HUREWICZ THEOREM FOR EXTENSION DIMENSION

N. BRODSKY AND A. CHIGOGIDZE

Abstract. We prove a new selection theorem for multivalued mappings of C-space. Using this theorem we prove extension dimensional version of Hurewicz theorem for a closed mapping \(f : X \to Y \) of \(k \)-space \(X \) onto para-compact C-space \(Y \): if for finite CW-complex \(M \) we have \(e\text{-dim}Y \leq \lceil M \rceil \) and for every point \(y \in Y \) and every compactum \(Z \) with \(e\text{-dim}Z \leq \lceil M \rceil \) we have \(e\text{-dim}(f^{-1}(y) \times Z) \leq \lceil L \rceil \) for some CW-complex \(L \), then \(e\text{-dim}X \leq \lceil L \rceil \).

1. Introduction

The classical Hurewicz theorem states that for a mapping of finite-dimensional compacta \(f : X \to Y \) we have

\[
\text{dim}X \leq \text{dim}Y + \text{dim}f, \text{ where } \text{dim}f = \max\{\text{dim}(f^{-1}(y)) \mid y \in Y\}.
\]

There are several approaches to extension dimensional generalization of Hurewicz theorem \([3],[1],[7],[8],[9]\).

Using the idea from \([3]\) we improve Theorem 7.6 from \([1]\):

Theorem 3.1. Let \(f : X \to Y \) be a closed mapping of a \(k \)-space \(X \) onto para-compact C-space \(Y \). Suppose that \(e\text{-dim}Y \leq \lceil M \rceil \) for a finite CW-complex \(M \). If for every point \(y \in Y \) and for every compactum \(Z \) with \(e\text{-dim}Z \leq \lceil M \rceil \) we have \(e\text{-dim}(f^{-1}(y) \times Z) \leq \lceil L \rceil \) for some CW-complex \(L \), then \(e\text{-dim}X \leq \lceil L \rceil \).

The notion of extension dimension was introduced by Dranishnikov \([4]\): for a CW-complex \(L \) a space \(X \) is said to have extension dimension \(\leq \lceil L \rceil \) (notation: \(e\text{-dim}X \leq \lceil L \rceil \)) if any mapping of its closed subspace \(A \subset X \) into \(L \) admits an extension to the whole space \(X \).

To prove Theorem 3.1 we need an extension dimensional version of Uspenskij’s selection theorem \([11]\). In section \([3]\) we prove Theorem 2.8 on selections of multivalued mappings of C-space. Then Theorem 2.9 helps us to prove Theorem 2.9 — a needed version of Uspenskij’s theorem.

Filtrations of multivalued maps are proved to be very useful for construction of continuous selections \([10],[1]\). And we state our selection theorems in terms

1991 Mathematics Subject Classification. Primary: 55M10; Secondary: 54C65, 54F45.

Key words and phrases. Extension dimension; C-space; continuous selection.

The second author was partially supported by NSERC research grant.
of filtrations. Note that Valov \cite{12} used filtrations to prove a selection theorem for mappings of finite C-spaces.

Let us recall some definitions and introduce our notations. A space X is called a \textit{k-space} if $U \subset X$ is open in X whenever $U \cap C$ is relatively open in C for every compact subset C of X. The \textit{graph} of a multivalued mapping $F: X \to Y$ is the subset $\Gamma_F = \{(x, y) \in X \times Y : y \in F(x)\}$ of the product $X \times Y$.

We denote by $\text{cov}X$ the collection of all coverings of the space X. For a cover ω of a space X and for a subset $A \subseteq X$ let $\text{St}(A, \omega)$ denote the star of the set A with respect to ω. We say that a subset $A \subset X$ refines a cover $\omega \in \text{cov}X$ if A is contained in some element of ω. A covering $\omega' \in \text{cov}X$ strongly star refines a covering $\omega \in \text{cov}X$ if for any element $W \in \omega'$ the set $\text{St}(W, \omega')$ refines ω.

\textbf{Definition 1.1.} A topological space X is called \textit{C-space} if for each sequence $\{\omega_i\}_{i \geq 1}$ of open covers of X, there is an open cover Σ of X of the form $\bigcup_{i=1}^{\infty} \sigma_i$ such that for each $i \geq 1$, σ_i is a pairwise disjoint collection which refines ω_i.

If the space X is paracompact, we can choose the cover Σ to be locally finite and every collection σ_i to be discrete.

\textbf{Definition 1.2.} A multivalued mapping $F: X \to Y$ is said to be \textit{strongly lower semicontinuous} (briefly, strongly l.s.c.) if for any point $x \in X$ and any compact set $K \subset F(x)$ there exists a neighborhood V of x such that $K \subset F(z)$ for every $z \in V$.

\textbf{Definition 1.3.} Let L be a CW-complex. A pair of spaces $V \subset U$ is said to be $[L]$-\textit{connected} (resp., $[L]_c$-\textit{connected}) if for every paracompact space X (resp., compact metric space X) of extension dimension $\text{e-dim}X \leq [L]$ and for every closed subspace $A \subset X$ any mapping of A into V can be extended to a mapping of X into U.

An increasing sequence of subspaces $Z_0 \subset Z_1 \subset \cdots \subset Z$ is called a \textit{filtration} of space Z. A sequence of multivalued mappings $\{F_k : X \to Y\}$ is called a \textit{filtration of multivalued mapping} $F : X \to Y$ if $\{F_k(x)\}$ is a filtration of $F(x)$ for any $x \in X$.

\textbf{Definition 1.4.} A filtration of multivalued mappings $\{G_i : X \to Y\}$ is said to be \textit{fiberwise $[L]_c$-connected} if for any point $x \in X$ and any i the pair $G_i(x) \subset G_{i+1}(x)$ is $[L]_c$-connected.

\section{Selection theorems}

The following notion of stably $[L]$-connected filtration of multivalued mappings provides a key property of the filtration for our construction of continuous selections.

\footnote{We consider only increasing filtrations indexed by a segment of the integral series.}
Definition 2.1. A pair $F \subset H$ of multivalued mappings from X to Y is called **stably $[L]$-connected** if every point $x \in X$ has a neighborhood O_x such that the pair $F(O_x) \subset \cap_{z \in O_x} H(z)$ is $[L]$-connected.

We say that the pair $F \subset H$ is called **stably $[L]$-connected with respect to a covering $\omega \in \text{cov}X$**, if for any $W \in \omega$ the pair $F(W) \subset \cap_{x \in W} H(x)$ is $[L]$-connected.

A filtration $\{F_i\}$ of multivalued mappings is called **stably $[L]$-connected** if every pair $F_i \subset F_{i+1}$ is stably $[L]$-connected.

Clearly, any stably $[L]$-connected pair of multivalued maps of a space X is stably $[L]$-connected with respect to some covering of X.

We denote by Q the Hilbert cube. We identify a space Y with the subspace $Y \times \{0\}$ of the product $Y \times Q$ and denote by pr_Y the projection of $Y \times Q$ onto Y.

Definition 2.2. For a subspace $Z \subset Y \times Q$ we say that Y **projectively contains** Z. We say that a multivalued mapping $F: X \to Y$ **projectively contains** a multivalued mapping $G: X \to Y \times Q$ if for any point $x \in X$ the set $\text{pr}_Y \circ G(x)$ is contained in $F(x)$.

Lemma 2.3. Let L be a finite CW-complex. If a topological space Y contains a compactum K of extension dimension $\text{e-dim} K \leq [L]$ such that the pair $K \subset Y$ is $[L]_c$-connected, then Y projectively contains a compactum K' of extension dimension $\text{e-dim} K' \leq [L]$ such that K lies in K' and the pair $K \subset K'$ is $[L]$-connected.

Proof. There exists $AE([L])$-compactum K' of extension dimension $\text{e-dim} K' \leq [L]$ containing the given compactum K [4]. Clearly, the pair $K \subset K'$ is $[L]$-connected. Since $\text{e-dim} K' \leq [L]$, there exists a mapping $p: K' \to Y$ extending the inclusion of K into Y.

It is easy to see that there exists a mapping $q: K' \to Q$ such that $q^{-1}(0) = K$ and q is an embedding on $K' \setminus K$. Now define an embedding $j: K' \to Y \times Q$ as $j = p \times q$. Since $q^{-1}(0) = K$, the mapping j coincide with p on K which is inclusion on K.

Definition 2.4. We say that a filtration $F_0 \subset F_1 \subset \ldots$ of multivalued mappings from X to Y **projectively contains** a filtration $G_0 \subset G_1 \subset \ldots$ of multivalued mappings from X to $Y \times Q$ if for any point $x \in X$ and any n the set $\text{pr}_Y \circ G_n(x)$ is contained in $F_n(x)$.

Theorem 2.5. For a finite CW-complex L any fiberwise $[L]_c$-connected filtration of strongly l.s.c. multivalued mappings of paracompact space X to a topological space Y projectively contains stably $[L]$-connected filtration of compactvalued mappings.
Proof. For a given fiberwise \([L]_c\)-connected filtration \(F_0 \subset F_1 \subset \ldots\) of strongly l.s.c. multivalued mappings we construct stably \([L]\)-connected filtration \(G_0 \subset G_1 \subset \ldots\) of compact-valued mappings \(G_n : X \to Y \times Q^n\) as follows: successively for every \(n \geq 0\) we construct a covering \(\omega_n = \{W^n_\lambda\}_{\lambda \in \Lambda_n} \in \text{cov}X\) and a family of subcompacta \(\{K^n_\lambda\}_{\lambda \in \Lambda_n}\) of \(Y \times Q^n\), and define the mapping \(G_n\) by the formula

\[
G_n(x) = \bigcup \{K^n_\lambda \mid x \in W^n_\lambda\}.
\]

First, we construct \(G_0\), i.e. the covering \(\omega_0\) and the family \(\{K^0_\lambda\}_{\lambda \in \Lambda_0}\). Since \(F_0\) is strongly l.s.c., there exists a locally finite open covering \(\omega_{-1} = \{W^{-1}_\lambda\}_{\lambda \in \Lambda_{-1}} \in \text{cov}X\) and a family \(\{M^{-1}_\lambda\}_{\lambda \in \Lambda_{-1}}\) of points in \(Y\) such that \(W^{-1}_\lambda \times M^{-1}_\lambda \subset \Gamma_{F_0}\) for any \(\lambda \in \Lambda_{-1}\). Denote by \(H_0\) a multivalued mapping taking a point \(x \in X\) to the set \(H_0(x) = \bigcup \{M^{-1}_\lambda \mid x \in W^{-1}_\lambda\}\). Note that \(H_0(x)\) is contained in \(F_0(x)\) and consists of finitely many points. By Lemma 2.3 for any \(x \in X\) there exists a compactum \(\hat{H}_0(x) \subset F_1(x) \times Q\) of extension dimension \(\text{e-dim}\hat{H}_0(x) \leq [L]\) such that the pair \(H_0(x) \subset \hat{H}_0(x)\) is \([L]\)-connected. Since \(F_1\) is strongly l.s.c., any point \(x \in X\) has a neighborhood \(O_0(x)\) such that the product \(O_0(x) \times \hat{H}_0(x)\) is contained in \(\Gamma_{F_1} \times Q\). Since \(X\) is paracompact, we can choose neighborhoods \(O_0(x)\) in such a way that the covering \(O_0 = \{O_0(x)\}_{x \in X}\) strongly star refines \(\omega_{-1}\). Let \(\omega_0 = \{W^0_\lambda\}_{\lambda \in \Lambda_0}\) be a locally finite open cover of \(X\) refining \(O_0\). For every \(\lambda \in \Lambda_0\) we fix a point \(x_\lambda\) such that \(W^0_\lambda \subset O_0(x_\lambda)\) and put \(M^0_\lambda = H_0(x_\lambda)\). For every \(\lambda \in \Lambda_0\) we fix \(\alpha(\lambda) \in \Lambda_{-1}\) such that \(\text{St}(W^0_\lambda, O_0) \subset W^{\alpha(\lambda)}_{\lambda}\) and put \(K^0_\lambda = M^{\alpha(\lambda)}_\lambda\).

Inductive step of our construction is similar to the first step. Suppose that a covering \(\omega_{n-1} = \{W^{n-1}_\lambda\}_{\lambda \in \Lambda_{n-1}} \in \text{cov}X\) and a family \(\{M^{n-1}_\lambda\}_{\lambda \in \Lambda_{n-1}}\) of compacta in \(Y \times Q^{n-1}\) are already constructed such that \(\text{e-dim}M^{n-1}_\lambda \leq [L]\) and the product \(W^{n-1}_\lambda \times M^{n-1}_\lambda\) is contained in \(\Gamma_{F_{n-1}} \times Q^n\) for any \(\lambda \in \Lambda_{n-1}\). Denote by \(H_n\) a multivalued mapping taking a point \(x \in X\) to the compactum \(H_n(x) = \bigcup \{M^{n-1}_\lambda \mid x \in W^{n-1}_\lambda\}\). Note that \(H_n(x)\) is contained in \(F_n(x) \times Q^n\) and has extension dimension \(\text{e-dim}H_n(x) \leq [L]\). By Lemma 2.3 for any \(x \in X\) there exists a compactum \(\hat{H}_n(x) \subset F_{n+1}(x) \times Q^{n+1}\) of extension dimension \(\text{e-dim}\hat{H}_n(x) \leq [L]\) such that the pair \(H_n(x) \subset \hat{H}_n(x)\) is \([L]\)-connected. Since \(F_{n+1}\) is strongly l.s.c., any point \(x \in X\) has a neighborhood \(O_n(x)\) such that the product \(O_n(x) \times \hat{H}_n(x)\) is contained in \(\Gamma_{F_{n+1}} \times Q^{n+1}\). Since \(X\) is paracompact, we can choose neighborhoods \(O_n(x)\) in such a way that the covering \(O_n = \{O_n(x)\}_{x \in X}\) strongly star refines \(\omega_{n-1}\). Let \(\omega_n = \{W^n_\lambda\}_{\lambda \in \Lambda_n}\) be a locally finite open cover of \(X\) refining \(O_n\). For every \(\lambda \in \Lambda_n\) we fix \(x_\lambda\) such that \(W^n_\lambda \subset O_n(x_\lambda)\) and put \(M^n_\lambda = \hat{H}_n(x_\lambda)\). For every \(\lambda \in \Lambda_n\) we fix \(\alpha(\lambda) \in \Lambda_{n-1}\) such that \(\text{St}(W^n_\lambda, O_n) \subset W^{\alpha(\lambda)}_{\lambda}\) and put \(K^n_\lambda = M^{\alpha(\lambda)}_\lambda\).

To show that the pair \(G_{n+1} \subset G_n\) is stably \([L]\)-connected, we prove that the pair \(G_{n+1}(\{W^n_\lambda\} \subset \bigcap \{G_n(x) \mid x \in W^n_\lambda\}\) is \([L]\)-connected for any \(W^n_\lambda \in \omega_n\). By the construction of \(G_n\), the set \(K^n_\lambda\) is contained in \(\bigcap \{G_n(x) \mid x \in W^n_\lambda\}\). We
know that the pair \(H_{n-1}(x_{\alpha(\lambda)}) \subset \hat{H}_{n-1}(x_{\alpha(\lambda)}) = M^{n-1}_{\alpha(\lambda)} = K^n_\lambda \) is \([L]\)-connected. Therefore it is enough to show the following inclusion:

\[
G_{n-1}(W^n_{\lambda}) = \bigcup \{ K^{n-1}_\beta \mid W^n_\lambda \cap W^{\beta n-1}_\beta \neq \emptyset \} \subset \bigcup \{ M^{n-2}_\nu \mid x_{\alpha(\lambda)} \in W^{\nu n-2}_\nu \} = H_{n-1}(x_{\alpha(\lambda)})
\]

which follows from the fact that \(W^n_\lambda \cap W^{\beta n-1}_\beta \neq \emptyset \) implies \(x_{\alpha(\lambda)} \in W^{\nu n-2}_\nu \) (note that \(M^{n-2}_{\alpha(\beta)} = K^{n-1}_\lambda \)). By the choice of \(\alpha(\lambda) \) we have \(W^n_\lambda \subset O_{n-1}(x_{\alpha(\lambda)}) \). Then \(W^n_\lambda \cap W^{\beta n-1}_\beta \neq \emptyset \) implies \(O_{n-1}(x_{\alpha(\lambda)}) \cap W^{\nu n-1}_\nu \neq \emptyset \) and \(x_{\alpha(\lambda)} \in O_{n-1}(x_{\alpha(\lambda)}) \subset St(W^{\nu n-1}_\nu, O_{n-1}) \subset W^{n-2}_\alpha \).

Definition 2.6. For a space \(Z \) a pair of spaces \(V \subset U \) is said to be **\(Z \)-connected** if for every closed subspace \(A \subset Z \) any mapping of \(A \) into \(V \) can be extended to a mapping of \(Z \) into \(U \).

Definition 2.7. A pair \(F \subset H \) of multivalued mappings from \(X \) to \(Y \) is called **\(stably Z \)-connected** if every point \(x \in X \) has a neighborhood \(O_x \) such that the pair \(F(O_x) \subset \cap_{z \in O_x} H(z) \) is \(Z \)-connected.

We say that the pair \(F \subset H \) is called **\(stably Z \)-connected with respect to a covering** \(\omega \in \text{cov} X \), if for any \(W \in \omega \) the pair \(F(W) \subset \cap_{x \in W} H(x) \) is \(Z \)-connected.

An filtration \(\{ F_i \} \) of multivalued mappings is called **\(stably Z \)-connected** if every pair \(F_i \subset F_{i+1} \) is stably \(Z \)-connected.

Theorem 2.8. Let \(F: X \to Y \) be a multivalued mapping of paracompact \(C \)-space \(X \) to a topological space \(Y \). If \(F \) admits infinite \(stably X \)-connected filtration of multivalued mappings, then \(F \) has a singlevalued continuous selection.

Proof. Let \(\{ F_i \}_{i=1}^{\infty} \) be the given filtration of \(F \). Let \(\{ \omega_i \}_{i=1}^{\infty} \) be a sequence of coverings of \(X \) such that \(\omega_{i+1} \) refines \(\omega_i \) and the pair \(F_i \subset F_{i+1} \) is stably \(X \)-connected with respect to the covering \(\omega_i \). Since \(X \) is paracompact \(C \)-space, there exists a locally finite closed cover \(\Sigma \) of \(X \) of the form \(\Sigma = \cup_{i=0}^\infty \sigma_i \) such that \(\sigma_i \) is discrete collection refining \(\omega_i \). Define \(\Sigma_n = \cup_{i=0}^n \sigma_i \). We will construct a continuous selection \(f \) of \(F \) extending it successively over the sets \(\Sigma_n \).

First, we construct \(f_0: \Sigma_0 \to Y \). We define \(f_0 \) separately on every element of \(\sigma_0 \): take a point \(p \in F_{-1}(s) \) and put \(f_0(s) = p \). Since \(s \) refines \(\omega_0 \), then \(p \in F_0(x) \) for any \(x \in s \) and therefore \(f_0 \) is a selection of \(F_0|\Sigma_0 \).

Suppose that we already constructed \(f_n \) — a continuous selection of \(F_n|\Sigma_n \). Let us define \(f_{n+1} \) on arbitrary element \(Z \) of discrete collection \(\sigma_{n+1} \). Since \(\Sigma \) is locally finite, the set \(A = Z \cap \Sigma_n \) is closed in \(X \). Since \(f_n \) is a selection of \(F_n \), then \(f_n(A) \) is contained in \(F_n(Z) \). Since the pair \(F_n(Z) \subset \cap_{x \in Z} F_{n+1}(x) \) is
X-connected, we can extend $f_n|_A$ to a mapping $f'_n : Z \to \cap_{x \in Z} F_{n+1}(x)$. Clearly, f'_n is a selection of $F_{n+1}|_Z$. We define f_{n+1} on the set Z as f'_n.

Finally, we define f to be equal to f_n on the set Σ_n.

Theorem 2.9. Let L be a finite CW-complex and $F : X \to Y$ be a multivalued mapping of paracompact C-space X of extension dimension $e\text{-dim}X \leq [L]$ to a topological space Y. If F admits infinite fiberwise $[L]_c$-connected filtration of strongly l.s.c. multivalued mappings, then F has a singlevalued continuous selection.

Proof. By Theorem 2.5, the mapping $F' : X \to Y \times Q$ defined as $F'(x) = F(x) \times Q$ contains a stably $[L]$-connected filtration of multivalued mappings. By Theorem 2.8, F' has a singlevalued continuous selection f'. Then the mapping $f = \text{pr}_Y \circ f'$ is a singlevalued continuous selection of F.

3. **Hurewicz theorem**

The proof of the following theorem is similar to the proof of Theorem 2.4 from [3].

Theorem 3.1. Let $f : X \to Y$ be a closed mapping of k-space X onto paracompact C-space Y. Suppose that $e\text{-dim}Y \leq [M]$ for a finite CW-complex M. If for every point $y \in Y$ and for every compactum Z with $e\text{-dim}Z \leq [M]$ we have $e\text{-dim}(f^{-1}(y) \times Z) \leq [L]$ for some CW-complex L, then $e\text{-dim}X \leq [L]$.

Proof. Suppose $A \subset X$ is closed and $g : A \to L$ is a map. We are going to find a continuous extension $\overline{g} : X \to L$ of g. Let K be the cone over L with a vertex v. We denote by $C(X, K)$ the space of all continuous maps from X to K equipped with the compact-open topology. We define a multivalued map $F : Y \to C(X, K)$ as follows:

$$F(y) = \{h \in C(X, K) \mid h(f^{-1}(y)) \subset K \setminus \{v\} \text{ and } h|_A = g\}.$$

Claim. F admits continuous singlevalued selection.

If $\varphi : Y \to C(X, K)$ is a continuous selection for F, then the mapping $h : X \to K$ defined by $h(x) = \varphi(f(x))(x)$ is continuous on every compact subset of X and because X is a k-space, h is continuous. Since $\varphi(f(x)) \in F(f(x))$ for every $x \in X$, we have $h(X) \subset K \setminus \{v\}$. Now if $\pi : K \setminus \{v\} \to L$ denotes the natural retraction, then $\overline{g} = \pi \circ h : X \to L$ is the desired continuous extension of h.

Proof of the claim. We are going to apply Theorem 2.9 to infinite filtration $F \subset F \subset F \subset \ldots$. To do this, we have to show that F is strongly l.s.c. and that the pair $F(y) \subset F(y)$ is $[M]_c$-connected for every point $y \in Y$.

First, we show that F is strongly l.s.c. Let $y_0 \in Y$ and $P \subset F(y_0)$ be compact. We have to find a neighborhood V of y_0 in Y such that $P \subset F(y)$ for every $y \in V$. For every $x \in X$ define a subset $P(x) = \{h(x) \mid h \in P\}$ of K. Since $P \subset C(X, K)$ is compact and X is a k-space, by the Ascoli theorem, each
$P(x)$ is compact and P is evenly continuous. This easily implies that the set $W = \{ x \in X \mid P(x) \subset K \setminus \{v\} \}$ is open in X and, obviously, $f^{-1}(y_0) \subset W$. Since f is closed, there exists a neighborhood V of y_0 in Y with $f^{-1}(V) \subset W$. Then, according to the choice of W and the definition of F, we have $P \subset F(y)$ for every $y \in V$.

Fix an arbitrary point $y \in Y$. Let us prove that the pair $F(y) \subset F(y)$ is $[M]_c$-connected. Consider a pair of compacta $B \subset Z$ where $e\dim Z \leq [M]$ and a mapping $\varphi: B \to F(y)$. Since $B \times X$ is a k-space (as a product of a compact space and a k-space), the map $\psi: B \times X \to K$ defined as $\psi(b, x) = \varphi(b)(x)$ is continuous. Extend ψ to a set $Z \times A$ letting $\psi(z, a) = g(a)$. Clearly, ψ takes the set $Z \times f^{-1}(y) \cap (Z \times A \cup B \times X)$ into $K \setminus \{v\} \cong L \times [0, 1)$. Since $e\dim(Z \times f^{-1}(y)) \leq [L]$, we can extend ψ over the set $Z \times f^{-1}(y)$ to take it into $K \setminus \{v\}$. Finally extend ψ over $Z \times X$ as a mapping into AE-space K. Now define an extension $\tilde{\varphi}: Z \to F(y)$ of the mapping φ by the formula $\tilde{\varphi}(z)(x) = \psi(z, x)$.

Corollary 3.2 (cf. Theorem 2.25 from [4]). Let $f: X \to Y$ be a mapping of finite-dimensional compacta where $e\dim Y = [M]$ for finite CW-complex M. If for some CW-complex L we have $e\dim(f^{-1}(y) \times X) \leq [L]$ for every point $y \in Y$, then $e\dim X \leq [L]$.

Proof. By Theorem 6.3 from [4] for any compactum Z with $e\dim Z \leq e\dim Y$ we have $e\dim(f^{-1}(y) \times Z) \leq [L]$. Thus, we can apply Theorem 3.1.

4. ACKNOWLEDGMENTS

Authors wish to express their indebtedness to S.M. Ageev for outlining the proof of Theorem 2.25 and to A.N. Dranishnikov for helpful discussions during the development of this work.

REFERENCES

Department of Mathematics and Statistics, University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK, S7N 5E6, Canada

E-mail address: brodsky@math.usask.ca

Department of Mathematics and Statistics, University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK, S7N 5E6, Canada

E-mail address: chigogid@math.usask.ca