Effects of Manganese on the developing rat brain: oxidative-stress related endpoints

UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
Keith M. Erikson, Associate Professor and Director of Graduate Studies (Creator)
The University of North Carolina at Greensboro (UNCG )
Web Site: http://library.uncg.edu/

Abstract: We evaluated biochemical endpoints related to oxidative stress in brains of neonatal rats exposed to manganese (Mn). Oral Mn chloride (MnCl2) (0, 25, or 50 mg Mn chloride kg-1 body weight per day) was given daily to neonatal rats throughout lactation (i.e. from postnatal day (PND) 1 to 21). As previously reported by [J. Appl. Toxicol. 20 (2000) 179], this treatment paradigm results in increased cerebral cortex (CTY) Mn concentrations in PND 21 rats from both Mn treatment groups. High dose Mn exposure also results in increased cerebellar Mn concentrations. This preliminary study determined whether this exposure paradigm also affects cerebrocortical or cerebellar metallothionein (MT) mRNA levels, glutamine synthetase (GS) activity, GS protein levels, as well as total glutathione (GSH) levels. High dose Mn exposure significantly increased (P < 0.05) total cerebrocortical GSH without accompanying changes in any of the other measured parameters. Therefore, it is unlikely that high dose Mn exposure is associated with oxidative stress in this experimental paradigm.

Additional Information

Neurotoxicology 23(2): 169-175
Language: English
Date: 2002
Manganese, Neurotoxicity, Oxidative stress

Email this document to