Knowledge Discovery for Clinical Decision Support System in Patient Records

ECU Author/Contributor (non-ECU co-authors, if there are any, appear on document)
Dev Budhathoki (Creator)
East Carolina University (ECU )
Web Site:

Abstract: Knowledge discovery from the patient's health records is a challenging task for the medical specialists. The knowledge generated from the patient's records can assist specialists to make an effective decision and recommend more precise diagnosis. This provides the basis for decision-making process with the recommendation for patient diagnosis and expertise advice by retrieving the information from the knowledgebase. This research aims at utilizing data mining techniques to discover patterns and relationships in between diagnosis and corresponding symptoms. The extracted patterns are used to assist the physician to determine the precise diagnosis with patient's context. We consider graph database-Neo4j to develop a knowledgebase that stores knowledge in the ontological form of patterns and relationships and use the knowledgebase in clinical decision support system to provide recommendations of next possible symptoms and diagnosis for the effective recommendation. In addition , we integrate the expert knowledge with our knowledgebase and explore the feature of graph visualization , with more detail information of patterns and connection of associated patterns in the knowledgebase.

Additional Information

Language: English
Date: 2018
Neo4j Graph Database, Knowledge Extraction, Clinical Decision Support System, Cypher Query Language

Email this document to

This item references:

TitleLocation & LinkType of Relationship
Knowledge Discovery for Clinical Decision Support System in Patient Records described resource references, cites, or otherwise points to the related resource.