Specific phosphorylation of threonine by the Dictyostelium myosin II heavy chain kinase family

UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
Paul A. Steimle, Assistant Professor (Creator)
The University of North Carolina at Greensboro (UNCG )
Web Site: http://library.uncg.edu/

Abstract: Dictyostelium myosin II heavy chain kinase A (MHCK A), MHCK B, and MHCK C contain a novel type of protein kinase catalytic domain that displays no sequence identity to the catalytic domain present in conventional serine, threonine, and/or tyrosine protein kinases. Several proteins, including myelin basic protein, myosin regulatory light chain, caldesmon, and casein were phosphorylated by the bacterially expressed MHCK A, MHCK B, and MHCK C catalytic domains. Phosphoamino acid analyses of the proteins showed that 91 to 99% of the phosphate was incorporated into threonine with the remainder into serine. Acceptor amino acid specificity was further examined using a synthetic peptide library (MAXXXX(S/T)XXXXAKKK; where X is any amino acid except cysteine, tryptophan, serine, and threonine and position 7 contains serine and threonine in a 1.7:1 ratio). Phosphorylation of the peptide library with the three MHCK catalytic domains resulted in 97 to 99% of the phosphate being incorporated into threonine, while phosphorylation with a conventional serine/threonine protein kinase, the p21-activated kinase, resulted in 80% of the phosphate being incorporated into serine. The acceptor amino acid specificity of MHCK A was tested directly by substituting serine for threonine in a synthetic peptide and a glutathioneS-transferase fusion peptide substrate. The serine-containing substrates were phosphorylated at a 25-fold lower rate than the threonine-containing substrates. The results indicate that the MHCKs are specific for the phosphorylation of threonine.

Additional Information

Journal of Biological Chemistry. 276: 17836-17843
Language: English
Date: 2001
Dictyostelium, myosin II heavy chain kinase A, myelin basic protein, phosphorylation, threonine

Email this document to