
 

 

BUILDING KILOBOTS AND REVISING KILOBOT DESIGN FOR IMPROVING THE 

OPTICAL RESPONSE  

 

 

 

 

A thesis presented to the faculty of the Graduate School of 

Western Carolina University in partial fulfillment of the 

requirements for the degree of Master of Science in Technology 

 

 

 

By 

Anik Tahabilder 

 

 

 

Supervisor: Dr. Yanjun Yan 

School of Engineering + Technology 

 

 

 

Committee Members: 

Dr. Martin Tanaka, School of Engineering + Technology 

Dr. Paul Yanik, School of Engineering + Technology 

Dr.  Peter Tay, School of Engineering + Technology 

 

 

 

 

 

April 2020 

 

 

 

 

 

 

 

©2020 by Anik Tahabilder 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work is dedicated to my parents 

 for their endless love and support.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

ACKNOWLEDGEMENTS 

 

 

 

I would first like to acknowledge my adviser, Dr. Yanjun Yan, for her patience, kindness, and most 

of all her assistance in completing this thesis. I would like to thank Dr. Martin Tanaka, Dr. Peter 

Tay, and Dr. Paul Yanik for serving on my thesis committee.   

  



iv 

CONTENTS   

ABSTRACT .................................................................................................................................. vii 

CHAPTER1: INTRODUCTION .................................................................................................... 1 
1.1 Objectives ................................................................................................................................. 3 
1.2 Significance of the study ........................................................................................................... 3 
CHAPTER 2: Background .............................................................................................................. 5 
2.1 Swarm Robotics ........................................................................................................................ 5 

2.2 Kilobot System.......................................................................................................................... 5  
2.2.1 Kilobot ................................................................................................................................... 6 
2.2.2 Kilobot Charger ..................................................................................................................... 9 
2.2.3 Bootloader Programmer ......................................................................................................... 9 

2.2.4 Overhead Controller ............................................................................................................. 11 
2.3 Programming Environment ..................................................................................................... 12 
2.4 Shape Formation ..................................................................................................................... 13 

2.4.1 Subtractive Shape Formation ............................................................................................... 13 
2.4.2 Additive Shape Formation ................................................................................................... 15 

CHAPTER3: Methodology ........................................................................................................... 16 
3.1 Building and Challenges ......................................................................................................... 16  
3.2 Light Based Operation ............................................................................................................ 21 

3.3 Insufficient Memory Issue ...................................................................................................... 24 
3.4 Debugging Model ................................................................................................................... 26 

3.5 Kilobot Version Update .......................................................................................................... 27 
CHAPTER 4: RESULTS .............................................................................................................. 31 

4.1 The first revised design (version 1.2) ..................................................................................... 31 
4.2 The second revised design (version 1.3) ................................................................................. 35 

4.3 The third revised design (version 1.4) .................................................................................... 39 
CHAPTER 5: CONCLUSION ..................................................................................................... 46 
References ..................................................................................................................................... 48 

APPENDIX ................................................................................................................................... 51 
 

 



v 

LIST OF TABLES 

Table 1. Properties of WCU Kilobot .............................................................................................. 8 

Table 2. Ambient light sensing using the Arduino Uno ............................................................... 22 
Table 3. Ambient light sensing using the potentiometer of a Kilobot .......................................... 23 
Table 4. Microcontroller property comparison ............................................................................. 25 
Table 5. Successful move-away-from-light test result using R35=604 KΩ out of 5 trials ............ 36 
Table 6. Successful move-away-from-light test result using R35=11 KΩ out of 5 trials .............. 36 

Table 7. Ambient light sensitivity for small distance increment .................................................. 41 
Table 8. Key properties of ATmega1284 ..................................................................................... 42 

 

 

 

 

  



vi 

LIST OF FIGURES 

Figure 1. Kilobot and OHC ............................................................................................................. 6 

Figure 2. Kilobot components......................................................................................................... 7 
Figure 3. WCU Kilobot version 1.1 ................................................................................................ 8 
Figure 4. Kilobot charger ................................................................................................................ 9 
Figure 5. Kilobot Bootloader Programmer ................................................................................... 10 
Figure 6. Modified cable connection ............................................................................................ 10 

Figure 7. Kilobot Bootloader interface with Kilobot .................................................................... 10 
Figure 8. Overhead controller (OHC) ........................................................................................... 11 
Figure 9. Kilogui interfacing between the OHC and the computer .............................................. 12 
Figure 10. Kilobotics program editor............................................................................................ 13 

Figure 11. Subtractive shape-formation ........................................................................................ 14 
Figure 12. Additive Shape-formation ........................................................................................... 15 
Figure 13. The Stencil that we used .............................................................................................. 16 

Figure 14. The reflow oven we used ............................................................................................. 17 
Figure 15. Kilobot board (SMD mounted) ................................................................................... 17 

Figure 16. Kilobot board microscopic view before debugging .................................................... 18 
Figure 17. Kilobot board microscopic view after debugging ....................................................... 19 
Figure 18. Kilobot board view of inaccessible parts ..................................................................... 20 

Figure 19. Ambient light circuit using Arduino Uno .................................................................... 21 
Figure 20. Sensor reading vs. light intensity using Arduino Uno ................................................. 22 

Figure 21. Kilobot with a potentiometer for ambient light test .................................................... 23 
Figure 22. Sensor reading vs. light intensity using modified Kilobot .......................................... 24 

Figure 23. Workspace in Altium Designer ................................................................................... 27 
Figure 24. Schematic of Kilobot version 1.1 ................................................................................ 31 

Figure 25. Schematic of Kilobot version 1.2 (Microcontroller Unit) ........................................... 32 
Figure 26. Schematic of Kilobot version 1.2 (Power Unit) .......................................................... 32 
Figure 27. PCB layout of Kilobot version 1.2 .............................................................................. 33 

Figure 28. 3D view of PCB layout of Kilobot version 1.2 ........................................................... 34 
Figure 29. Ambient Light Circuit update in second revised (WCU Kilobot version 1.3) ............ 35 
Figure 30. Move away from light test using old Kilobot (Starting) ............................................. 37 

Figure 31. Move away from light test using old Kilobot (Stopped due to saturation) ................. 37 
Figure 32. Move away from light test using new Kilobot (Starting) ............................................ 38 
Figure 33. Move away from light test using new Kilobot (Turning) ............................................ 38 
Figure 34. Move away from light test using new Kilobot (Moving Away) ................................. 38 

Figure 35. Measuring light intensity using Lux Light Meter........................................................ 39 
Figure 36. Small distance light sensitivity test for adding the second sensor ............................... 40 
Figure 37. Schematic of two ambient light sensors ...................................................................... 41 

Figure 38. Schematic of the new MCU ATmega1284 ................................................................. 42 
Figure 39. Schematic of the of Kilobot version 1.4 (Microcontroller Unit) ................................. 43 
Figure 40. Schematic of the of Kilobot version 1.4 (Power Unit) ................................................ 43 
Figure 41. PCB layout of Kilobot version 1.4 .............................................................................. 44 
Figure 42. 3D view of Kilobot version 1.4 ................................................................................... 45 
 

 



vii 

ABSTRACT 

BUILDING KILOBOTS AND REVISING KILOBOT DESIGN FOR IMPROVING THE 

OPTICAL RESPONSE 

Anik Tahabilder, M.S.T. 

Western Carolina University (Apr 2020) 

Director: Dr. Yanjun Yan 

 

Inspired by the emergent behavior of swarms, we want to eventually use a distributed self-

organizing swarm of robots for shape formation. To verify the idea using real robots in the 

experiment, we need to first build more Kilobots to enlarge our repository of Kilobots. Kilobot is 

a kind of small robot with a 33-mm diameter that was originally designed by Harvard in 2012 

and redesigned at WCU with the simplified building process in 2016 (WCU Kilobot version 1.1). 

Based on the earlier design, we have redesigned the Kilobots further (with three revisions in 

version 1.2, 1.3, and 1.4). This research work describes the challenges and solutions in building 

and debugging Kilobots, as well as the planned shape formation operation. Kilobots are built in-

house using reflow soldering for surface mount components and hand soldering for through-hole 

components. A systematic debugging procedure, as well as the most commonly seen issues and 

their solutions, are described based on our building and testing experience. The WCU Kilobot 

version 1.1 was designed in PADS, and yet we no longer had the license in PADS. Therefore, we 

redid the schematics and PCB layout in Altium Designer, and enlarged the spacing between the 

crowded components, in WCU Kilobot version 1.2. Although the design of version 1.2 was 

nearly the same as in version 1.1 with only added spacing, it was redone in Altium Designer that 

we could continue to maintain a license, and hence our later revisions were possible. In shape 
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formation, a phototaxis movement (moving away from light) is the driving force in the large-

scale reductive approach, and yet the original Kilobot design allows such movement only in a 

dark room because of the ambient light sensor output is saturated at a low illumination level. An 

experiment was conducted to examine the saturation of sensor reading at increasing lux levels 

with different phototransistor’s emitter resistances, and a new resistance value of emitter 

resistance was proposed and implemented in our Kilobots (version 1.3), to ease the experiment 

lighting condition, making it more lenient and convenient than before, even at daylight. An 

earlier capstone experiment in 2018-2019 seemed to indicate that the flash memory of 

ATmega328P, the microcontroller on the Kilobot, was not enough to handle the calculation 

when more than three Kilobots with known or calculated locations were used for multilateration-

based locationing for the next robot that needed to calculate its location. To address this issue, 

we have updated the design of Kilobot to replace its ATmega328p (with 32 Kbytes memory) 

microcontroller with ATmega1284, which has 128 Kbytes of flash memory for programming 

(version 1.4). In addition, we also inspected the feasibility of installing two ambient light sensors 

at opposite sides of the Kilobot and found the version 1.3 was more sensitive than version 1.1 to 

provide distinctive readings even at a distance increment of one Kilobot diameter, which meant 

that the Kilobot could easily tell the direction of the light with two sensors. Given the new 

microcontroller in version 1.4 with more IO channels, we further revised it to add a second 

ambient light sensor, which will help to give us more control on the Kilobot when they perform a 

light based movement, such as in shape formation. 
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CHAPTER1: INTRODUCTION 

The role of robotics is to take on the jobs that are repetitive, requiring high accuracy and 

precision, or not executable by a human being. The application of robotics has increased the 

gross industrial productivity to a large extent. The Single Robotic System (SRS) has been 

applied in industries and research institutions for many complex functionalities. However, there 

are some situations when swarm robotics will be more convenient than a single robot to apply a 

group of small robots to perform a complex operation. This type of swarm behavior can be also 

observed in nature. For example, flocks of birds, schools of fish, and a colony of ants organize 

themselves to form a unitized cluster to perform complex action. Inspired by nature, researchers 

have started to integrate groups of small robots to work together to complete a complex task by 

applying robots that have very basic functionality. The researchers had developed various 

platforms and programming tools for swarm robotics. In most cases, the small robot 

communicates only within a limited range requiring an efficient control strategy. Kilobots were 

initially designed by Harvard University in 2012 and redesigned for construction simplicity at 

WCU in 2016. It is one of the widely used platforms that researchers have used on both hardware 

and software design for swarm robotics. The WCU Kilobots lab has explored the control strategy 

in the Kilombo simulation environment earlier and sponsored multiple capstone projects on 

scaling up the localization ability of the physical Kilobots. To continue the efforts, we need to 

build more Kilobots. 

Shape formation is a popular task in swarm robotics. In shape formation, the algorithm 

can be grouped into two main categories, i.e., additive process and subtractive process. In the 

additive process, materials become adjoined and fused to form the desired shape, or the robots 

cluster together and move along the boundary of the cluster until they find a position to stay to be 
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part of the cluster of the desired shape. In the subtractive process, materials are reduced from the 

initial bulk amount, or the robots are placed densely together initially, and the robots outside of 

the desired shape move away automatically often driven by a light source in the center. Both 

processes have pros and cons when it comes to practical application. In the additive process, the 

individual robot’s movement may depend on the rest of the group, and hence it takes a 

comparatively long time to be aligned. On the other hand, in the subtractive process, a bulk of 

robots is needed initially to be chiseled away and hence the needed number of robots is big, but it 

will take much less time to form a shape than in the additive process. One potential solution is to 

combine both additive and subtractive processes in shape formation so that the desired shape 

may extend beyond the original cluster boundary, and the robots not inside the shape will move 

along the cluster boundary to fill in the void instead of simply moving away. In all processes, we 

need a sizable amount of robots to perform practical swarm experiments, and we also need to 

understand how Kilobots navigate according to the light source as a building-block movement in 

shape formation.  

In our original version of WCU Kilobot version 1.1 built in 2016 following the Harvard 

schematics but in a different layout, the robot can perform phototaxis movement only in a dark 

room by design, which is not so convenient. So, in this research, we focused on building more 

Kilobots to conduct experiments with more flexibility in the regular room condition than before. 

As a result, this thesis focused more on hardware development. We have inspected the pros and 

cons of the earlier design, provided three revisions (versions 1.2, 1.3, and 1.4) so that it can be 

built and debugged easily in-house while enabling us to conduct experiments in a regular 

daylight environment.  
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1.1 Objectives  

Kilobot is one of the commonly used robots for swarm robotics tests and developments. 

Purchasing Kilobots is expensive and it does not give the students a solid experience to 

understand the Kilobot hardware. In-house building and debugging can help students understand 

the operations and discover some aspects that they can work with for further development. The 

main goal of this research is to build and revise Kilobot in-house to support swarm robotics 

experiments. The main objectives of this research include the following:  

• Create guidelines on building and debugging Kilobot in-house based on our building 

experience. 

• Update the design to allow a more flexible experiment environment than before. 

• Verify the performance of Kilobot that we built in relevant experiments. 

• Increase the number of Kilobots. 

1.2 Significance of the study  

This research was conducted to scale up the Kilobot construction in-house to eventually 

carry out the shape formation operation. In the WCU Kilobots lab, subtractive shape formation 

operation for a simple shape (square) at a small scale (using 16 robots in a 4 by 4 pattern) 

without using the light source has been explored, and yet we need to scale up the experiment to 

allow a more complex shape using the light source in the center of the shape as a driving force 

for the movement. Meanwhile, we are exploring the additive shape formation and to fuse both 

processes together. For all the potential experiments, we need to enlarge our repository of 

Kilobots. While building Kilobots in house, the building and debugging experience have been 

used to update the design that will improve the process as well as the light-sensing based 

movement. The outcomes of the research are listed below: 
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• The debugging guidelines summarized from our efforts are helpful for the future 

building process. 

• The robots now have a wider operating range of lighting conditions than before. 

• The robots could have more flash memory for large scale operation. 

• We could have more control of the robots with an added sensor. 
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CHAPTER 2: BACKGROUND 

2.1 Swarm Robotics 

Swarm robotics is the coordination of a multi-robot system, which consists of a large 

number of simple features with small robots. The collective behavior of insects or animals can be 

imitated by swarm robots in swarm intelligence. Swarm robotics encompasses the design of the 

robot and control strategies. A key advantage of swarm robotics is the ability to adapt any team 

member as needed that reduces the chance of failure due to the unavailability or malfunctioning 

of any individual during the operation. The definition of swarm robotics by Shahin [1] gives an 

insight into this field. 

“Swarm robotics is the study of how a large number of relatively simple physically 

embodied agents can be designed such that a desired collective behavior emerges from the local 

interactions among agents and between the agents and the environment.” 

There is a lot of platforms to perform simulation and practical test of swarm robotics like 

Khepera robot [2], e-puck robot [3], Jasmine robot [4], I-Swarm robot [5], S-Bot [6], Kobot [7], 

SwarmBot [8], Kilobot [9] and so forth. Kilobot is one of the popular platforms for swarm 

robotics that was developed at Harvard university to program and experiment with collective 

behaviors in large-scale autonomous swarms [10]. The WCU Kilobot team [11] poses a modified 

design of Kilobot that was built and tested at WCU in 2016.  

2.2 Kilobot System 

Kilobot system consists of Kilobot itself, an overhead controller (OHC), the Kilobot 

charger, a bootloader programmer, and the programming environment. After a Kilobot is built 

and debugged, it is charged by a charging station that can charge 25 robots at a time. The 

bootloader we used is loaded through a USB AVRISP XPII, AVR Programmer, with a modified 
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cable connection for interfacing with Kilobot. We have used Kilogui, a graphical user interface 

for interfacing the OHC to the computer, and OHC has been used to program the Kilobots by 

sending programs via IR communication, as shown in Figure 1. The Kilobot is programmed 

using a C based programming language, and we have used an online compiler, Kilobotics 

website[12], maintained by Harvard University to write and compile the program. 

 

Figure 1. Kilobot and OHC 

2.2.1 Kilobot 

Kilobots are microrobots with a 33-millimeter diameter that has several basic 

functionalities. It communicates with other robots by infrared. Its microprocessor can process 

data and make decisions. It moves based on the slipstick phenomenon using two vibration 

motors mounted on two out of the three legs. It was designed to be used in large quantities. 

Figure 2 shows the parts of a Kilobot [13]:   
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Figure 2. Kilobot components 

Part-1 shows a battery to supply power to the robot for its functionality. Part-2 is the 

power jumper used for turning on and off the robot. Part-3 is the vibration motors to enable the 

movements. Part-4 shows an RGB LED, which is used to indicate the various status of the robot 

during its functionality. Part-5 is the ambient light sensor that is used for the light-based 

operation. Part-6 is the serial output header, which is used to output serial data to the computer 

for debugging purposes. Part-7 is a direct programming socket that is used to load the firmware 

to the microprocessor unit of the robot. Part-8 is the charging tab, which has been removed in our 

WCU revised design as a new charger was designed at that time. Part-9 is the infrared transmitter 

to transmit IR signals to other robots. The last one, part-10, is the infrared receiver, which is used 

to receive the infrared signals from other robots or the OHC. Figure 3 shows the previously built 

WCU Kilobot version 1.1, which used nearly identical schematic to the Harvard design but with 

a compact layout, and the SMD components were no smaller than 0604 for in-house fabrication. 

Table1 shows its main specifications. 
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Figure 3. WCU Kilobot version 1.1   

Table 1. Properties of WCU Kilobot 

Processor ATmega 328p (8bit @ 8MHz) 

Memory 32 KB Flash, 1KB EEPROM 

Battery Rechargeable Li-Ion 3.7V 

Charging Kilobot charger for 25 robots simultaneously 

Sensing  1 IR and 1 light intensity 

Movement Forward, Left, Right 

Programming C language with Kilobotics editor  

Dimension diameter: 33 mm, height: 34 mm 

In short, a Kilobot contains a microprocessor to make decisions, a rechargeable battery to 

enable its action, an IR transceiver for sensing and transmitting a signal to other Kilobots or 

OHC, and a motor vibration based slipstick movement system. We program it using C in an 

online editor at the Kilobotics website. 
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2.2.2 Kilobot Charger 

To conduct a swarm robotic experiment such as shape formation, we need a lot of robots. 

Charging all the robots individually is tedious and time-consuming. To simplify the process, a 

Kilobot charger storage case is used. It is a 3D printed box [14], with  5 × 5 cylindrical 

chambers inside for placing each individual robot. The bottom and the top of the box are inserted 

two copper plates with springs on top to make electrical contact for charging. It can charge 25 

Kilobots at a time by using a laptop charger rated at 19.6V, 4.62 Amp.  Figure 4 shows the 

charger docking station for our WCU Kilobots. 

 

Figure 4. Kilobot charger 

2.2.3 Bootloader Programmer 

We are using the USB AVRISP XPII as the bootloader programmer of our Kilobot. 

When a Kilobot is built and charged for the first time, it needs to have a bootloader driver. A 

bootloader programmer is very convenient to load the bootloader file into a Kilobot 

microcontroller. We are using Atmel Studio to interface with Kilobot using a bootloader 

programmer.  Figure 5 shows the image of the bootloader programmer.  
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Figure 5. Kilobot Bootloader Programmer    

This programmer comes with a serial peripheral interface that is primarily designed for 

Arduino and some other similar devices. Since the physical orientation of the Kilobot interface 

port is different, we have modified the interface of cable to establish ISP communication with the 

Kilobot. Figure 6 shows the modification of cable for connecting the WCU Kilobot. Figure 7 

shows the connection of Kilobot with the programmer using our modified cable. 

 

Figure 6. Modified cable connection   

 

Figure 7. Kilobot Bootloader interface with Kilobot 
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2.2.4 Overhead Controller 

Programming each Kilobot through cable is tedious and nearly impossible for thousands 

of Kilobots. So, the Harvard University Kilobot team provided the design of an overhead 

controller for programming Kilobots using infrared signals. WCU built the overhead controller 

in-house earlier to program all the robots by interfacing them through IR. The coverage area is 

about a circle of one-meter diameter for programming [15]. Figure 8 shows the overhead 

controller of the WCU Kilobot system [16]. Note that a serial cable is connected between the 

OHC and a robot in Figure 8, that is to send serial data back to the computer through the OHC. 

For programming purpose alone, the IR transmission from the OHC to the robots is wireless. 

 

Figure 8. Overhead controller (OHC) 

To interface with the overhead controller through a USB cable from the computer, a 

graphical user interface app called KiloGUI, as shown in Figure 9, is used [16]. KiloGUI can be 

used to calibrate the Kilobot motors and assign its ID, and to send a program from the computer 

to the OHC, to distribute it to the robots eventually. This app is user-friendly with a serial 

reading window. When the robot is connected to the OHC through a serial cable, as shown in 

Figure 8, KiloGUI can read the data from the robot such as ambient light sensor output or the 

calculation results during an experiment, which is essential for debugging.  
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Figure 9. Kilogui interfacing between the OHC and the computer 

 

2.3 Programming Environment 

We used the online editor and compiler Kilobotics [13] as the programming platform. 

This software system was designed by Alex Cornejo and Mike Rubenstein, and is maintained by 

the Harvard Self-Organizing Systems Research Group. Using this system, we can write the 

program on the web that is stored as a C file in a dropbox. The program is compiled online using 

built-in libraries there, and the generated hex file is downloaded into the dropbox directory. The 

programming environment consists of the following components.   

Kilobot Library: The Kilobot is programmed in C. On the Kilobotics online editor, the 

libraries related to robotics movement and communication (controlling motors, sensors, and 

navigation, and so on) are all installed and accessible by default.   

Editor and Compiler: The Kilobotics online editor allows us to write and compile 

programs for the Kilobot. It uses Amazon servers for compilation, and as a user, we can store all 

of our C program files and the compiled hex files in the dropbox directory. The Kilobot program 
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can also be compiled locally, but mostly, we have used the online compiler, which is easy to use, 

with debugging information inside the editor, as shown in Figure 10.      

 

Figure 10. Kilobotics program editor 

 

2.4 Shape Formation 

Shape formation is a popular task for swarm robots. There are two common processes of 

shape formation, i.e., subtractive shape formation and additive shape formation [10], [17]. In 

both cases, there are some advantages and disadvantages. In subtractive shape formation, a lot of 

robots that are not part of the desired shape finally move away. On the other hand, in the additive 

approach, it is likely that the shape border may be incomplete due to a random combination of 

the robots and the geometric form of the desired shape. 

2.4.1 Subtractive Shape Formation 

Subtractive shape formation is relatively simple in that the robots within the desired 

shape do not need to move. However, it requires a large number of robots to contain the shape 
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initially. First, we will gather all the robots as a group and let them figure out their location 

through multilateration. Then based on the desired shape, each robot will decide whether it’s 

inside of the shape or not. If it’s not a part of the shape, it will evacuate itself from its position 

away from the cluster where the in-shape robots remain. Thus, the shape will be formed as 

demonstrated in the flowchart in Figure 11.  

  

Figure 11. Subtractive shape-formation 

In this process, there is a possibility that a lot of robots may not be a part of the shape and 

hence those robots do not contribute to the final shape. It is a limitation of this process. On the 

other hand, this process is fast when the robots that need to move away are guided by a light 

source. We need a lot of robots to perform this test in the lab, and all the robots should be of the 

same dimension and similar in nature to interact with each other. The previous design of WCU 

Kilobot version 1.1 can perform light intensity related tasks only in a dark environment. To 

perform in the room-light condition, the ambient light sensor circuit needs to be adjusted.  
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2.4.2 Additive Shape Formation 

Additive shape formation is a comparatively complex action that overcomes the 

limitation of the subtractive shape formation, where some robots move away from the desired 

shape to be not used eventually. But in the additive approach, all the available robots can 

contribute to forming the shape as shown in Figure 12.  

 

Figure 12. Additive Shape-formation 

In additive shape formation, the robots move along the cluster of other robots until they 

stop at a position and contribute to the desired shape. This process is typically lengthy and slow. 

However, it complements the subtractive approach and it is beneficial to combine both 

approaches to achieve both speed and accuracy. 
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CHAPTER3: METHODOLOGY 

3.1 Building and Challenges 

We have built Kilobots here at WCU and experienced the building and debugging 

challenges. The building process was tedious when debugging was an essential step. There were 

still PCB boards available from the last design at WCU, Kilobot version 1.1, on 3 by 3 panels. 

The SMD components were no smaller than imperial 0603 size (0.06 inch by 0.03 inch, or 1.55 

mm by 0.85 mm). We ordered a stencil, as shown in Figure 13, to go with the PCB board while 

applying the solder paste. Once we aligned the stencil and the PCB board well and taped them in 

place, we spread a thin layer of solder paste onto the stencil so that an appropriate amount of 

solder was applied to the PCB.  

 

Figure 13. The Stencil that we used 

Then we used a tweezer to place the components onto the board, which would stay in 

place due to the slight viscosity of the solder if the board was not shaken, and then the board was 

baked in an electronic reflow oven nearby our working bench minimizing the unintended 

displacement of the components before baking. After all the components were placed, we first 

visually examined the board with a 10x zoom lens to check if there is any unexpected short, and 



17 

we could fix those short before the board was baked in a reflow oven. The reflow oven we used 

is shown in Figure 14.     

 

Figure 14. The reflow oven we used 

After being baked, the circuit boards would look like Figure 15. There were typically 

numerous shorts as the solders would melt and spread during the heat treatment. Our debugging 

procedures are described in the following section. 

 

Figure 15. Kilobot board (SMD mounted) 

The previous Kilobot design (WCU Kilobot version 1.1) has already replaced all 

components in the original Harvard design to be no smaller than 0603 packages, but soldering by 

hand is still a challenge to place the SMD components. The spacing between the components is 
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tiny, making it difficult to avoid unexpected short circuits. Some regions on the board are more 

crowded than the others, and those regions often need to be debugged.  

To reduce unexpected shorts, we choose the SMD291AX10T5 solder paste with a mesh 

size of T5 where the solder particles are the smallest on the market (15-25 µm, on average). We 

have also ordered a new stencil with even thinner slots than before, to leave less amount of 

solder onto the PCB board. Both adjustments helped us to reduce unexpected shorts.  

As an example of debugging such unexpected shorts, Figure 16 shows a microscopic 

view of the board before the debugging, where there were unexpected shorts between the leads 

on the bottom side of the chip. The IC chip, labeled as U6 in the schematic, is an op-amp with 

seven leads on two sides of it. To examine it, we used both the 10x zoom lens for eye-viewing 

and the pico zoom of the electronic magnifier that displayed the view on the computer monitor. 

Figure 17 shows the board after the debugging, where the leads at the bottom side of the chip, 

U6, were separated. 

 

Figure 16. Kilobot board microscopic view before debugging 
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Figure 17. Kilobot board microscopic view after debugging 

Even if the circuit was built carefully, it was almost impossible to avoid unexpected short 

circuits. So debugging was an essential step while building Kilobots. There were mainly three 

scenarios of unexpected shorts: (i) There was some unexpected short due to excessive solder 

paste, but the excess solder was visible; (ii) The short was caused by the displacement of the 

components so that two components came in contact with each other directly; (iii) The solder got 

under the chip excessively, which was not accessible nor directly debuggable, and we should not 

heat the chip too much to damage it. 

In the first situation, we heated the board using a hot air gun and took the extra solder 

paste away with solder removal wick wire. 

In the second situation, there was no way to get rid of short by simply removing the 

solder. We had to reposition the components. Therefore, we heated the components carefully and 

repositioned them using a tweezer. For example, Figure 18 shows the squire chip in the center 
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(labeled as U2 on the schematic) is surrounded by a group of three resistors on its left and a 

capacitor and two other components on its right. There was no adequate space between the chip 

and its adjacent components to debug the chip U2. We had to remove the adjacent components to 

fix the unexpected short of the chip beneath it and then re-mounted those surrounding 

components back to their original positions. The whole process was time-consuming and very 

inconvenient. So, to eradicate this issue in our revised design, version 1.2, we have increased the 

spacing between the components.  

 

Figure 18. Kilobot board view of inaccessible parts 

In the third situation, it was very tricky to find such a short and fix it, but fortunately, it 

was rare in my building experience. Sometimes the main microcontroller unit was shorted at its 

bottom, which was not visible even in a microscopic view. After thoroughly debugging a board, 

if I still couldn’t get a reasonable impedance between the battery opening and between other 

measurement points, I would assume this internal short issue. I found several cases of this issue 

and fixed them by heating the microcontroller carefully. Most of the chips, including the 

microcontroller, can tolerate a heat source of 120° C from a reasonable distance for no more than 

30 seconds continuously. Sometimes there was unexpected short at the bottom of the chip so I 
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had to heat it to loosen the solder. I would heat the chip for about 15 seconds at a temperature of 

110° C and then pushed it from the top to press the excessive solder out. Then I use the solder 

removing wick wire to get rid of the extra solder. 

3.2 Light Based Operation 

Kilobots is equipped with an ambient light sensor useful for the operations based on light 

intensity. The ambient light sensitivity of the previous designs (Harvard and WCU version 1.1) is 

suitable only for simulations in a dark room. We aimed to update the Kilobot design in WCU 

version 1.3 to operate them in a more tolerant lighting condition than in a dark room [18]. 

To examine the ambient light sensor, we built an equivalent circuit using Arduino Uno 

and the same kind of phototransistor used in Kilobot. A suite of emitter resistance values (from 

the existing design’s 608 kΩ down to 10 kΩ) was used to measure the output voltage at various 

illumination lux levels, as shown in Figure 19. The exact resistor values were measured and 

recorded in Table 2, and then the sensor output at various lux values was measured and reported 

in Table 2. The same data were plotted in Figure 20 for easy visualization.  

 

Figure 19. Ambient light circuit using Arduino Uno 
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Table 2. Ambient light sensing using the Arduino Uno 

Intensity(lux) 2 40 90 200 350 500 600 817 1000 1504 2364 3278 

R35=9.70 KΩ 4 14 86 139 181 210 360 369 420 560 618 844 

R35=26.09 8 38 190 359 444 564 670 954 962 976 980 982 

R35=35.34 27 252 466 528 580 680 814 974 980 982 986 992 

R35=60.25 43 184 901 960 978 968 999 1001 1003 1006 1007 1012 

R35=208.4 60 1003 1004 1002 1006 1003 1005 1005 1007 1008 1012 1015 

R35=598.0 105 1009 1006 990 992 993 994 996 998 998 1000 1017 

 

 

Figure 20. Sensor reading vs. light intensity using Arduino Uno 

Next, we replaced this particular resistor on Kilobot, labeled as R35 in the schematic, by a 

potentiometer soldered onto the board, and tried the same experiment using the serial channel of 

the KiloGUI, as shown in Figure 21.  
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Figure 21. Kilobot with a potentiometer for ambient light test 

We tuned the potentiometer to be exactly the same resistance as what we used in the 

Arduino test. The result was reported in Table 3 and plotted in Figure 22. We found that both the 

Arduino and the Kilobot experiments were consistent to show that the smallest resistance in our 

test is the best to achieve decent sensitivity and range. If this resistance was set to be even 

smaller, we would lose out on the output range and incur too much current in this phototransistor 

circuit, which was not desirable, either. 

Table 3. Ambient light sensing using the potentiometer of a Kilobot  

Intensity(lux) 2 40 90 200 350 500 600 817 1000 1504 2364 3278 

R35=9.70 6 31 137 142 187 213 363 367 521 577 906 994 

R35=26.09 7 65 249 476 540 721 807 923 947 995 1000 1006 

R35=35.34 9 400 570 678 725 841 909 953 984 999 1004 1008 

R35=60.25 27 940 970 990 995 998 997 1004 1006 1008 1011 1018 

R35=208.4 72 1007 1009 1011 1012 1013 1013 1014 1016 1017 1022 1023 

R35=598.0 115 1009 1011 1012 1014 1015 1015 1017 1018 1020 1022 1023 
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Figure 22. Sensor reading vs. light intensity using modified Kilobot 

As shown in Figure 22, when the emitter resistance is at 598 kΩ (close to the previous 

design 604 kΩ), the response saturates at a low illumination level of about 90 lux. However, the 

regular daylight in-door is measured to be about 1000 lux in the Lux Light Meter app. We found 

that the resistance value of R35 = 9.7 kΩ gave the widest response. Our BOM has already 

included an 11 kΩ resistor, so we replaced the resistor R35 = 608 kΩ by 11 kΩ (given the trend 

of the data, it is expected that 11 kΩ will behave similarly as 10 kΩ). 

3.3 Insufficient Memory Issue 

ATmega328P is a high-performance Microchip picoPower 8-bit AVR RISC-based 

microcontroller combined with 32KB ISP flash memory. A portion of this memory (about 5-6 

KB) is used for the bootloader file. In a large-scale complex operation, the loaded program may 

exceed the amount of remaining memory on the chip causing real-time malfunction. Efficient 
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memory usage in coding is needed. Meanwhile, we were considering other microcontrollers that 

could replace the ATmega328P microcontroller with bigger memory. There was no alternative to 

ATmega328P that provides more than 32KB programable memory if every other specification is 

unchanged. To incur minimum change while enlarging the memory, we especially considered the 

programable flash memory, the number of leads, and the physical dimension of the chip. We first 

considered ATmega2560 QFN, in the same family as ATmega328p. However, ATmega2560 has 

100 leads, much more than the 32 leads of ATmega328P, which complicates the building 

process, and it is hard to fit it on the board. A careful review leads to two alternatives to 

ATmega328P, i.e., ATmega-1284 and ATmega-644. Table 4 shows the property comparison 

between the original and the two alternatives. 

Table 4. Microcontroller property comparison 

 

Property Atmega-328P Atmega-1284 Atmega-644 

Leads 32 44 44 

Flash Memory 32 Kbytes 128 Kbytes 64 Kbytes 

EEPROM 1000 bytes 4096 bytes 2000 bytes 

Operating voltage 1.8 to 5.5V 1.8 to 5.5 V 1.8 to 6.0 V 

Temperature Range -40°C to 85°C -55° C to +125° C -40° C to 85° C 

Unit Price $2.08 $3.46 $3.96 

Package 32-VQFN (5x5)  44-VQFN (7x7) 44-VQFN (7x7)  

Core Size 8 Bit 8 Bit 8 Bit 

Package Type QFN(5x5) 44-pad 

VQFN/QFN/MLF 

44-pad QFN/MLF 

Write/Erase Cycles 10,000 10000 10000 

PWM Channels 6 8  6  

Active Mode 0.2 mA 0.4 mA 240 µA 

Power-down Mode 0.1µA 0.1µA 0.1µA 

Power-save Mode 0.75µA (Including 32kHz 

RTC) 

0.6µA (Including 32kHz 

RTC) 

N/A 
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For all the alternative chip replacement, the libraries for programming will likely need to 

be updated for the specific chip. 

3.4 Debugging Model 

After a board is built, there are often numerous unexpected short circuits on the board. 

The most common problematic regions on the board are the crowded regions, as well as the leads 

of the chips, such as the ATmega328P chip (in a Quad Flat No-Lead VQFN package with 32 

leads), as there are often solder bridges between the adjacent leads creating unexpected shorts. A 

thinner-slot stencil was used to help control the amount of solder in use, but such shorts are 

unavoidable. Moreover, the issues on the board might be discovered at various stages of testing, 

but not all at the beginning. After all the parts, including the through-hole components, are 

soldered on, the board cannot be heated in the oven again, making debugging even more 

challenging.  

The debugging procedures include the following: 

• Use a meter with needle leads to identify any unexpected shorts, apply rosin flux, and then 

heat the location using the soldering iron. Extract extra solder by the tip of soldering iron 

or soldering wick if the extra solder is excessive. 

• Use an eyepiece optical magnifying glass or a table-top magnifying monitor to identify the 

misaligned chips, apply rosin flux, and then use stifling air station (hot gun, at a temperature 

of 350 Celsius degrees and zero airflows) to heat up the chip and reposition it using a 

tweezer. 

• The bottom of the chip is not accessible. If a bridge persists even after the rework, heat the 

chip using the hot air gun with controlled duration and temperature so as not to burn the 

chip, and then press the chip using a tweezer to push the extra solder out to fix the bridge. 
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• Meanwhile, there can be also unexpected open on the board. We will first do a visual 

inspection under a microscope, and then test the impedance between pairs of contact points 

(such positions are listed in a spreadsheet, and the impedance between all those testing 

points on that list will be examined) to make sure that values are within a normal range. If 

not, we will apply the solder to fix the open. 

3.5 Kilobot Version Update 

WCU Kilobot version 1.1 was designed earlier by the WCU Kilobots team [19], [20]. 

Based on our building and debugging experience, we made a few revised designs. The WCU 

Kilobot version 1.1 was designed in PADS PCB Design Software by Mentor Graphics. The 

PADS PCB Design license was no longer available, and we used Altium Designer to repopulate 

the earlier design based on schematics, and then redo the layout in a similar fashion. With the 

source files of the schematic and layout in Altium, we could then make revisions to the Kilobot 

design, as shown in Figure 23. The detailed steps we took are explained below. 

 

Figure 23. Workspace in Altium Designer 
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(1) Creating the schematics: 

First, we created a PCB project inside the Altium Designer. Then from the “add new 

project” option, we added two blank schematics (one for the microcontroller unit and one for the 

power unit, in SchDoc) files and one blank PCB (in PcbDoc) file for our design. The schematics 

show which components are used, how they are connected, and the relationship between the 

groups of components. In order to keep things organized, we have divided the schematics into 

two sections, i.e., the microcontroller unit and the power unit. We installed libraries according to 

our project. In addition, we built libraries for some components by drawing schematics and PCB 

footprint. Then from libraries, we clicked and dragged the components on the schematic sheet 

and positioned them at a convenient place. Sometimes, we changed some properties of 

components for our needs. Eventually, we completed the wiring of the components, and Altium 

annotated all the components we used.  

(2) Initializing the PCB: 

After completing the schematic, we switched to the blank PCB layout (PcbDoc file) that 

we created at the beginning of the project to start the PCB design. After that, from view 

configurator, we configured the view of our PCB such as the color of the top and the bottom 

layers. We also set a polar and a cartesian grid to align our components nicely. Then, we defined 

the board shape as a circular board.  

(3) Designing the PCB Stack-up: 

Before transferring our schematic information to the PcbDoc file, we configured the 

layers of the board. In order to modify the layers, we used the “Layer Stack Manager” option 

from the “Design” drop-down menu. For our project, we defined a double-layers PCB in Altium 

Designer that includes the top layer and the bottom layer. We also saved this stack manager 

setting as a template for future use. 
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(4) Pushing schematics footprints from schematic to PCB: 

Unlike other PCB design software, Altium Designer works in a synchronous design 

environment. So we were able to access the schematic design, PCB layout, and the BOM file 

simultaneously. After a successful compilation of the schematic design, the information in the 

SchDoc file was ready to be imported into the PcbDoc file. Schematics can be imported into the 

PCB in two ways: (i) If working with the schematic, from the Design menu, click Update PCB 

Documents. (ii) If working with the PCB, use the Import Changes feature under the Design 

menu. As we made some changes in the schematic while completing the PCB, we used either of 

the options to keep out PCB design synchronized with the schematic file.  

(5) Placing Components: 

Altium Designer provided some flexibility to quickly place components on the circuit 

board. First, we made an automatic placement for the components and then made some major 

modifications of the placement to make the components organized according to our design. 

“Arrange components as groups” feature gave us some extra facility to place the components as 

a group. Also, the shortcut for switching between layers and rotating components was a great 

help to place all the components easily. 

(6) Defining Design Rules: 

Design rules check is an important feature to use for PCB design verification. We used a 

“PCB rules and violations” feature, which checks for 31 standard PCB design rules, to check any 

potential issues, warnings, or errors. We went through each of the rules and fixed any potential 

errors found. While selecting the rule, we need to take into account the tolerance of our preferred 

PCB manufacturer.  
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(7) Inserting Drill Holes: 

Before routing the traces, we needed to insert drill holes (mounting and vias) in our 

design. A via consists of two pads in corresponding positions on different layers of the board, 

that are electrically connected by a hole through the board. We modified some of the via 

locations during trace routing from the via properties dialog window. We also followed the 

guideline by the design for manufacturing (DFM) specifications of standard PCB manufacturers. 

(8) Routing Traces: 

After placing all the components, we routed the traces. We have followed the 

recommended routing guidelines by taking advantage of Altium Designer tools to simplify the 

process, such as highlighting nets and color-coding via routing. Altium provided a few powerful 

autoroute tools that helped us to make routing comparatively easy and productive.   

(9) Adding Labels and Identifiers: 

Finally, after having verified the circuit board, we added labels, identifiers, and markings 

to the board. We referenced identifiers for all the components that would help us during the PCB 

assembly. Meanwhile, we carefully placed polarity indicators on the design that will help 

identify components and their orientations.   

(10) Generating the Design Files: 

We have verified our circuit board layouts by running a design rule check (DRC). 

Though Altium Designer had an automatic check for the layout of our components, we had 

multiple runs of DRC manually to ensure its reliability. Then it is ready to generate the design 

files to be sent to the PCB board manufacturer. We will generate a Gerber file or any other CAD 

file based on the requirement of the manufacturer. 
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CHAPTER 4: RESULTS 

4.1 The first revised design (version 1.2) 

The most time-consuming issue in building the Kilobot was to fix the unexpected short 

circuit. Figure 24 shows the WCU Kilobot version 1.1 PCB layout, where the crowded regions 

that often had shorts are highlighted. We have revised the design to distribute the components 

with wider spacing (0.15 mm in the crowded areas) than the last design (0.1 mm in the same 

area). 

 

Figure 24. Schematic of Kilobot version 1.1 
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Figure 25. Schematic of Kilobot version 1.2 (Microcontroller Unit) 

 

 

Figure 26. Schematic of Kilobot version 1.2 (Power Unit) 
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The WCU Kilobot version 1.2 (with its schematics shown in Figure 25 and Figure 26, 

and its PCB layout in Figure 27) allows us to make further modifications easily as Altium 

Designer is available at WCU. Version 1.2 is a two-layer PCB design, in which the components 

in red are on the top layer, and the wiring in blue is the bottom layer. The pads are shown in 

gray, also in the top layer. In Figure 27, we have highlighted the sections that are modified to 

make the spacing bigger than that in version 1.1.   

 

Figure 27. PCB layout of Kilobot version 1.2 
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After completing the PCB layout, we exported a 3D view of the PCB design as shown in 

Figure 28 to make an easy visualization of the components. For clarification, the top layer of the 

PCB board is where the SMD will be soldered on, but it is the bottom side of the Kilobot, and the 

Kilobot will carry the battery, ambient light sensor, and the jumper wire socket, etc. on its top. 

The three sticks visible in Figure 28 are the legs of the Kilobot: two are powered by vibrational 

motors to allow the Kilobot to move in the slip-stick fashion, while the third leg is for support.   

 

 

Figure 28. 3D view of PCB layout of Kilobot version 1.2 
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4.2 The second revised design (version 1.3) 

In this section, we focused specifically on the light driven movement. The schematic of 

the ambient light sensor is shown in Figure 29. Although the phototransistor circuit is simple and 

straightforward, the choice of R35 impacts the sensitivity of the sensor, as well as in what lighting 

conditions the sensor work.  

 

Figure 29. Ambient Light Circuit update in second revised (WCU Kilobot version 1.3) 

 

After the experiments using both an Arduino circuit and a Kilobot with a potentiometer 

as R35, as described in section 3.2, we adopted R35=11 KΩ in version 1.3 and built a few 

Kilobots using R35=11 KΩ. We compared the Kilobot in version 1.1 and version 1.3 under 

several lighting conditions to carry out the phototaxis movements.  

Move away from light  

The lighting condition to conduct the experiment environment was created by using a 

single source light from the top. The light intensity at the center of the circle is very high and 

gradually decreasing towards the perimeter. The old Kilobot version 1.1 would not perform the 

move-away-from-light well unless the illumination level is low. But the Kilobot version 1.3 
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updated resistance value of R35=11 KΩ to have a wider range of ambient light sensitivity and 

performed well in a wider illumination range of 500 lux to 8000 lux. 

The version 1.1 and version 1.3 Kilobots were compared in the moving-away-from-light 

experiment at the regular daylight, out of 5 trials at each distance and orientation relative to the 

center of the light source. The two locations are at 12 and 20 cm away, respectively, from the 

center of the light source. The four orientations include facing the light (at 0 degrees so that the 

robot needs to turn first before it can move away), with the light on the right (at 90 degrees), with 

the light on the left (at -90 degrees) and with the robot backside facing the light (at 180 degrees, 

so the robot can move directly forward if it is at its best judgment). The counting of successful 

runs in the experiment is listed in Tables 5 and 6: 

Table 5. Successful move-away-from-light test result using R35=604 KΩ out of 5 trials 

Angle (degree) 
Distance from the center (cm) 

12 20 

0 0 0 

90 0 1 

-90 0 0 

180 0 1 

Table 6. Successful move-away-from-light test result using R35=11 KΩ out of 5 trials 

Angle (degree) 
Distance from the center (cm) 

12 20 

0 5 5 

90 5 5 

-90 5 5 

180 5 5 

 

The 0-degree angle is the most challenging situation out of the four orientations, and an 

example at this orientation by each of the version 1.1 and version 1.3 Kilobots are presented. 
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Figure 30 shows the starting point of an old Kilobot (version 1.1) that started to move 

towards the high intensity of light (the green LED light on the Kilobt indicated that it was 

moving forward), and then the sensor read the intensity of light. The output value became 

saturated and the Kilobot stopped (the white LED light on the Kilobt indicated that it had 

stopped), as shown in Figure 31. 

 

 

Figure 30. Move away from light test using old Kilobot (Starting)  

 

Figure 31. Move away from light test using old Kilobot (Stopped due to saturation) 

We conducted the same test using the new Kilobot (version 1.3) in the same lighting 

condition. Kilobot first read the light intensity and started to move forward, as shown in Figure 

32. After moving forward for a small distance, it read the light intensity and the intensity being 

greater than the earlier reading, so it started to rotate left (the red LED light on the Kilobot 
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indicated the left rotation) to reverse direction as shown in Figure 33. Then it started to move 

forward towards the direction of the darker area, as shown in Figure 34. 

 

Figure 32. Move away from light test using new Kilobot (Starting) 

 

Figure 33. Move away from light test using new Kilobot (Turning) 

 

Figure 34. Move away from light test using new Kilobot (Moving Away) 
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By completing the three steps mentioned above, new Kilobot successfully completed the 

move away from light operation. Note that the lux value was measured by an Android mobile 

phone app called Lux Light Meter [21]. A screen copy is shown in Figure 35. 

 

Figure 35. Measuring light intensity using Lux Light Meter 

While conducting the phototaxis movement, it was challenging for the Kilobot to identify 

its own orientation relative to the light source. This motivated us to consider adding a second 

ambient light sensor at the opposite side of the existing one on the next revised version 1.4. 

4.3 The third revised design (version 1.4) 

To address the issue of limited memory and to enhance the controllability of Kilobots in 

the light-driven movements, we proposed the third revision (WCU Kilobot version 1.4) with a 

new microcontroller chip and a second ambient light sensor.  
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To examine the necessity of having one more ambient light sensor, we measured the light 

intensity output at a small distance increment that is very close to the diameter of the robot. We 

marked the distance on the table surface as shown in Figure 36. We moved the Kilobot along the 

perpendicular line of the circles and recorded the light intensity readings using serial 

communication through the overhead controller.  

 

Figure 36. Small distance light sensitivity test for adding the second sensor 

We repeated the experiment for both the old (version 1.1) and the new (version1.3) 

Kilobots with the responses listed in Table 7. The new emitter resistor value in the WCU Kilobot 

version 1.3 showed a more significant difference between the readings than version 1.1 at a small 

increment of distance. 

After the test result proved that two ambient light sensors at the opposite side of the 

Kilobot would provide quite different readings, to help it determine its orientation relative to the 

light source, we added a second ambient light sensor in version 1.4. The schematic is shown in 

Figure 37.   
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Table 7. Ambient light sensitivity for small distance increment 

Distance 

(mm) 

Ambient Light Sensor Reading 

R35=604 kΩ R35=11 kΩ 

0 994 440 

40 992 380 

80 986 295 

120 966 155 

160 778 80 

200 540 53 

240 340 34 

280 190 19 

320 130 11 

360 90 7 

 

 

Figure 37. Schematic of two ambient light sensors 

Another revision in version 1.4 was to swap out the original microcontroller by an 

alternative microcontroller with more memory. We decided to use ATmega1284 as the new 

microcontroller after the comparison in Section 3.3 Insufficient Memory Issue. Table 8 lists the 

key properties of the ATmega1284 chip. 

Meanwhile, given the 44 leads in ATmega1284 as the IO channels (12 more than 

ATmega328P), the second ambient light sensor’s reading can be read and processed by the 

microcontroller as well. After reviewing the compatibility of the new microcontroller with the 
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existing components on both schematic and PCB layout, we built the new schematic for the new 

design. The schematic of the new microcontroller chip ATMega1284 is shown in Figure 38. 

Table 8. Key properties of ATmega1284   

Property Value 

Flash Memory 128 Kbytes 

Leads 44 

Package 44-VQFN (7x7) 

Core Size 8 Bit 

Operating voltage 1.8 to 5.5 V 

 

 

Figure 38. Schematic of the new MCU ATmega1284 

 

After finishing the new schematic of ATmega1284, we continued to incorporate it into 

the full design. The overall schematic is divided into two parts as before; one is the 

microcontroller unit, and the other is the power unit. This microcontroller unit included one more 

ambient light sensor and an updated microcontroller, ATMega1284, as shown in Figure 39. The 

schematic of the power unit in version 1.4 is unchanged from before, as shown in Figure 40. 
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Figure 39. Schematic of the of Kilobot version 1.4 (Microcontroller Unit) 

 

Figure 40. Schematic of the of Kilobot version 1.4 (Power Unit) 
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Once the schematic of version 1.4 was finished, we revised the PCB design. There are 

some differences in this PCB layout from the earlier versions. First, there is one more ambient 

light sensor. With the ambient light reading from two different sensors on the opposite sites of 

the Kilobot, it will improve the controllability of the Kilobots in light intensity based movement. 

Second, the microcontroller is replaced. Third, the components have been repositioned with 

enough spacing in between them (0.12 mm). Figure 41 shows the PCB design of the WCU 

Kilobot version 1.4.  

  

Figure 41. PCB layout of Kilobot version 1.4 
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Figure 42 shows the 3D view of the PCB design in the third revision (version 1.4). In the 

figure, we indicated the sensor position with two black arrows. The two different ambient light 

sensors at the opposite sides of the Kilobot will give different sensor readings at different 

orientations and thus help it to respond to the light easily. This design still fits on a 33 mm 

diameter PCB board, so it still fits the charging and storage box and is comparable with earlier 

designs. 

 

Figure 42. 3D view of Kilobot version 1.4 
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CHAPTER 5: CONCLUSION 

There are several platforms to conduct swarm robotics simulations and experiments. 

Kilobot, a small robot with a 33 mm diameter, is one of the widely used platforms to test swarm 

action in a multi-robot system. This research was conducted to improve the Kilobot hardware 

design for reliable construction and experiment performance based on our building and 

debugging experience. The issues we encountered included unexpected short and open circuits 

when the boards were out of the reflow oven, potentially limited memory at run time, as well as 

the strict lighting condition (in a dark room) to conduct phototaxis movement.  

For debugging, we provided some guidelines and tips that we figured out while building 

Kilobots. The previous WCU Kilobot version 1.1 created in 2016 was done in PADS, for which 

we no longer had the license, and hence we redid the schematics and PCB layout in Altium 

Designer in version 1.2, with added spacing between crowded components to ease the building 

process. Version 1.2 was still in the design phase without prototyping yet but it made the later 

revisions in Altium Designer possible.  

For ambient light sensitivity, we experimentally determined the revised emitter resistance 

and verified it in the move-away-from-light movement, in a relatively brighter environment in 

the room light condition than in a dark room. This version 1.3 was to swap out one component 

from version 1.1 and we could conduct physical experiments using them. 

For the potential limited memory issue, we conducted a comparison of the properties of 

the microcontrollers and updated the PCB of the Kilobot with a new microcontroller 

ATmega1284, which contains 128 KB of flash memory. The new microcontroller also allowed 

the addition of a second ambient light sensor. With it, the Kilobot could tell its orientation 

relative to the light source improving its controllability. This subsequent version 1.4 was also 
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still in the design phase without prototyping, but it addressed two main issues from all the earlier 

experiments, and it laid a solid foundation for future design work. 

In the future, we will explore the required steps to update the library for programming 

and prototype the WCU Kilobot version 1.4. We still have components purchased earlier that 

could be used to build version 1.4. We will then continue carrying out shape formations in both 

additive and subtractive approaches and possibly fuse the two approaches to achieve both 

accuracy and speed.  
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APPENDIX 

Kilobot ambient light sensor test code using Arduino Uno 

 

//Author: Anik Tahabilder 

//Name: Kilobot debuging using arduino uno for ambient light sensitivity. 

//Date: 12/02/2019 

void setup() { 

  // enable serial output 

  Serial.begin(9600); 

} 

void loop() { 

  // read ADC and convert to Voltage 

int adcValue1 = analogRead(A0); 

int adcValue2 = analogRead(A1); 

int adcValue3 = analogRead(A2); 

int adcValue4 = analogRead(A3); 

int adcValue5 = analogRead(A4); 

int adcValue6 = analogRead(A5); 

  Serial.println( "\t" "\t" "Measured1=" + String(adcValue1) + "\t" "\t" "Measured2=" + String(adcValue2) 

+ "\t" "\t"  "Measured3="+ String(adcValue3) +  "\t"  "\t" "Measured4=" + String(adcValue4) + "\t" "\t" 

"Measured5=" + String(adcValue5) + "\t" "\t" "Measured6=" + String(adcValue6)); 

  // wait  

 delay(100); 

} 
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Kilobot code for ambient Light sensitivity 

#include <kilolib.h> 

#define DEBUG 

#include <debug.h> 

int current_light = 0; 

void sample_light() 

{ 

    // The ambient light sensor gives noisy readings. To mitigate this, 

    // we take the average of 300 samples in quick succession. 

    int number_of_samples = 0; 

    uint32_t sum = 0; 

    while (number_of_samples < 100) 

    { 

         int sample = get_ambientlight(); 

        // -1 indicates a failed sample, which should be discarded. 

        if (sample != -1) 

        { 

            sum = sum + sample; 

            number_of_samples = number_of_samples + 1; 

        } 

    } 

    // Compute the average. 

    current_light = sum / number_of_samples; 

    delay(500); 

} 

void setup() { } 

// print voltage every second 

void loop() { 

  sample_light(); 

        delay(100); 

        set_color(RGB(1, 1, 0)); 
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        delay(100); 

        set_color(RGB(0, 0, 0)); 

         printf("Light value\n"); 

         printf("%d\n", current_light);  

         //printf("%f\n", current_light);  

         //printf("%u\n", current_light);  

        } 

int main() { 

    kilo_init(); 

    debug_init(); 

    kilo_start(setup, loop); 

    return 0; 

} 
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Kilobot Code move away from light 

#include <kilolib.h> 

// Constants for light following. 

#define THRESH_LO 200 

#define THRESH_HI 900 

// Constants for motion handling function. 

#define STOP 0 

#define FORWARD 1 

#define LEFT 2 

#define RIGHT 3 

int current_motion = STOP; 

int current_light = 0; 

int previous_light=0; 

// Function to handle motion. 

void set_motion(int new_motion) 

{ 

    // Only take an action if the motion is being changed. 

    if (current_motion != new_motion) 

    { 

        current_motion = new_motion; 

         

        if (current_motion == STOP) 

        { 

            set_motors(0, 0); 

        } 

        else if (current_motion == FORWARD) 

        { 

            spinup_motors(); 

            set_motors(kilo_straight_left, kilo_straight_right); 

        } 

        else if (current_motion == LEFT) 
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        { 

            spinup_motors(); 

            set_motors(kilo_turn_left, 0); 

        } 

        else if (current_motion == RIGHT) 

        { 

            spinup_motors(); 

            set_motors(0, kilo_turn_right); 

        } 

    } 

} 

// Function to sample light. 

void sample_light() 

{ 

    // The ambient light sensor gives noisy readings. To mitigate this, 

    // we take the average of 300 samples in quick succession. 

    int number_of_samples = 0; 

    uint32_t sum = 0; 

    while (number_of_samples < 300) 

    { 

        int sample = get_ambientlight(); 

        // -1 indicates a failed sample, which should be discarded. 

        if (sample != -1) 

        { 

            sum = sum + sample; 

            number_of_samples = number_of_samples + 1; 

        } 

    } 

    // Compute the average. 

    current_light = sum / number_of_samples; 

} 
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void setup() 

{ 

    // This ensures that the robot starts moving. 

    set_motion(LEFT); 

} 

void loop() 

{ 

    sample_light(); 

 //changes behaviour of Kilobots based on light intensity 

    if (current_light>=THRESH_HI){ 

  set_color(RGB(1, 1, 1)); 

        set_motion(FORWARD); 

 } 

    else if (current_light > previous_light) 

    { 

        // Generate an 8-bit random number (between 0 and 2^8 - 1 = 255). 

            int random_number = rand_hard(); 

             

            // Compute the remainder of random_number when divided by 4. 

            // This gives a new random number in the set {0, 1, 2, 3}. 

            int random_direction = (random_number % 4); 

             

            // There is a 50% chance of random_direction being 0 OR 1, in which 

            // case set the LED green and move forward. 

            if ((random_direction == 0) || (random_direction == 1)) 

            { 

                set_color(RGB(0, 1, 1)); 

                set_motion(FORWARD); 

    delay(1000); 

            } 

            // There is a 25% chance of random_direction being 2, in which case 
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            // set the LED red and move left. 

            else if (random_direction == 2) 

            { 

                set_color(RGB(1, 0, 0)); 

                set_motion(LEFT); 

 delay(1000); 

            } 

            // There is a 25% chance of random_direction being 3, in which case 

            // set the LED blue and move right. 

            else if (random_direction == 3) 

            { 

                set_color(RGB(0, 0, 1)); 

                set_motion(RIGHT); 

 delay(1000); 

            } 

        } 

    else if (current_light < previous_light) 

    { 

   set_color(RGB(0, 1, 0)); 

        set_motion(FORWARD); 

        delay(1000); 

    } 

previous_light=current_light; 

} 

int main() 

{ 

    kilo_init(); 

    kilo_start(setup, loop); 

    return 0; 

} 

 


