An Ultrasonication-Assisted Extraction and Derivatization Protocol for GC/TOFMS-Based Metabolite Profiling

UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
Wei Jia, Professor and Co-Director of the UNCG Center for Research Excellence in Bioactive Food Components (Creator)
Yunping Qiu, Post Doctoral Fellow, Center for Research Excellence in Bioactive Food Components (Creator)
The University of North Carolina at Greensboro (UNCG )
Web Site:

Abstract: Conventional chemical derivatization of metabolites in biological specimens is time-consuming, which limits the throughput and efficiency of metabolite profiling using a gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) platform. We report an ultrasonication-assisted protocol which reduces the derivatization time from hours to about 30 min and significantly enhances the derivatization efficiency prior to a GC/TOFMS analysis. The protocol was evaluated using 40 compounds representing different classes of human metabolites, and demonstrated good analytical precision and accuracy. In comparison with the conventional method, the new protocol was able to increase the intensity of most of the identified peaks (71.0%) in the GC/TOFMS chromatograms of human serum samples. The detected compounds with increased intensity include most amino acids, keto-containing organic acids, carbonyl-containing carbohydrates, and unsaturated fatty acids. We applied this protocol in a metabolomic study of human serum samples obtained from 34 patients diagnosed with hypertension and 29 age- and gender-matched healthy subjects. Metabolite markers associated with hypertension, including glucosamine, D-sorbitol, 1-stearoylglycerol, and homocysteine, were identified and validated by statistical methods and use of reference standards. Our work highlights the potential of this novel approach for the large-scale metabolite profiling of samples generated from plant, animal, and clinical and epidemiological studies.

Additional Information

Analytical and Bioanalytical Chemistry, 400(5), 1405-1417
Language: English
Date: 2011
metabolites, metabolomics, ultrasonication, derivatization, hypertension

Email this document to