallel computing. To make the ratio of computational 
work to message passing more similar to what one would expect from a more realistic 
application, the estimation program is modified so that the choice probability for each person is 
computed 10,000 times. 

Table I presents the run times for a number of different estimation scenarios. The first row of 
Table I shows that it takes 49 minutes and 48 seconds to estimate the (altered) model in serial. 
This longer runtime better approximates the more realistic case where message passing will be 
dominated by the CPU time it takes to compute likelihood values or moment conditions. 

Table I. Multinomial logit estimation times 

Number of processors Time Speedup 

1 49 : 48 — 



4a 46 : 52 — 

2 22 : 58 2.17 

3 15 : 21 3.24 

4 11 : 38 4.28 

a Parallel compiler option turned on. 

The Sun Fortran compiler has the ability to parallelize loops automatically. To provide some 
insight into the effectiveness of such a strategy, the code was recompiled with the -parallel 
option (and the environment variable PARALLEL was set equal to 4). The second row shows 
that this change results in a small gain in performance of about 3 minutes.7 

The remaining lines show the run times for two, three, and four processors using MPI and LAM. 
In order to estimate the parameters in parallel, the estimation program must be ported to MPI. 
The pseudo-code listed below shows the basic strategy for performing maximum likelihood in 
parallel.8 

• C ------------- Parallel Pseudo-code ----------------- 

• if (my_rank = 0 ) then 

• do i = 1, number of slaves 

• send subset of data to slave 

• update num_sent 

• end do 

• do while (num_received < 4800) 

• receive likelihood contribution from a slave 

• update likelihood function and derivatives 

• update num_received 

• if (num_sent < 4800) then 

• send subset of data to the slave that 

• & just sent likelihood value 

• update num_sent 



• endif 

• end do 

• update parameters 

• else 

• 100 receive subset of data from master 

• compute likelihood function and derivatives 

• send results to master 

• goto 100 

• endif 

The master initially sends subsets of the data array to each of the slaves. As it does this, it 
updates num_sent, a counter of the number of observations that have been sent to the slaves. It 
then waits for the likelihood contribution and derivatives from each of the slaves. When the 
master receives this information, it updates the global likelihood function, derivatives, 
and num_received, which indicates the number of observations for which a likelihood 
contribution has been received. If there are more observations to be sent, it sends them to the 
slave that sent the most recent information. Once all of the observations have been sent and all 
the likelihood contributions have been received, the parameters are updated. Although not shown 
here, the process is repeated if the function has not converged and stops if it has. The slaves 
simply receive the subset of the data array from the master, compute the appropriate likelihood 
function and derivatives, send the results to the master, and wait for more data. 

The third line in Table I shows that when two processors are used with MPI, the run time falls to 
22 : 58. Thus, using two processors is actually slightly more than twice as fast as using one 
processor. A measure of the scalability of a particular application is its ‘Speedup’. Speedup is 
defined as the serial time divided by the parallel time, and speedups for two, three, and four 
processors are given in the third column of Table I. While one would typically expect the 
speedup to be bounded above by the number of processors, Table I shows that the speedup for 
two processors is greater than two. The greater than linear speedup in the application is most 
likely caused by better cache and memory usage patterns when the application is spread across 
multiple processors.9 

Adding the third and fourth processors continues to dramatically reduce run time. In fact, it is 
possible to solve the problem over four times as fast using four processors. These improvements 
are specific to the problem at hand, but it is reasonable to expect that a highly parallel application 
(such as maximum likelihood or method of moments) that is CPU bound will experience an 
almost linear speedup on a multiprocessor with no other users. Whether similar speedups can be 



achieved on a cluster depends on the speed of the networking connections and on the relative 
speed of the machines in the cluster. 

6 CONCLUSION 

Parallel computing can be used to achieve significant reductions in the estimation time for 
maximum likelihood or method of moments problems in econometrics. The Message Passing 
Interface is the standard message-passing library in use today, and LAM is a freely available 
implementation of MPI that allows one to use single or multiprocessor PCs or Unix workstations 
to create a powerful ‘multicomputer’. This review has discussed installing and using LAM and 
has shown that significant reductions in run time are possible when running estimation code in 
parallel. 
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• 1 Pseudo-code for estimating the parameters of this model and timings using one, two, 
three, and four processors are presented in Section 5. Swann (‘Maximum likelihood 
estimation using parallel computing: an introduction to MPI’, 2000, unpublished 
manuscript) provides a more detailed discussion. 

• 2 A complete list of supported operating systems can be found 
at http://www.mpi.nd.edu/lam/6.5/support.php3 

• 3 The PVM homepage is located at http://www.epm.ornl.gov/pvm/, and a good summary 
of PVM can be found in Geist et al. (1994). 

• 4 While the MPI standard specifies the subroutine calls and the syntax of each call, it 
leaves the actual method of implementing the functionality up to each developer. 
Consequently, there can be performance differences among implementations, and it may 
be beneficial to compare performance under different implementations. 

• 5 Sterling et al. (1999) provide an excellent overview of how to build PC clusters for 
parallel computing. 

• 6 See Swann (unpublished manuscript, 2000) for information about the data and this 
multinomial logit problem. 

• 7 The compiler option -loopinfo can be used to determine which loops were parallelized 
and which were not (and why). Using this option shows that very few of the loops were 
actually parallelized because of compiler concern about dependencies in many loops. 

• 8 See Swann (unpublished manuscript, 2000) for a more detailed discussion. 

• 9 My thanks to Jeffrey Squyres of the LAM Team for suggesting this explanation 

 

 


