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ABSTRACT
Fertilization of the ocean by eolian dust and icebergs is an effective mechanism to enhance 

primary productivity. In particular, high-nutrient, low-chlorophyll (HNLC) areas where 
phytoplankton growth is critically iron-limited, such as the subarctic Pacific Ocean and the 
Southern Ocean, are proposed to respond to increases in bioavailable Fe supply with enhanced 
phytoplankton productivity and carbon export to the seafloor. While Fe-fertilization from 
dust is widely acknowledged to explain a higher export production during glacial periods 
in the Southern Ocean, paleoceanographic records supporting links between productivity 
and eolian dust and/or icebergs in the North Pacific are scarce. By combining indepen-
dent proxies indicative of ice-sheet dynamics and ocean productivity from a single marine 
sedimentary record (Integrated Ocean Drilling Program [IODP] Site U1417), we present 
a comprehensive data set of phytoplankton response to different fertilization mechanisms 
in the subarctic northeast Pacific between 1.5 and 0.5 Ma, including the Mid Pleistocene 
Transition. Importantly, the timing of the fertilization events is more strongly controlled by 
local ice-sheet extent than by glacial-interglacial climate variability. Our findings indicate 
that fertilization by glacigenic debris results in productivity events in HNLC areas adjacent 
to ice sheets, and that this mechanism may represent an important, yet rarely considered, 
driver of phytoplankton growth.

INTRODUCTION
The stimulation of primary productivity 

through the addition of Fe to the ocean surface, 
particularly in high-nutrient, low-chlorophyll 
(HNLC) areas, significantly contributes to ocean 
carbon sequestration (Martin, 1990; Sigman 
et al., 2010). Field observations and labora-
tory experiments imply that, in addition to the 
input of Fe-rich eolian dust (Martin et al., 1989), 
delivery of macronutrients and  micronutrients 
and vertical mixing processes in the vicinity of 
icebergs foster phytoplankton growth in high-
latitude oceans (Duprat et al., 2016; Smith et al., 
2007). Such in situ measurements and remote 
sensing data suggest a potentially important role 
for icebergs and eolian dust in driving primary 
productivity in HNLC regions, but provide only 
a snapshot view of modern ocean biogeochem-
ical feedbacks. Paleoreconstructions, in turn, 
permit an integrated view and evaluation of the 

role of these fertilization mechanisms on export 
production. Owing to its proximity to a former 
major Northern Hemisphere ice sheet, the Gulf 
of Alaska (GoA; northeast Pacific Ocean) is an 
area with vigorous temperate glacial erosion of 
Fe-rich rocks (Gulick et al., 2015). Here, we 
present the first reconstruction of phytoplankton 
productivity in the GoA linked to Fe inputs from 
glacial debris. We focus on sediments spanning 
the last important climate transition in Earth’s 
history, the Mid-Pleistocene Transition (MPT), 
when the Northern Cordilleran Ice Sheet (NCIS) 
experienced a significant expansion (Gulick 
et al., 2015). Although the exact timing and 
cause(s) of the MPT are intensely discussed 
(Clark et al., 2006; Elderfield et al., 2012), the 
potential for biogeochemical feedbacks oper-
ating in the high-latitude oceans during this 
crucial time interval of Northern Hemisphere 
ice-sheet growth remains poorly studied. This is 

the first assessment of (subpolar) Fe-fertilization 
mechanisms across the MPT from outside the 
Southern Ocean (Lamy et al., 2014; Martínez-
Garcia et al., 2011).

We present a multiproxy record including 
geochemical, micropaleontological, and sedi-
mentological data obtained from Integrated 
Ocean Drilling Program (IODP) Site U1417 
in the GoA (56°57′N, 147°6′W, 4200 m water 
depth; Item DR1 in the GSA Data Repository1; 
Jaeger et al., 2014). Our results record the inter-
actions between sea-surface temperature (SST), 
the input of terrigenous material by both eolian 
and ice-rafting processes, and export produc-
tivity for multiple glacial-interglacial cycles 
between 1.5 and 0.5 Ma (Fig. 1). In the absence 
of eolian dust measurements, elevated contents 
of land plant–specific long-chain n-alkanes 
(depicted by higher terrigenous-aquatic ratios 
[TARs]; Meyers, 1997) are used to track ter-
restrial dust input (Simoneit, 1977). In addi-
tion, icebergs may carry high amounts of ter-
rigenous organic matter to distal ocean sites, and 
are considered as a further transport agent of 
these leaf-wax compounds (Stein et al., 2009; 
Villanueva et al., 1997). Accordingly, at Site 
U1417, elevated TAR values that coincide with 
at ice-rafted debris (IRD) maxima suggest an ice 
rafting of leaf-wax lipids, while maximum TAR 
values accompanied by IRD minima indicate an 

1 GSA Data Repository item 2018088, Item DR1 
(location of IODP Site U1417 in the Gulf of Alaska); 
Item DR2 (Site U1417 age model and applied analyti-
cal methods); Item DR3 (allocation of eolian dust- and 
iceberg-fertilization events at Site U1417); and Item 
DR4 (alternate Fe input through volcanic ash and/or 
mesoscale eddies), is available online at http://www​
.geosociety.org/datarepository/2018/ or on request 
from editing@geosociety.org.
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airborne transport of these compounds. From the 
consistent pattern in concurrently high marine 
productivity indicators and high TAR values, we 
deduce that enhanced marine productivity was 
directly related to the input of terrigenous matter. 
Details on individual analytical methods and the 
age model are provided in Item DR2.

SEA-SURFACE CONDITIONS AND 
DIFFERENT Fe-FERTILIZATION 

MECHANISMS IN THE GULF OF 
ALASKA

At Site U1417, intervals of lower SSTs and 
more polar waters (%C37:4 alkenone) often coin-
cide with higher deposition of IRD (e.g., Marine 
Isotope Stages [MIS] 39, 30, and 20), indicating 
a direct link between GoA sea-surface conditions 
and NCIS dynamics. A distinct variability in dia-
tom abundances, biogenic silica (opal; BSi) con-
tent and, the Ba/Al ratio is considered to reflect 

abrupt phytoplankton productivity changes at 
Site U1417 (Fig. 1). Despite relatively warm 
SSTs prior to the MPT (>1.2 Ma), the occur-
rence of diatoms was confined to short-lived 
events, and a significant rise in diatom abun-
dance and BSi content occurred only at the onset 
of the MPT (1.22 Ma, MIS 37; Fig. 1). The asso-
ciation between the biosiliceous signal and SST 
is not consistent over the entire record, and SST 
changes do not appear to be a primary driver of 
diatom productivity. However, both diatom and 
BSi signals are strongly linked to elevated Ba/Al 
values, recording increased export productivity 
(Jaccard et al., 2010), and to higher TAR values 
(Fig. 1). Today, significant amounts of Fe-rich 
glacial silt are deposited along glaciofluvial river 
banks and at glacier termini along south Alas-
kan coastal areas, and glacial rock flour is trans-
ported beyond the continental shelf into Fe-lim-
ited pelagic waters during dust storms (Crusius 
et al., 2011; Muhs et al., 2016). Evidently, the 
eolian transport of this glacial flour–derived dust 
via strong northerly winds is an important mech-
anism for the supply of bioavailable Fe to foster 
phytoplankton blooms in the GoA (Crusius et 
al., 2011, 2017). We, hence, argue that the TAR 
peaks coinciding with diatom, BSi, and Ba/Al 
maxima and IRD minima at Site U1417 reflect 
intervals of enhanced eolian export of leaf-wax 
lipids together with Fe-rich Alaskan dust, lead-
ing to productivity increases in the GoA across 
the MPT (e.g., at 1.22, 1.15, and 0.99 Ma; Fig. 
1; Item DR3). Similarly, McDonald et al. (1999) 
proposed that late Pleistocene diatom produc-
tivity events at Ocean Drilling Program [ODP] 
Site 887 (54°21.9′N, 148°26.8′W, 3633 m) could 
have been promoted by Fe supply via dust.

In addition to dust fertilization, we suggest 
that ice rafting of glacial Fe-rich debris (trans-
ported together with glacially reworked organic 
matter containing leaf-wax lipids) also stimu-
lated productivity at IODP Site U1417. Inter-
vals characterized by enhanced IRD deposition 
and high TAR, diatom, BSi, and Ba/Al values 
occurred at, e.g., 1.05, 0.91, 0.77, and 0.66 Ma 
(Fig. 1; Item DR3). Recent observations high-
light the importance of Fe fertilization of pelagic 
ecosystems from icebergs, accounting for up to 
20% of the total carbon export in the Southern 
Ocean (Duprat et al., 2016; Smith et al., 2007). 
The coincidence of ice rafting and elevated 
marine productivity events in the GoA suggests 
that this mechanism also operated during the 
MPT in the subpolar northeast Pacific Ocean. 
In addition to dust-  and iceberg fertilization, 
Fe supply via mesoscale eddies (Crawford et 
al., 2007) and volcanic ash (Hamme et al., 2010) 
may have promoted phytoplankton blooms in 
the GoA. However, we consider these mecha-
nisms of only minor importance at Site U1417 
(see Item DR4).

From the early MPT toward the late MPT (ca. 
1.2–0.6 Ma), we note a decrease in predominantly 
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dust-fertilized productivity pulses, while iceberg 
fertilization sustained. This transition could 
result from an overall reduction in dust export 
owing to the persistent expansion of the NCIS 
(sealing central Alaskan dust [loess] deposits) 
and/or a change in atmospheric circulation 
diverting Alaskan storm tracks. Deposition of 
lithic particles by ice rafting, however, does not 
per se relate to a higher export production in 
the GoA, and we argue that additional factors 
impacted ocean productivity (e.g., nitrate deple-
tion; Galbraith et al., 2008). Peaks in IRD at 1.27 
or 0.82 Ma, for example, do not coincide with 
higher Ba/Al or opal values but an enhanced 
abundance of the C37:4 alkenone (Fig. 1), pointing 
to a significantly cooler ocean surface.

FURTHER IMPLICATIONS
With regard to the overall environmental evo-

lution in the subpolar northeast Pacific Ocean, 
we suggest that the diatom and BSi peaks at 
1.22 Ma mark a transition when NCIS growth 
and, hence, the production and export of glaci-
genic dust led to an effective Fe fertilization in 
the adjacent GoA. Whereas eolian dust fertil-
ization dominated during intervals of reduced 
glacier extent (i.e., when coastal plains and gla-
cigenic silt deposits were subaerially exposed; 
Figs. 2A and 2B), iceberg fertilization occurred 
during intervals of enhanced glaciation when 
the NCIS terminated on the Alaskan continen-
tal shelf and discharged icebergs to Site U1417 
(Figs. 2C and 2D). We note that, during the lat-
ter intervals, strong katabatic winds may have 
sustained an (airborne) export of dust from areas 
that remained ice-free (Item DR3).

Interestingly, the higher dust input at Site 
U1417 at ca. 1.22 Ma coincides with an enor-
mous increase in dust delivery to the subantarc-
tic Atlantic Ocean (Martínez-Garcia et al., 2011). 
Ocean cooling, as well as increasing latitudinal 
temperature gradients, are considered to have 
accounted for an equatorward movement of 
oceanic fronts and a strengthened atmospheric 
circulation, leading to a higher dust export to the 
subantarctic Southern Ocean during the MPT 
(Kemp et al., 2010; Martínez-Garcia et al., 2011; 
McClymont et al., 2013). We suggest that the 
expansion of polar waters in the high northern 
latitudes and the growth of the NCIS (affect-
ing surface albedo and orography) could have 
induced similar atmospheric shifts promoting 
dust export events in the GoA at the onset of 
the MPT. Comparisons between western and 
eastern records of subpolar North Pacific paleo-
productivity, however, reveal that although SSTs 
in both areas developed in a similar fashion, the 
patterns of Mid-Pleistocene primary productiv-
ity did not. While export production generally 
decreased in the Bering Sea due to an increase in 
sea ice cover (Kim et al., 2014), the productivity 
events observed in the GoA point to an efficient, 
yet sporadic, ocean fertilization from the input 

of NCIS-sourced glacigenic terrestrial matter 
(and Fe) across the MPT.

We note that the productivity pulses at Site 
U1417 are neither exclusively confined to gla-
cials nor to interglacials. This pattern contrasts 
to the western subarctic Pacific Ocean and the 
Bering Sea, where BSi production increased 
primarily during interglacials (Kim et al., 2014).

The productivity pulses at Site U1417 may 
reflect local feedback mechanisms between 
south Alaskan glacier dynamics (controlling 
ice-proximal dust production and dispersal), 
and an immediate response of the marine eco-
system, yet they highlight potentially relevant 
mechanisms to elucidate hitherto neglected 
interactions in the land-ocean-atmosphere 
system during glacial-interglacial transitions. 
We propose the GoA as a case example of a 
Pleistocene ice-proximal marine environment 
where ice-sheet dynamics exhibited a sig-
nificant control on primary productivity, and 
potentially also CO2 draw-down. In fact, with 
the intensification of Pleistocene Northern 
Hemisphere glaciation and sea-level lowering, 
extensive sub-aerial pro-glacial (coastal) out-
wash plains developed not only in south Alaska 
but also along the Laurentide Ice Sheet and 
European Ice Sheets, and these areas should 
be considered as potentially important sources 
of Fe-bearing glacigenic silt (Bullard et al., 
2016) for areas where seasonal Fe-limitation 

restricts phytoplankton growth (Moore et al., 
2006; Nielsdóttir et al., 2009). Further explora-
tion of sedimentary archives from high-latitude 
ocean areas adjacent to (paleo) ice sheets that 
permit correlations between productivity prox-
ies and terrigenous compounds are required to 
evaluate the potential impacts of glacigenic 
dust- and iceberg-fertilization on phytoplank-
ton productivity across the MPT and beyond. 
Importantly, such data would provide for a 
quantitative assessment of whether these pro-
cesses could have accounted for an amplifica-
tion of glacial-interglacial cycles, or if they 
even contributed to an appreciable CO2 draw-
down during the MPT.
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