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ABSTRACT 

A NEXT GENERATION NEURAL PROSTHESIS TO IMPROVE GAIT IN PEOPLE WITH 

MUSCLE WEAKNESS 

Premkumar Subbukutti, M.S.T. 

Western Carolina University (April 2020) 

Director: Dr. Martin L. Tanaka   

 

Some of the 5.3 million people in the US who are living with some form of paralysis may 

be assisted by a neural prosthesis that employs Functional Electrical Stimulation (FES). FES 

produces muscular contractions by applying an electrical stimulation to nerves that supply a 

muscle. The specific goal of this research was to develop a neural prosthesis capable of accurately 

detecting human gait characteristics to determine proper timing for artificial muscle stimulation. 

 This third-generation neural prosthesis uses four force sensitive resistors, four inertial 

measurement units (IMUs), a Raspberry Pi microcontroller, and has improve data collection and 

storage software, real time data filtering and add wireless communication. Tests on a healthy 

individual were performed to evaluate the device’s ability to measure and record gait data. 

Collected data was compared to the data collected from the camera motion capture system to 

determine the device’s accuracy.  

 Testing showed that the neural prosthesis was able to capture the general shape of the joint 

angle curves when compared to the camera motion capture system. However, the joint angles 

obtained from the neural prosthesis device lagged the actual joint angles found using the camera 

system. This is likely due to a slow response time in the gyroscope. In the future, measures will 
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be taken to reduce lag in the gyroscope and reduce jitter in the accelerometer so that data from 

both sensors can be combination to obtain more accurate readings.
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CHAPTER1: INTRODUCTION 

Neurological diseases in America is estimated to impact about 100 million people every 

year [2]. It is predicted that by 2030 dementia and stroke alone will cost $600 billion annually [2]. 

Among the most common neurological diseases, paralysis is dramatically more widespread than 

previously thought. The number of people reported to be living with some form of paralysis [6] 

has reached approximately 1.7 percent of the U.S. population, about 5,357,970 people. Paralysis 

may be defined as a central nervous system disorder resulting in difficulty or inability to move the 

upper or lower extremities. The leading cause of paralysis is stroke (33.7 percent), followed by 

spinal cord injury (27.3 percent) and multiple sclerosis (18.6 percent) [7]. More than 50 million 

people are getting treatment every year, which is estimated to be $306 billion annually, twice the 

$158 billion spent on home care and nursing home services combined. Considering the cost of 

paralysis, developing effective solution can be beneficial to society. So, the research team is 

developing a device to augment the body’s natural function of muscle contraction with the use of 

artificial electrical stimulation. 

Our bodies naturally use electrical signals as part of the nervous system. When we move, 

the brain generates and sends electrical impulses along the spinal cord and nerves to initiate the 

muscles contractions. Functional Electrical Stimulation (FES) is a technique used to produce 

contractions in paralyzed muscles by the application of small pulses of electrical stimulation to 

nerves that supply the paralyzed muscle. The stimulation is controlled in such a way that the 

movement produced provides useful function. FES is usually applied through electrodes that are 

placed on the surface of the skin [26], although electrodes can also be implanted into the muscles 

[27]. Electrodes are placed over nerves or part of muscle that needs artificial stimulation to work. 

The electrodes are then attached to a device that generates the stimulation. The electrical 
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stimulation level is then gradually turned up until the muscles begin to tense or contract. An intact 

peripheral nerve and healthy muscle tissue is required to enable the external source of electricity 

to facilitate the muscle contraction.  

The overall goal of this line of research is to develop a neural prosthesis using FES 

technology to improve gait in people with muscle weakness. There are several muscles that 

contribute to gait, but the research team chose to focus initially on the muscles associated with 

plantarflexion. Thus, the specific goal of this research was to develop a neural prosthesis capable 

of accurately detecting human gait characteristics in order to determine proper timing for muscle 

stimulation. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Human Gait 

         Human gait refers to locomotion achieved through the movement of human limbs. 

Different gait patterns are characterized by differences in limb movement patterns. The movement 

patterns include, differences in overall velocity, forces, and kinetic and potential energy cycles. 

Human gait describes the various ways in which a human move, either naturally or as a result of 

specialized training. There are different gaits in human locomotion, such as walking, running and 

hoping [8]. This project will focus only on walking because it is the most frequently used gait. In 

general, a gait analysis method consists of data acquisition, modelling and assessment. The raw 

gait data are used to calculate features in a specific gait model. Various sensors are used to measure 

the parameters associated with the person’s gait [7]. Human gait data measured for gait analysis 

mainly include lower limb kinematics usually collected with motion capture camera systems [8] 

[10] and ground reaction forces (GRFs) measured with force places implanted into the floor, 

however, full body motion capture is also used in gait analysis[8]. Human gait can also be detected 

with wearable sensors. Inertia Measurement Units (IMUs), containing accelerometers, 

gyroscopes, and magnetometers, are the most widely used wearable sensors in clinical studies.  

2.2 Gait Cycle 

        The gait cycle consists of stance phase and swing phase from heel strike to heel strike 

on the same foot. Normally 60% of one gait cycle is spend in stance and 40% spend in swing. 

During the gait cycle, when the both feet are in contact with the ground, it is considered as a stance 

phase. When one foot is in contact with the ground other is not in contact with the ground, it is 

considered as a swing phase [19].  The stance phase can be divided in to five main parts [15]: Heel 

strike, foot flat, mid stance, terminal stance and toe off. The heel strike is the moment when the 
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heel strikes the ground. After the heel strike, the rest of the foot begins to contact the ground, 

finishing with the toes. The foot is now flat on the ground and the body weight is shifted to the 

stance foot. This part of the gait cycle is known as the foot flat. After the weight is shifted, the 

body balances upon the stance foot while the contralateral limb is swung through. This part of the 

gait cycle is called the mid stance. When the contralateral limb makes heel strike, the heel of the 

ipsilateral foot starts rising from the ground, and the foot enters the terminal stance. This is the 

part of the gait cycle where the heel is in the air and the toe is still in contact with the ground. The 

rising of the foot continues until the toe off. The toe off is the moment that the toe rises in air 

which is the end of the stance phase and beginning of the swing phase. The swing phase is divided 

in to three main parts: initial swing, mid swing, and terminal swing. The initial swing begins with 

elevation of the limb from the ground and ends with the knee at maximal flexion. During mid 

swing, the knee is extended to keep the shank generally vertical. During the terminal swing part 

of the gait cycle, the knee continues to extend, raising the shank out of vertical alignment and ends 

just prior to initial contact of the heel to the ground.  

2.3 Muscles and Joints involved in Human Locomotion 

        Human movement is achieved by a complex and highly coordinated mechanical 

interaction between bones, muscles, ligaments and joints within the musculoskeletal system under 

the control of nervous system. Each leg consists of 3 segments, the thigh, the shank, and the foot, 

and segments are pivot jointed. During gait, each foot periodically interacts with the ground [10]. 

Three main joints and their corresponding muscles contribute to the human locomotion, the hip, 

knee, and ankle. During walking, the ankle provides a great portion of the required energy, so this 

project will focus on enhancing ankle joint torque [11].   
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       Using a simple model, the ankle joint can be considered as a hinge type joint, with 

movement permitted in one plane, the sagittal. The sagittal plane is a plane which divides the body 

in to two parts, the right and left sides. The sagittal plane is also called the longitudinal plane.  

Plantarflexion and dorsiflexion are the main movements that occur at the ankle joint. 

Plantarflexion is a movement which extends the top of your foot points away from the shank, like 

the movement used to push a seed into the ground with the foot (i.e. planter). Plantarflexion is 

used whenever a person stands on his or her toes or points the toes. Dorsiflexion is the movement 

in the opposite direction. With dorsiflexion, the foot moves upwards, so that the top of the foot is 

closer to the shin. The important muscle associated with ankle movement are described below 

[12].  

 Gastrocnemius Muscle: The gastrocnemius muscle is a muscle located on the back portion of 

the lower leg. It is a major component of the calf muscle. It connects to the femur just above the 

knee and attaches to the Achilles tendon, connecting it to the heel.  Because the muscle spans two 

joints, contracting the gastrocnemius muscle leads to plantar flexion of the foot at ankle joint and 

flexing the leg at knee joint. It is involved in running, jumping and other fast movement of the leg.   

 Soleus Muscle: The soleus is a powerful muscle in the back part of the lower leg. It is another 

muscle comprising the calf muscle. It attaches to the tibia and fibula just below the knee and to 

the heel by passing forces through the Achilles tendon. Because this muscle spans only one joint, 

contracting the soleus muscle produces only plantarflexion. This muscle is involved in standing 

and walking.  

Anterior Tibialis Muscle: The anterior tibialis muscle enables the ankle and foot to turn upward. 

It starts from upper lateral surface of the tibia and ends to the base of the first metatarsal bone in 

the foot. The tibialis anterior is needed for dorsiflexion.  
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2.4 Natural and Artificial Muscle Stimulation 

 Natural muscle contraction in human body occurs when the nervous system generates an 

electrical signal called an action potential [29]. This action potential travels through a type of nerve 

cell called motor neuron. The location where the motor neuron interacts with a muscle cell is 

called as neuromuscular junction. When the nervous system signal reaches the neuromuscular 

junction, chemicals are released at the synaptic junction. This causes chemicals to be released in 

the muscle fibers causing the microscopic filaments within the muscle to reorganize themselves 

in the way that shortens the muscle. This shortening of microscopic elements causes overall 

muscle contraction. When the nervous system stops generating electrical signal, the chemical 

process reverses, and the muscle fibers rearrange again leading to muscle relaxation [30].  

   Artificial Electrical Muscle Stimulation (EMS) works by delivering an electrical pulse that 

activates nerves in the body, causing muscles to contract [5]. Medical applications for this 

technology include slowing muscle wasting, making muscles stronger and increasing flexibility 

(range of motion) [28]. It can be used to re-train a muscle and to build strength after a surgery or 

a period of disuse.  

2.5 Second Generation Neural Prosthesis Device 

The previous version of the neural prosthesis, the second-generation device, was designed 

to stimulate the gastrocnemius (GN) muscle during the push off phase using a manual switch 

[33][34].  This research used artificial EMS to induce muscular contractions during gait 

(Figure2.1). EMS was used to contract and relax the muscle at the appropriate time. The EMS 

were connected to the muscle via two electrode pads. Larger electrode pads enable a stronger 

contraction to take place in the muscle, but there is less accuracy in contracting the target muscle. 
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The 1.75-inch x 3.75-inch electrode pads were utilized, because the size was large enough to have 

an enough contraction on the GN muscle.  

The slow twitch muscle fibers respond to frequencies around 30 Hz and the fast twitch 

muscle fiber respond to 80-150 Hz frequencies [13].  EMS 5000 has three pulse frequency range 

5HZ, 30 HZ and 100HZ. Pulse frequency can be chose based on the intensity required to contract 

the muscle. The EMS 5000 was selected for this research because of its low cost and it is approved 

by the FDA [33]. The features of the EMS 5000 are shown in table 2.1 below.   

Table 2.1 Specifications of EMS 

Specification  Value  

Pulse Amplitude  0-80 mA  

Pulse Frequency  5, 30, 100 Hz  

Contraction Time  1-30 Seconds  

Relaxation Time  1-45 Seconds  

Power Source  9-Volt Battery  

 

The device was tested on a healthy individual who walked in a straight line. Test were 

performed with and without the neural prosthesis activated. The results showed that muscle 

stimulation effectively changed the gait of the person walking.  
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Figure 2.1 EMS-5000 (photograph by Premkumar Subbukutti) 

 

2.6 Inertial Measurement Unit   

       Today gait analysis is usually performed with optical systems [10]. These systems can 

deliver highly accurate data, but these camera systems can only see patients within a limited 

viewing area. As an alternative, inertial measurement units (IMU) can be used for some human 

movement detection applications and they have advantages in certain situations. An IMU is an 

electronic device that measures and reports a body’s three-dimensional orientation and angular 

velocity using a combination of accelerometers and gyroscopes. These sensors are low-cost 

devices and can be worn all day, without disturbing the patient’s motion [14]. A considerable 

amount of literature has been published on gait analysis using IMUs. IMUs have been used to 

provide data for pedestrian tracking, to reconstruct walking routes, and to analyze the gait of 

patients [15]. Usually IMUs have three types of sensors, accelerometers, gyroscopes and 

magnetometers embedded within them. An IMU that uses a 3-axis accelerometer and a 3-axis 
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gyroscope is considered to be a 6-Degrees of Freedom (DOF) IMU. If the IMU uses a 3-axis 

magnetometer along with 3-axis accelerometer and gyroscope is considered to be a 9-DOF IMU. 

2.6.1 Accelerometer  

        An accelerometer is an electromechanical device that measures acceleration forces. 

These forces may be static, like the constant force of gravity, or they could be dynamic caused by 

moving or vibrating the accelerometer. Because the acceleration of gravity has a fixed direction 

and magnitude (9.8 m/�2), it can be used to determine the orientation of an IMU in 3D space. 

IMUs output raw tri-axial accelerometer data, ax, ay, and az.  The tilt angles relative to the x and y 

axis can be calculated using the following equations [20]:  

�� = tan�	( ��
��� + ��

) (2-1) 

 

�� = tan�	( ��
��� + ��

) 

 

(2-2) 

  

In the above equations, �� and �� are the tilt angles relative to the x and y axis, respectively. ��, 

�� and �� are the accelerations in x, y and z directions. The most accelerometers will have a 

selectable range of forces that they can measure. These ranges can vary from ±1g up to ±250g.  

An accelerometer is the most accurate sensor to determine the position when the sensor 

is not moving because it measures position directly and it responds almost instantly. But when the 

sensors are accelerating during walking, it can cause errors in positional detection. Accelerometers 

are also vulnerable to high frequency noise caused by jarring of the accelerometer that occurs 

during heel strike. These glitches can be reduced somewhat by averaging the acceleration data 

over time to get a better estimate of the actual position from the accelerometer. 
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2.6.2 Gyroscope 

        Gyroscopes are devices that measure angular velocity around a fixed axis with respect 

to an inertial space. The triaxial gyroscope measures the angular velocity in three directions. 

Gyroscopes output a voltage proportional to the angular velocity. It is determined by its sensitivity, 

measured in millivolt’s per degree per second (mV/ ° /s). The gyroscope gives the rate of change 

of the angular position over time (angular velocity) with a unit of [deg./s]. Thus, the angular 

position can be calculated using equation (2-3) below.  

�(�) =  � ��(�)��
�

�
≈ � ��(�)��

�

�
 (2-3). 

 

In this equation, ��  is the measured angular velocity, � is the estimated angle, �� is the sampling 

time and t is time. When gyroscope data changes faster than the sampling frequency, we will not 

detect it, and the summation approximation will be incorrect. Thus, it is important that we choose 

a good sampling period. 

Because gyroscopes do not detect position directly and sensors are susceptible to errors 

resulting from angular random walk. This cause drift and it increases over time. A high pass filter 

can be used to reduce the long-term (low frequency) errors while not affecting the short-term (high 

frequency) measurements [18].  To reduce the noises in the IMUs we need to design the suitable 

filter to get the precise value. 

2.6.3 Complementary Filter  

        By combining the information obtained from both the accelerometer and the 

gyroscope, a more accurate estimation of the angle can be obtained. This sensor fusion algorithm 

is known as a complementary filter [14], where,   
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                                   � !"�#$#� = % ∗ �'�$(�)(*# + (1 − %) ∗ ��))#"#$(-#�#$                           (2-4) 

In this equation (2-4), �'�$(�)(*# is the angle measured by the gyroscope, ��))#"#$(-#�#$ is the 

angle measured by the accelerometer, � !"�#$#� is the filtered angle and % is a tuning parameter 

between 0 and 1, showing the contribution of each sensor measurement to the final 

estimation. The % in the equation (2-4) is called filter coefficient because it determines how 

much weighting to put on the accelerometer and the gyroscope. It can be seen from the 

equation (2-4) that if the value of % is high, more weighting is put on the gyroscope value and 

less weighting on the accelerometer value.  Correspondingly, lower values of % indicate a 

higher weighting is put on the accelerometer data and a lower weighting on the gyroscope. 

2.6.4 Kalman Filter 

The Kaman filter was designed to predict the actual value, when the measured value 

contains random error. A Kalman filter uses an iterative mathematical process that uses past data 

to quickly estimate the actual value of a parameter. The filter is named after Rudolf E. Kalman 

one of the primary developers of its theory. The Kalman filter has numerous applications in 

technology. The algorithm works in a two-step process. In the prediction step, the Kalman filter 

produces estimates of the current state variables, along with their uncertainties. Once the outcome 

of the next measurement is observed, these estimates are updated using a weighted average, with 

more weight being given to estimates with higher certainty. The algorithm is recursive. It can run 

in real time, using only the present input measurement and the previously calculated state and its 

uncertainty matrix.  No additional past information is required [22]. When using the Kalman filter, 

the three important equations to calculate angle from raw sensor data are, 

./ = 0123
012340516

  (2-5)  
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78�� = 78���	 + ./[:7; − 78���	]             (2-6) 

70=>3 = [1 − ./][70=>3?@]       (2-7)  

./is the gain, 7EST is the error in the estimate, 7:7; is the error in the measured value, 78�� is the current 

estimate, 78��−1 is the previous estimate and MEA is the measured value. The figure 2.2 shows a flow 

chart diagram for the Kalman filter. It shows that the calculation of the current estimation is based on 

previous estimation and the measured value. The Kalman gain will decide the weight factor for the previous 

estimation and the measured value. The Kalman gain is calculated from the error in estimation and the 

error in measurement. If the error in the estimated value is higher than the error in the measured value, the 

Kalman gain will put more weight on measured value. If the error in measured value is higher than the 

error in the estimated value, the Kalman gain will put more weight on estimated value. 

 

 

Figure 2.2 Block diagram of Kalman filter  
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2.7 Raspberry Pi 3 Model B  

         The Raspberry Pi 3 (RPi3) Model B is the third-generation Raspberry Pi (Raspberry 

Pi foundation, Cambridge, United Kingdom) [31][35]. This is the small computer can be used for 

many applications. The wireless LAN uses Bluetooth connectivity. Because of its 10x faster 

processing when compared to Raspberry Pi 1(RPi1), it was selected for this research. The 

availability of features such as the general-purpose input output (GPIO) pins make the computer 

amenable to programming hardware, as well as driving electronic circuitry and collect data 

through various means [16].  

 

Figure 2.3 Raspberry Pi 3(RPi3) [35]. 

2.8 Camera Motion Capture System  

        Gait analysis requires knowledge of parameters such as walking speed, ankle, knee, and hip 

angles, stride length and width, etc. To obtain this information, a 3D human motion capture system 

(Figure 2.4) can be used. Marker based systems [19] are widely used for biometrics application. 

In these systems, several markers are attached to key points of test subjects’ body. These key 

points are captured by the infrared cameras fixed at known positions. The marker positions are 
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transformed into 3D positions using feedback from several cameras [21]. After obtaining the 

marker position from the several cameras and combining the position data with a model of human 

body, one can estimate the joint angles of the test subject. The data can then be used to produce a 

3D skeletal structure representing human movement.   

 

      

Figure 2.4 3-D Camera motion capture system (Photograph by Martin Tanaka). 
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CHAPTER3:  NEURAL PROSTHESIS DEVELOPEMENT 

 

In this thesis, the methods are divided into two sections.  The first section describes the 

design and development of the third-generation neural prosthesis. Like the second-generation 

device, the third-generation neural prosthesis uses four force sensitive resistors (FSRs) placed in 

the shoe to measure pressure on the heel, the first metatarsal, the fifth metatarsal, and the toes. It 

also uses four inertial measurement units (IMUs) [3] to measure the angle of the foot, shank, thigh, 

and pelvis. From these segment angles, joint angles at the ankle, knee and hip [2] can be calculated. 

The major changes with the third-generation device were to change the microcontroller from a 

Teensy microcontroller to a Raspberry Pi microcontroller, improve data collection and storage 

software, use real time filtering instead of post processing and add wireless communication 

between the device and the supporting computer.  

The second section of the methods (Chapter 4) describes testing performed to evaluate the 

accuracy of the neural prosthesis. Data collected from the IMUs was compared to data collected 

using a professional camera system to determine the accuracy of the IMUs. 

3.1 Foot Pressure Detection 

The first step in estimating gait cycle is to detect the starting point of the gait cycle. The 

beginning of the gait cycle i.e. 0% is defined by the heel strike. It can be determined by using 

Force Sensitive Resistor (FSR) placed on heel of the foot. The FSR 402 model was chosen because 

it is cost efficient, compact and easy to use. The cost of a single FSR is approximately $7.00 US. 

The specification of FSR 402 are shown below in Table 3.1.  

 



16 
 

Table 3.1 Specifications of FSRs (Interlink Electronics Inc, California, USA) [30].  

Specification  Value  

Force Range  0 to 20 lb.  

Resistance Change  

          0 to 200 Ω 

(maximum pressure)  

 

An FSR is a device that changes its resistance when a force is applied. In other words, it 

is a sensor that allows you to detect physical pressure, squeezing and weight. FSR’s are usually 

composed of two substrates layers with conductive film and a plastic spacer. When external force 

is applied to the sensor, the conductive film is deformed against the substrate, air in the spacer 

opening is pushed through the air vent, and the conductive film comes in to contact with the 

conductive print on the substrate. The more of the conductive ink area that gets touched by the 

conductive film, the lower the resistance.  

 
 

Figure 3.1 FSR (photograph by Premkumar Subbukutti). 
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 To make the experiment convenient for the participants, all FSRs were attached to a shoe 

insole as shown below (Figure 3.2). 

 

Figure 3.2 FSRs attached to foot pad (photograph by Premkumar Subbukutti). 

The FSR sensor data were collected by a RPi3 microcontroller. Since RPi3 does not have 

an analog to digital conversion (ADC) system, the MCP3008, an 8-channel 10-Bit ADC 

(Microchip Technology, Arizona, USA) with SPI Interface was used. It was able to convert data 

from all four analog FSR’s into digital values. The MCP3008 IC is shown in Figure 3.3.  
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Figure 3.3 MCP3008 IC (photograph by Premkumar Subbukutti).  

The Figure 3.4 shows how the FSR are connected to the RPi3 using the MCP3008 (ADC 

IC). The pull-down resistor was used to predict the state of high or low. It stops the output from 

floating randomly when there is no input condition.   

  

Figure 3.4 FSRs and MCP3008 connected with RPI3. 
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The Figure 3.5 shows the PCB development board designed to connect the FSR with the 

RPi3 using MCP3008 analog to digital converter IC. Since we have four FSR’S we designed four 

pull down resistors along with the MCP3008 IC. 

 

Figure 3.5 PCB Development board for MCP3008 (photograph by Premkumar Subbukutti). 

The Figure 3.6 is the schematic diagram showing how the MCP3008 connected with RPi3. 

Since MCP3008 is working under SPI communication it used a four-pin communication, Master-

out-slave-in (MOSI), master-in-slave-out (MISO), clock (SCK) and slave-select (CE0). 
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 Figure 3.6 Schematic diagram of MCP3008 connected with RPi3 [32].  

 

3.2 Detection of Human Gait Characteristics 

Since the study participant was walking in a straight line, a decision was made not to use 

an IMU equipped with a magnetometer. This is because a magnetometer is used to measure the 

absolute angle in the transverse plane which does not vary much when the participant is walking 

in a straight line. The MPU-6050 (Intenseness, San Jose, California, USA) [21] IMU was selected 

because of its low cost and suitable performance characteristics. The cost of each MPU-6050 is 

about $3.00 US. The specifications for the MPU-6050 are summarized in Table 3.2:  
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Table 3.2 Specifications of MPU-6050 (InvenSense, California, USA) [21]  

Parameter  Accelerometer  Gyroscope  

Full-Scale Range  
±2 g, ±4 g, ±8 g, ±16 g  ±250˚/s, 500 ˚/s,  

±1000 ˚/s, ±2000 ˚/s  

Sensitivity Scale Factor  

16384 LSB/g, 8192  

LSB/g, 4096 LSB/g,  

2048 LSB/g  

131 LSB/(˚/s), 65.3 

LSB/(˚/s), 32.8  

  LSB/(˚/s), 16.4 

LSB/(˚/s)  

Zero offset  X and Y: ±50 mg, Z: 

±80 mg  

±20 ˚/s  

 

All the four IMUs were connected to the Raspberry Pi 3 via I2C protocol (Figure 3.7). This 

protocol is capable of transmitting data in series using only two busses.  They are the data bus 

(SDA) and clock bus (SCL) as shown in the figure below. The python code for reading the sensor’s 

output via this protocol will be included in Appendix A. Each sensor’s output is a two-bytes (16-

bit) signed integer. For having symmetric data around zero, the most significant bit was used for 

determining the sign of the output, thus the range of the received integer was -215 to 215-1 instead 

of 0 to 216-1.  
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Figure 3.7 IMU with RPI3(image created by Premkumar Subbukutti). 

  

This IMU can output tri-axial accelerometer and tri-axial gyroscope values. The 

computing orientation from an accelerometer relies on a constant gravitational pull of 1g (9.8 

m/s^2).  When the IMU is accelerated either by initiating motion or jarring, errors in measurement 

will occur. A gyroscope measures angular velocity (i.e. the change in orientation angle, not 

angular orientation itself). Angle data can be determined by integration of the gyroscope output. 

With integration an initial value must be provided, so the first step is to initialize the sensor with 

a known position value from the accelerometer, then measure the angular velocity (ω). Per the 

IMU’s data sheet, using a scaling factor of 131 will convert the gyroscope output into degrees/sec.  

This scaling factor applies in all the three directions so:  

                                         Angular velocity = gyroscope output/131 (degrees/sec) 

Filters can be used to account for the advantages and disadvantages associated with data collected 

using the accelerometer and gyroscope to better estimate the actual angle. The complementary 

filter and the Kalman filter were both evaluated to determine suitable for this application. After 

examining the results of several tests, the complementary filter was ultimately selected. 



23 
 

 

Figure 3.8 MPU6050 with RPI3 Wiring Diagram [32]. 

 

3.3 Microcontroller/Microprocessor 

        A Raspberry Pi 3(RPi3) microcontroller was utilized in this project because of its 

upgraded technology and popularity in embedded systems.  This was an advancement over the 

second-generation neural prosthesis that used a Teensy microcontroller (PJRC, Oregon, USA). 

The RPi3 is powered by 3.3v lithium battery.  It has two inbuilt advanced technologies, WIFI and 

Internet. It works on its own operating system called Raspbian, so it is easy to save the collected 

data directly in to the RPi3 memory as an excel file. The RP3 3 uses three communication 

protocols I2C, SPI and UART. Thus, it can communicate with the IMUs using I2C communication 

protocol and the FSRs using SPI communication protocol via the MCP3008.  

RPi3 can be programmed using the python platform. The python platform is an effective 

platform for embedded system technology because of its versatile nature, its multitude of libraries 



24 
 

and support from the python community. All the coding for IMUs and FSRs was done using 

python.  A complete list of code is attached in the appendix section A. 

 

Figure 3.9 RPI3 Pin Diagram. 

3.4 Complementary Filter 

        The complementary filter was used in the neural prosthesis to estimate the actual 

angle from the gyroscope and accelerometer data. The gyroscope gives precise values over 

moderate time duration but drifts for longer durations and has no positional reference. The 

accelerometer output does not drift over time, but significant jitter occurs on short time scales. We 

implemented the complementary filter to combine the data with the hope of getting better results 

than could be attained with a single sensor type.  
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Figure 3.10 Block diagram of complementary filter. 

  The equation to estimate the actual angle by combining data from both the accelerometer and 

gyroscope is shown below 

� !"�#$#� = % ∗ �'�$(�)(*# + (1 − %) ∗ ��))#"#$(-#�#$                           (see eqn. 2-4) 

For our application, there are times when high frequency spikes occur. Whenever a test subject’s 

heel strikes the ground, an immense vibration is generated. This can be observed as a high 

frequency spike in the accelerometer data.  

3.4.1 Complementary Filter Code Explanation 

The import command was used to import python libraries into main program. The Import 

smbus was used to get I2C functions into main program. The import math function was used to 

perform mathematical calculations. The import time function was used to implement software 

clock. The import RPi.GPIO as GPIO library function was used to import to control the GPIO 

pins of RPi3 controller. Import CSV was included to store the sensor data’s as a CSV file. 
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Listing 1. 

 The with open function was used to open CSV (Comma Separated Values) file named 

“pitch.ods” and to write the sensor data into it.  CSV is the most common import and export format 

for spreadsheets and databases. The CSV module implements classes to read and write tabular 

data in CSV format. It allows the programmer to read or write the data’s in spreadsheet format. 

Programmers can also describe the CSV formats understood by other applications or define their 

own special-purpose CSV formats. 

                

 

Listing 2. 

 The def__init__ function was used to declare and initialize all the parameters. The 

MPU6050 has an embedded 3-axis MEMS gyroscope, a 3-axis MEMS accelerometer. So, we 

declared and initialized gyro x_axis, gyro y_axis, gyro z_axis, accel x_axis, accel y_axis, accel 

z_axis. To keep the timing count we initialized the timer to zero. The address of the MPU6050 

(ox68) was initialized. 
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Listing 3. 

The sensitivity functions were executed to choose the sensitivity of the IMU sensors. In 

MPU6050 the gyroscope and accelerometer have 4 types of sensitivity selection each, as shown 

in the figure above. So, a dictionary was created in python that has all the four options in it. The 

programmer can decide the value of sensitivity depending on the application’s necessity. 
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Listing 4. 

      The comFilter function was used to calculate the pitch and roll value from the 

acceleration data and gyroscope data to substitute those values into complementary filter formula 

to calculate the actual value. The acceleration and gyro pitch and roll were calculated using their 

respective formulas as shown in the figure above. Once the pitch value of accelerometer and 

gyroscope were calculated, the absolute value can be calculated by using the complementary filter 

equation (2-1). 
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Listing 5. 

The try and except technique was used to detect if an error occurred in current iteration it 

will not crash the whole program.  Instead it will skip the error in current iteration and continue 

to process next step. In simple words the try block lets you test a block of code for errors. The 

except block lets you handle the error. 

 

Listing 6. 
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3.5 Determining Complementary Filter Settings 

Different values of α were evaluated to observe the effect of relying on the accelerometer 

and gyroscope data at different ratios. To suppress the high frequency noise, the research team 

initially tried using an alpha value of 98%, highly relying on data provided by the gyroscope value. 

Upon analysis, it was discovered that the gyroscope takes one second to settle back to zero before 

reliable data can be collected. This finding caused the team to implement a five second wait time 

prior to beginning each walking trial to allow the gyroscope to settle. When more emphasis was 

placed on the accelerometer data, the signal had too much noise for a reliable reading. The research 

team ultimately decided to use 98% on the gyroscope and 2% on the accelerometer to estimate the 

actual angle. 

3.6 Gait Detection 

As discussed in the literature review, the gait will be detected from heel strike to heel 

strike. To accurately determine that actual heel strike, data collected from the accelerometer (98% 

weight on the accelerometer), gyroscope (98% weight on the gyroscope) and the heel FSR were 

compared (Figure 3.11). The blue curve shows data collected from the IMU attached to the foot 

putting 98% weight on the accelerometer, the red curve is the foot angle collected from putting 

98% weight on the gyroscope and the green curve is the heel strike data during walking. In the 

initial part of the curve, the first 100ms, the study participant is standing still. Notice after 100ms 

the person begins to walk at regular pace taking 3 steps. The heel strike has the maximum vibration 

in a single gait cycle. It shows the maximum vibration was happening at 250 ms, 500 ms , and 750 

ms. 
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Figure 3.11 Gait detection using neural prosthesis device. 

 

Since the accelerometers are vulnerable to vibrations, the accurate heel strikes can be 

predicted by comparing the accelerometer data with a heel FSR data. By adding the gyroscope 

with this comparison, the lagging nature of the gyroscope as well as invulnerability towards 

vibration was verified. In the Figure 3.11 the glitch in accelerometer happened when the heel strike 

occurred. Since the gyroscope is not vulnerable to vibration it did not have any glitch associated 

with it, but it has some time lag. From this verification the walking gait was calculated from the 

heel strike to heel strike.   

3.7 Effect of Complementary Filter Weighting Factor 

The complementary filter is used to estimate the actual angle from the gyroscope and 

accelerometer data. The Figure 3.12 shows the foot angle data with different weighting factor on 

the gyroscope. The blue curve shows 98 percent weight on the accelerometer and 2 percent weight 

on the gyroscope. The red curve shows 98 percent weight on the gyroscope and 2 percent weight 
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on the accelerometer. The green curve shows 50 percent weight on the accelerometer and 50 

percent weight on the gyroscope. As shown in the Figure 3.12, increase in the weighting factor on 

the gyroscope leads to lag but no glitches.  Increase in the weighting factor on the accelerometer 

did not show the lag but had glitches.  Putting 50 percent on both the accelerometer and gyroscope 

has minimal amount of lag as well as glitches. Since the joint angle calculation is based on 

difference between two IMUs, the data with the glitches cannot be used to determine the shape. 

Even though the gyroscope data had time lag it can predict the shape precisely. Considering this 

result, the research team decided to go with the gyroscope data over accelerometer data to 

calculate joint angles. 
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Figure 3.12 Foot angle measured by the complementary filter with different alpha values. 

 

  

a) b

c) 
d)
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CHAPTER4: TESTING 

The purpose of the testing was to determine the ability of the neural prosthesis device to 

measure and record gait data using IMUs. Tests on a healthy individual were performed in the 

Human Movement Laboratory located in the Health and Human Science building at Western 

Carolina University. To perform this test, the third-generation neural prosthesis device was used. 

The collected data by the neural prosthesis was compared to the data collected from the camera 

motion capture system to determine the accuracy of the IMUs. The camera motion capture system 

is an industry accepted standard against which other methods can be compared. 

4.1 Equipment Preparation 

The neural prosthesis device was tested the day before to the experiment to prevent any 

delay during the experiment due to technical issues. This test was performed by instructing the 

participant to walk while the research team observed the collected data. We observed mainly the 

quality of the data collected looking for hardware issues and the checking the wireless capability 

to monitor the data collection through the laptops. The data collection rate was also monitored. 

4.2 Participant’s Preparation 

The test protocols were approved by the Institutional Review Board (IRB) at Western 

Carolina University and the participant signed a consent form prior to participating in the 

experiment. The participant was asked to wear shorts so that the camera system could record the 

movement of participant without any disturbance. The purpose of the test and the project were 

explained to the participant prior to the start of the test. The participant was given a trail walk to 

learn the protocol before starting the actual test.  
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4.3 Markers and Sensor Placements 

The shoe insole equipped with the FSR sensors was placed in the right shoe of the 

participant. As shown in Figure 4.1.a., four IMUs were attached to the participant on the foot, 

shank, thigh and hip as shown in the figure 4.1.  

 

Figure 4. 1  Participant with IMUs attached to the a) foot, b) shank, c) thigh, and d) hip 

(Photographs by Martin Tanaka) 

 

 

a) b)

c) d) 
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The difference between foot and shank IMUs can be used to calculate the ankle angle. The 

difference between shank and thigh can be used to calculate knee angle. The difference between 

thigh and pelvis can be used to calculate hip angle. The neural prosthesis device was carried in the 

hand by the participant.  The Figure 4.2 shows the participant with markers and sensors attached. 

 

Figure 4.2 Participant with markers and sensors attached (Photograph by Martin Tanaka). 

 

4.4 Testing Procedure 

Two different testing conditions were performed by the participant. One used 

complementary filter to collect IMU data and the other collected IMU data using the Kalman filter. 

Even though different methods were used to measure the movement data, for the participant, the 

walking trials were identical.  
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During testing, one researcher called out the trial number and the testing condition, to make 

sure the researcher collecting the IMU data was ready to record the data. After data recording 

began, the participant was asked to stand still for 5 seconds to calibrate gyroscope in the IMUs. 

Next, a signal was given to instruct the participant to start walking in a straight line. The participant 

walked normally while the sensors recorded the motion data.  

4.5 Data Collection 

The data from the IMUs and FSRs were collected using RPi3 microcontroller. The data 

was stored as a csv file into the microcontroller. Acceleration and angular velocities in three 

dimensions were captured using four IMUs. Simultaneously, data was collected using the camera 

motion capture system Qualisys Miqus M3 (Qualisys Americas, Chicago, IL, USA) [18]. The data 

was obtained, and post processed in the Qualisys Track Manager software (Qualisys Americas, 

Chicago, IL, USA) [31]. The figure 4.3 shows Qualisys Track Manager software. 

  

Figure 4.3 Qualisys Track Manager software (Photograph by Martin Tanaka) 



38 
 

CHAPTER 5: RESULTS 

In this section, the results obtained from the neural prosthetic device were discussed. The 

ankle, knee and hip angle were measured using the IMUs and camera motion capture system. The 

comparison of the two measurement systems was used to determine the accuracy of the IMUs. 

5.1 Gait Detection using the Neural Prosthesis 

    The data collected by the neural prosthesis during gait analysis is discussed in this 

section. Figure 5.1 shows the ankle angle data. These data were calculated by subtracting the data 

collected using the IMU on the foot from the IMU on the shank. The green curves are plots for 

the seven individual trials that were tested. The average of all seven trails is plotted in red.  

Figure 5.1 Ankle angle measured by the neural prosthesis 
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0% of the gait cycle represents heel strike. At that time the ankle angle was 5 degrees with 

the toe pointing upward. Over the next 18% of the gait cycle the foot drops to flat on the ground 

putting the ankle into about 8 degree of plantarflexion. Weight is applied to the foot and the shank 

begins to roll over the ankle decreasing the ankle angle about 15 degree of dorsiflexion before the 

heel raises from the ground at about 55% of the gait cycle. The ankle angle drops sharply as the 

GN and soleus muscles contract propelling the body forward.  The ankle is at approximately 15 

degrees of plantar flexion, just prior to toe off at 75% of the gait cycle. At this point, the foot lifts 

off the ground and the toes are lifted (dorsiflexion) to avoid tripping during the swing phase. At 

the end of the gait cycle the ankle is back to 5 degrees dorsiflexion in preparation for the next step.  

To calculate the knee joint angle, the data from shank and thigh IMUs were used. Figure 

5.2 shows the knee angle data. These data were calculated by subtracting the data collected from 

the IMU on the shank from the IMU on the thigh. The green curves are plots for the seven 

individual trials that were tested. The average of all seven trails is plotted in red.  
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Figure 5.2 Knee angle measured by the neural prosthesis 

At heel strike, the knee angle was close to 0 degree indicating that the shank and thigh are 

in straight line, so there is no flexion in the knee. Over the next 18% of the gait cycle the knee 

bends as weight is applied achieving a maximum deflection of about 10 degree of flexion, then 

returning to 0 degree by about 50% of the gait cycle.  The knee begins to bend in preparation for 

the forced is applied through the GN and soleus muscles, and it continues to bend trough toe off 

and into the swing phase reaching a maximum value of almost 50 degree of flexion at 80% of the 

gait cycle. In the remaining 20% of the gait cycle, the knee straightens, returning the 0 degrees 

before the next heel strike.  

To calculate the hip joint angle, the data from thigh and pelvis IMUs were used. Figure 

5.3 shows the hip angle data.  These data were calculated by subtracting the data collected from 
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the IMU on the thigh from the IMU on the pelvis. The green curves are plots for the seven 

individual trials that were tested. The average of all seven trails is plotted in red.  

 

Figure 5.3 Hip angle measured by the neural prosthesis 
 

At heel strike, the thigh is angled out in front of the body at a hip angle close to 25 degree 

of flexion. Over the next 60% of the gait cycle the hip extends as the body moves over the limb 

putting the hip into 8 degree of extension. Then the weight is transferred to the contralateral limb 

(the forward limb without the sensor). The hip flexes again as the ipsilateral limb (the limb for 

which data is being collected) swings through. At the end of the gait cycle the hip is back to 25 

degrees of flexion in preparation for the next step. 

The Figure 5.4 shows the average plot of ankle, knee and hip. The average plot of ankle is 

shown in blue color, the average plot of knee is shown in magenta and the average plot of hip is 

shown in cyan.  The curves generated by data collected form the neural prosthesis device shows 
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that the device can detect the gait movement. Now we have angles obtained by neural prosthesis 

these can be compared to data collected by the camera motion capture system to see how 

accurately the neural prosthesis device can calculate human gait. 

Figure 5.4 Average angles measured by the IMUs 

5.2 Camera Motion Capture System’s Data    

 The data of the joint angles collected using the camera motion capture system is discussed 

in this section. Figure 5.5 shows the ankle angle collected using camera motion capture system. It 

shows an over plot of ankle angle and the average of all the seven trails. The individual seven 

trails were plotted in sky blue color and their average was plotted in red. 
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Figure 5.5 Ankle angle measured by the camera motion system. 

Figure 5.6 shows the knee angle and the average of all the seven trails. The individual 

seven trails were plotted in sky blue color and their average was plotted in red. 
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Figure 5.6 Knee angle measured by the camera motion system 

The Figure 5.7 shows an over plot of hip angle and the average of all the seven trails. The 

individual seven trails were plotted in sky blue color and their average was plotted in red. 
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Figure 5.7 Hip angle measured by the camera motion system 

The Figure 5.8 shows the average of ankle, knee and hip on the same plot. The average of 

ankle is shown in blue color, the average of knee is shown in magenta and the average of hip is 

shown in cyan.  
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Figure 5.8 Average angles measured by the camera system. 

5.3 IMUs and Camera Motion Capture System’s Data Comparison 

The Figure 5.9 shows the error curve of ankle data collected from camera system versus 

ankle data collected from neural prosthesis. It shows clearly that the peaks of the neural prosthesis 

data lags 10 percentage in gait cycle when compared to peaks of the camera data. Because the 

angle was calculated using gyroscope data, it is expected to have some lag associated with it 

because of the slow changing nature of the gyroscope. The average error of ankle angle calculated 

between camera system and neural prosthesis is about 6 degrees.              
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Figure 5.9 Error Estimation of ankle angle. 

  Figure 5.10 shows the error curve of knee angle data collected from camera system versus 

knee data collected from neural prosthesis. In the knee angle measurement error is minimal except 

for between 70 to 90 percentage of the gait cycle. The average error of the knee angle data is about 

8 degrees. 
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Figure 5.10 Error Estimation of knee angle 

The Figure 5.11 shows the error curve of hip angle data collected from camera system 

versus hip data collected from neural prosthesis. Other than the starting and ending point it has a 

lot of error associated with it. It unknown why this error exists. The average error of hip angle 

calculated between camera system and neural prosthesis is about 9 degrees. 
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Figure 5.11 Error Estimation of hip angle 
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CHAPTER 6: DISCUSSION 

The specific goal of this research was to develop a neural prosthesis capable of accurately 

detecting human gait characteristics in order to determine proper timing for artificial muscle 

stimulation. In this section the strength and weakness of neural prosthesis will be discussed.  

The neural prosthesis device was developed using a RPi3 microcontroller. Advanced and 

powerful CPU core, faster clock speed, high Random-Access Memory (RAM) and advanced 

technologies like WIFI and python platform in RPi3 convinced our research team to go with this 

microcontroller over teensy microcontroller which was used in second generation of the neural 

prosthesis device. The FSR which was used to find the pressure of various parts of foot is an 

analog sensor which means it will give only the analog output (voltage). It needs a conversion 

from analog to digital value.  The RPi3 does not have a built-in ADC to convert the analog value 

produced by the FSR to a usable digital input. Absence of inbuilt ADC is the major disadvantage 

verses the Arduino or the Teensy microcontrollers used in previous generations.  As a result, a 

separate ADC processor (MCP3008 IC) was used. It led to the addition of extra component in the 

device. 

Upon analysis of the collected data, the ankle angle calculated by the neural prosthesis 

clearly showed that the trails were not tight when compared to the camera motion capture system. 

Especially around 80 percent of the gait cycle, it seemed that the neural prosthesis had some 

trouble measuring the lower peak. However, near 0% and 100% of the gait cycle the curves look 

tight when compared to the peaks of the trail. This could be because of the gyroscope’s slow nature 

in processing the change of values. All the seven trails of the knee angle measured by the neural 

prosthesis were tight when compared to ankle angle trails. It had a problem of detecting the peak 

precisely as well. The knee angle was also vulnerable to sudden peak changes. The hip angle 
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measured using neural prosthesis seems it had lot of errors between the trails when compared to 

ankle and knee.  

On other hand the ankle angle, knee angle, hip angle measured by the camera motion 

capture system replicates all the seven trails were close and tight to each other. There is not much 

of the peak amplitude difference between camera system and neural prosthesis. This says we are 

not facing any problem on predicting the shape or magnitude, but the time lag is the problem 

causing the error. 

 The error curves of joint angle data collected with camera system versus neural prosthesis 

shows clearly that the peaks of the neural prosthesis data lags in gait cycle when compared to 

peaks of the camera system. This lagging nature could be caused by the gyroscope as we know 

that the gyroscopes predicts the change very slowly. The error in start and end of the gait cycle is 

almost zero. If we notice clearly whenever the peak happens the error tend to increase. It could be 

because of the gyroscope vulnerability towards sudden changes. However, the neural prosthesis 

successfully captures the shape of ankle joint and the knee joint. But it had trouble on capturing 

hip joint. This may be the problem associated with pelvis IMU. Because the pelvis had very 

minimal movement on IMU sensor. 
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CHAPTER 7: CONCLUSION 

The neural prosthesis device utilizing integrated IMUs was able to estimate the gait 

characteristics while walking. Usage of RPi3 allowed us to utilize WIFI to monitor the data 

collection at real time. The PCB design for the hardware reduced the wiring complications. The 

design of the complementary filter using python software allowed us to do real time filtering 

instead of post processing which was in the case of second-generation neural prosthesis device. 

This improvement opens the way to utilize the filtered real time data for the future upgrades. The 

results showed that the neural prosthesis was able to capture the general shape of the joint angle 

curves when compared to the camera motion capture system. However, the joint angles obtained 

from the neural prosthesis device lagged that actual joint angles found using the camera system. 

This is likely due to a slow response time in the gyroscope.  

Future work will include measures taken to suppress lag and the drift in the gyroscope 

data. This can be done by including a high pass filter in the design. Since our MPU6050 IMU is a 

digital sensor, implementing a digital high pass filter will be easy to build and test. Digital filters 

also do not drift with temperature or humidity and it does not require precision components like 

analog filters. In addition, a digital filter does not suffer from aging. The main drawback is that 

the digital filter will require additional processing power in the microcontroller processor and must 

be implemented in real time. Even though we implement high pass filter to the gyroscope data it 

will only reduce the drift not the lag. There are also high performance IMUs available in the 

market which has faster processing speed and response time than the MPU6050 IMU which could 

be good option to reduce lag in the gyroscope.  
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On the other hand, we can also utilize the accelerometer data to calculate joint angles once 

we suppress the high frequency noise associated with the accelerometer data.  This can also be 

done by designing digital low pass filter or buying the advanced IMU with a low pass filter built 

into the hardware. The inbuilt hardware low pass filter can reduce the accelerometer noise without 

placing extra stress on microcontroller processor in the neural prosthesis.  

RPi3 microcontroller used in the third-generation neural prosthesis can also be replaced 

with the latest version of Raspberry Pi or with some other improved microcontroller. This change 

will improve the overall device performance. The latest version of RPi family is RPi4 which has 

advanced CPU with fastest clock speed of 1.5GHZ and 4GB RAM. Which will be literally twice 

as fast as the RPi3.  

There is one other idea that could further improve the performance of the neural prosthesis. 

This study quantified that accuracy of joint angle data collected from the neural prosthesis using 

data collected from camera system as a reference. Instead of post processing the neural prosthesis 

data to calculate joint angles, we can directly use the data from foot, shank, thigh and pelvis IMU 

to predict the gait on real time. For our future goal is to design an artificial neural network to 

stimulate the gastrocnemius muscle on the particular percent of the gait.  Real time data is needed 

for this application, so using the data directly from foot, shank, thigh and pelvis will be most 

helpful. 
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APPENDIX A: COMPLEMENTARY FILTER                                              

 
import smbus 
import math 
import time 
import RPi.GPIO as GPIO 
import csv 
with open('pitch.ods','a') as f: 
    writer=csv.writer(f) 
    writer.writerow(['Pitch(98-2)','pitch1(2-98)','pitch2(50-50)','pitch3(60-40)','pitch4(40-60)']) 
a=[] 
 
 
class MPU: 
    def __init__(self, gyro, acc, tau): 
        # Class / object / constructor setup 
        self.gx = None; self.gy = None; self.gz = None; 
        self.ax = None; self.ay = None; self.az = None; 
 
        self.gyroXcal = 0 
        self.gyroYcal = 0 
        self.gyroZcal = 0 
 
        self.gyroRoll = 0 
        self.gyroPitch = 0 
        self.gyroYaw = 0 
 
        self.roll = 0 
        self.pitch = 0 
        self.yaw = 0 
 
        self.dtTimer = 0 
        self.tau = tau 
 
        self.gyroScaleFactor, self.gyroHex = self.gyroSensitivity(gyro) 
        self.accScaleFactor, self.accHex = self.accelerometerSensitivity(acc) 
 
        self.bus = smbus.SMBus(1) 
        self.address = 0x68 
 
    def gyroSensitivity(self, x): 
        # Create dictionary with standard value of 500 deg/s 
        return { 
            250:  [131.0, 0x00], 
            500:  [65.3,  0x08], 
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            1000: [32.8,  0x10], 
            2000: [16.4,  0x18] 
        }.get(x,  [65.3,  0x08]) 
 
    def accelerometerSensitivity(self, x): 
        # Create dictionary with standard value of 4 g 
        return { 
            2:  [16384.0, 0x00], 
            4:  [8192.0,  0x08], 
            8:  [4096.0,  0x10], 
            16: [2048.0,  0x18] 
        }.get(x,[8192.0,  0x08]) 
 
    def setUp(self): 
        # Activate the MPU-6050 
        self.bus.write_byte_data(self.address, 0x6B, 0x00) 
 
        # Configure the accelerometer 
        self.bus.write_byte_data(self.address, 0x1C, self.accHex) 
 
        # Configure the gyro 
        self.bus.write_byte_data(self.address, 0x1B, self.gyroHex) 
 
        # Display message to user 
        print("MPU set up:") 
        print('\tAccelerometer: ' + str(self.accHex) + ' ' + str(self.accScaleFactor)) 
        print('\tGyro: ' + str(self.gyroHex) + ' ' + str(self.gyroScaleFactor) + "\n") 
        #time.sleep(2) 
 
    def eightBit2sixteenBit(self, reg): 
        # Reads high and low 8 bit values and shifts them into 16 bit 
        h = self.bus.read_byte_data(self.address, reg) 
        l = self.bus.read_byte_data(self.address, reg+1) 
        val = (h << 8) + l 
 
        # Make 16 bit unsigned value to signed value (0 to 65535) to (-32768 to +32767) 
        if (val >= 0x8000): 
            return -((65535 - val) + 1) 
        else: 
            return val 
 
    def getRawData(self): 
        self.gx = self.eightBit2sixteenBit(0x43) 
        self.gy = self.eightBit2sixteenBit(0x45) 
        self.gz = self.eightBit2sixteenBit(0x47) 
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        self.ax = self.eightBit2sixteenBit(0x3B) 
        self.ay = self.eightBit2sixteenBit(0x3D) 
        self.az = self.eightBit2sixteenBit(0x3F) 
 
    def calibrateGyro(self, N): 
        # Display message 
        print("Calibrating gyro with " + str(N) + " points. Do not move!") 
 
        # Take N readings for each coordinate and add to itself 
        '''for ii in range(N): 
            self.getRawData() 
            self.gyroXcal += self.gx 
            self.gyroYcal += self.gy 
            self.gyroZcal += self.gz 
 
        # Find average offset value 
        self.gyroXcal /= N 
        self.gyroYcal /= N 
        self.gyroZcal /= N''' 
 
        # Display message and restart timer for comp filter 
        '''print("Calibration complete") 
        print("\tX axis offset: " + str(round(self.gyroXcal,1))) 
        print("\tY axis offset: " + str(round(self.gyroYcal,1))) 
        print("\tZ axis offset: " + str(round(self.gyroZcal,1)) + "\n")''' 
        #time.sleep(2) 
        self.dtTimer = time.time() 
 
    def processIMUvalues(self): 
        # Update the raw data 
        self.getRawData() 
 
        # Subtract the offset calibration values 
        '''self.gx -= self.gyroXcal 
        self.gy -= self.gyroYcal 
        self.gz -= self.gyroZcal''' 
 
        # Convert to instantaneous degrees per second 
        self.gx /= self.gyroScaleFactor 
        self.gy /= self.gyroScaleFactor 
        self.gz /= self.gyroScaleFactor 
 
        # Convert to g force 
        self.ax /= self.accScaleFactor 
        self.ay /= self.accScaleFactor 
        self.az /= self.accScaleFactor 
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    def compFilter(self): 
        # Get the processed values from IMU 
        self.processIMUvalues() 
 
        # Get delta time and record time for next call 
        dt = time.time() - self.dtTimer 
        self.dtTimer = time.time() 
 
        # Acceleration vector angle 
        accPitch = math.degrees(math.atan2(self.ay, self.az)) 
        accRoll = math.degrees(math.atan2(self.ax, self.az)) 
 
        # Gyro integration angle 
        self.gyroRoll -= self.gy * dt 
        self.gyroPitch += self.gx * dt 
        self.gyroYaw += self.gz * dt 
        self.yaw = self.gyroYaw 
 
        # Comp filter 
        self.roll = (self.tau)*(self.roll - self.gy*dt) + (1-self.tau)*(accRoll) 
        self.pitch = (self.tau)*(self.pitch + self.gx*dt) + (1-self.tau)*(accPitch) 
        self.pitch1 = (1-self.tau)*(self.pitch + self.gx*dt) + (self.tau)*(accPitch) 
        self.pitch2 = (0.5)*(self.pitch + self.gx*dt) + (1-0.5)*(accPitch) 
        self.pitch3= (0.6)*(self.pitch + self.gx*dt) + (1-0.6)*(accPitch) 
        self.pitch4= (0.4)*(self.pitch + self.gx*dt) + (1-0.4)*(accPitch) 
 
        # Print data 
        print(" R: " + str(round(self.roll,1)) \ 
            + " P: " + str(round(self.pitch,1)) \ 
            + " Y: " + str(round(self.yaw,1))) 
        a.append(str(round(self.pitch,1))) 
        '''a.append(str(round(self.pitch1,1))) 
        a.append(str(round(self.pitch2,1))) 
        a.append(str(round(self.pitch3,1))) 
        a.append(str(round(self.pitch4,1)))''' 
     
'''GPIO.setmode(GPIO.BOARD) 
GPIO.setup(7,GPIO.OUT) 
GPIO.setup(31,GPIO.OUT) 
GPIO.setup(33,GPIO.OUT) 
GPIO.setup(35,GPIO.OUT) 
 
GPIO.output(29,GPIO.HIGH) 
GPIO.output(31,GPIO.HIGH) 
GPIO.output(33,GPIO.HIGH) 
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GPIO.output(7,GPIO.HIGH)''' 
#GPIO.output(29,GPIO.LOW) 
     
# Set up class 
gyro = 250      # 250, 500, 1000, 2000 [deg/s] 
acc = 2         # 2, 4, 7, 16 [g] 
tau = 0.98 
mpu = MPU(gyro, acc, tau) 
 
# Set up sensor and calibrate gyro with N points 
mpu.setUp() 
mpu.calibrateGyro(500) 
while Actual: 
    '''#GPIO.output(29,GPIO.LOW) 
     
    # Set up class 
    gyro = 250      # 250, 500, 1000, 2000 [deg/s] 
    acc = 2         # 2, 4, 7, 16 [g] 
    tau = 0.98 
    mpu = MPU(gyro, acc, tau) 
 
    # Set up sensor and calibrate gyro with N points 
    mpu.setUp() 
    mpu.calibrateGyro(500)''' 
 
    '''# Run for 20 secounds 
    startTime = time.time() 
    while(time.time() < (startTime + 20)):''' 
    try: 
        mpu.compFilter() 
        with open('pitch.ods','a') as f: 
            writer=csv.writer(f) 
            writer.writerow(a) 
            a=[] 
    except (ZeroDivisionError,IOError) as e: 
        print("program faced an interruption")   
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APPENDIX B: KALMAN FILTER 

#Connections 
#MPU6050 - Raspberry pi 
#VCC - 5V (2 or 4 Board) 
#GND - GND (6 - Board) 
#SCL - SCL (5 - Board) 
#SDA - SDA (3 - Board) 
 
import RPi.GPIO as GPIO 
from Kalman import KalmanAngle 
import smbus                    #import SMBus module of I2C 
import time 
import math 
#SPI 
import Adafruit_GPIO.SPI as SPI 
import Adafruit_MCP3008 
 
import csv 
with open('pitch.ods','a') as f: 
    writer=csv.writer(f) 
    writer.writerow(['fp1','fp2','fp3','fp4','p1','p2','p3','p4']) 
a=[] 
 
#Configuration of SPI ports 
SPI_PORT   = 0 
SPI_DEVICE = 0 
mcp = Adafruit_MCP3008.MCP3008(spi=SPI.SpiDev(SPI_PORT, SPI_DEVICE)) 
 
 
kalmanX = KalmanAngle() 
kalmanY = KalmanAngle() 
 
RestrictPitch = Actual     
radToDeg = 57.2957786 
kalAngleX = 0 
kalAngleY = 0 
#some MPU6050 Registers and their Address 
PWR_MGMT_1   = 0x6B 
SMPLRT_DIV   = 0x19 
CONFIG       = 0x1A 
GYRO_CONFIG  = 0x1B 
INT_ENABLE   = 0x38 
ACCEL_XOUT_H = 0x3B 
ACCEL_YOUT_H = 0x3D 
ACCEL_ZOUT_H = 0x3F 
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GYRO_XOUT_H  = 0x43 
GYRO_YOUT_H  = 0x45 
GYRO_ZOUT_H  = 0x47 
 
 
#Read the gyro and acceleromater values from MPU6050 
def MPU_Init(): 
        #write to sample rate register 
        bus.write_byte_data(DeviceAddress, SMPLRT_DIV, 7) 
 
        #Write to power management register 
        bus.write_byte_data(DeviceAddress, PWR_MGMT_1, 1) 
 
        #Write to Configuration register 
        bus.write_byte_data(DeviceAddress, CONFIG, 0) 
 
        #Write to Gyro configuration register 
        bus.write_byte_data(DeviceAddress, GYRO_CONFIG, 24) 
 
        #Write to interrupt enable register 
        bus.write_byte_data(DeviceAddress, INT_ENABLE, 1) 
 
 
def read_raw_data(addr): 
        #Accelero and Gyro value are 16-bit 
        high = bus.read_byte_data(DeviceAddress, addr) 
        low = bus.read_byte_data(DeviceAddress, addr+1) 
 
        #concatenate higher and lower value 
        value = ((high << 8) | low) 
 
        #to get signed value from mpu6050 
        if(value > 32768): 
                value = value - 65536 
        return value 
 
 
bus = smbus.SMBus(1)    # or bus = smbus.SMBus(0) for older version boards 
DeviceAddress = 0x68   # MPU6050 device address 
 
 
#GPIO pin setup 
GPIO.setmode(GPIO.BOARD) 
GPIO.setup(29,GPIO.OUT) 
GPIO.setup(31,GPIO.OUT) 
GPIO.setup(33,GPIO.OUT) 
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GPIO.setup(35,GPIO.OUT) 
 
GPIO.output(29,GPIO.HIGH) 
GPIO.output(31,GPIO.HIGH) 
GPIO.output(33,GPIO.HIGH) 
GPIO.output(35,GPIO.HIGH) 
while Actual: 
        try: 
            # Read all the ADC channel values in a list. 
            values = [0]*8 
            for i in range(8): 
            # The read_adc function will get the value of the specified channel (0-7). 
                values[i] = mcp.read_adc(i) 
                values[i]=(values[i]/(1024*3.3))*500 
            # Print the ADC values. 
            print('| {0:>4} | {1:>4} | {2:>4} | {3:>4} | {4:>4} | {5:>4} | {6:>4} | {7:>4} 
|'.format(*values)) 
            a.append(values[0]) 
            a.append(values[1]) 
            a.append(values[2]) 
            a.append(values[3]) 
         
            GPIO.output(29,GPIO.LOW) 
            MPU_Init() 
 
            #time.sleep(1) 
            #Read Accelerometer raw value 
            accX = read_raw_data(ACCEL_XOUT_H) 
            accY = read_raw_data(ACCEL_YOUT_H) 
            accZ = read_raw_data(ACCEL_ZOUT_H) 
 
            #print(accX,accY,accZ) 
            #print(math.sqrt((accY**2)+(accZ**2))) 
            if (RestrictPitch): 
                roll = math.atan2(accY,accZ) * radToDeg 
                pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg 
            else: 
                roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg 
                pitch = math.atan2(-accX,accZ) * radToDeg 
            print(roll) 
            kalmanX.setAngle(roll) 
            kalmanY.setAngle(pitch) 
            gyroXAngle = roll; 
            gyroYAngle = pitch; 
            compAngleX = roll; 
            compAngleY = pitch; 
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            timer = time.time() 
            flag = 0 
            if(flag >100): 
                #Problem with the connection 
                print("There is a problem with the connection") 
                flag=0 
                continue 
            try: 
                #Read Accelerometer raw value 
                accX = read_raw_data(ACCEL_XOUT_H) 
                accY = read_raw_data(ACCEL_YOUT_H)   
                accZ = read_raw_data(ACCEL_ZOUT_H) 
 
                #Read Gyroscope raw value 
                gyroX = read_raw_data(GYRO_XOUT_H) 
                gyroY = read_raw_data(GYRO_YOUT_H) 
                gyroZ = read_raw_data(GYRO_ZOUT_H) 
 
                dt = time.time() - timer 
                timer = time.time() 
 
                if (RestrictPitch): 
                    roll = math.atan2(accY,accZ) * radToDeg 
                    pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg 
                else: 
                    roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg 
                    pitch = math.atan2(-accX,accZ) * radToDeg 
 
                gyroXRate = gyroX/131 
                gyroYRate = gyroY/131 
 
                if (RestrictPitch): 
 
                    if((roll < -90 and kalAngleX >90) or (roll > 90 and kalAngleX < -90)): 
                        kalmanX.setAngle(roll) 
                        complAngleX = roll 
                        kalAngleX   = roll 
                        gyroXAngle  = roll 
                    else: 
                        kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt) 
 
                    if(abs(kalAngleX)>90): 
                        gyroYRate  = -gyroYRate 
                        kalAngleY  = kalmanY.getAngle(pitch,gyroYRate,dt) 
                else: 
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                    if((pitch < -90 and kalAngleY >90) or (pitch > 90 and kalAngleY < -90)): 
                        kalmanY.setAngle(pitch) 
                        complAngleY = pitch 
                        kalAngleY   = pitch 
                        gyroYAngle  = pitch 
                    else: 
                        kalAngleY = kalmanY.getAngle(pitch,gyroYRate,dt) 
 
                    if(abs(kalAngleY)>90): 
                        gyroXRate  = -gyroXRate 
                        kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt) 
 
                #angle = (rate of change of angle) * change in time 
                gyroXAngle = gyroXRate * dt 
                gyroYAngle = gyroYAngle * dt 
 
                #compAngle = constant * (old_compAngle + angle_obtained_from_gyro) + constant * 
angle_obtained from accelerometer 
                compAngleX = 0.93 * (compAngleX + gyroXRate * dt) + 0.07 * roll 
                compAngleY = 0.93 * (compAngleY + gyroYRate * dt) + 0.07 * pitch 
 
                if ((gyroXAngle < -180) or (gyroXAngle > 180)): 
                    gyroXAngle = kalAngleX 
                if ((gyroYAngle < -180) or (gyroYAngle > 180)): 
                    gyroYAngle = kalAngleY 
 
                print("Angle X 1: " + str(kalAngleX)+"   " +"Angle Y: " + str(kalAngleY)) 
                a.append(str(kalAngleX)) 
                #print(str(roll)+"  "+str(gyroXAngle)+"  "+str(compAngleX)+"  "+str(kalAngleX)+"  
"+str(pitch)+"  "+str(gyroYAngle)+"  "+str(compAngleY)+"  "+str(kalAngleY)) 
                #time.sleep(0.005) 
                #a.append(str(pitch)) 
                #a.append(str(compAngleX)) 
                GPIO.output(29,GPIO.HIGH) 
            except Exception as exc: 
                flag += 1 
                #time.sleep(1)        
#SENSOR2 
 
            GPIO.output(31,GPIO.LOW) 
            MPU_Init() 
 
            #time.sleep(1) 
            #Read Accelerometer raw value 
            accX = read_raw_data(ACCEL_XOUT_H) 
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            accY = read_raw_data(ACCEL_YOUT_H) 
            accZ = read_raw_data(ACCEL_ZOUT_H) 
 
            #print(accX,accY,accZ) 
            #print(math.sqrt((accY**2)+(accZ**2))) 
            if (RestrictPitch): 
                roll = math.atan2(accY,accZ) * radToDeg 
                pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg 
            else: 
                roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg 
                pitch = math.atan2(-accX,accZ) * radToDeg 
            print(roll) 
            kalmanX.setAngle(roll) 
            kalmanY.setAngle(pitch) 
            gyroXAngle = roll; 
            gyroYAngle = pitch; 
            compAngleX = roll; 
            compAngleY = pitch; 
 
            timer = time.time() 
            flag = 0 
         
         
            if(flag >100): #Problem with the connection 
                print("There is a problem with the connection") 
                flag=0 
                continue 
            try: 
                #Read Accelerometer raw value 
                accX = read_raw_data(ACCEL_XOUT_H) 
                accY = read_raw_data(ACCEL_YOUT_H) 
                accZ = read_raw_data(ACCEL_ZOUT_H) 
 
                #Read Gyroscope raw value 
                gyroX = read_raw_data(GYRO_XOUT_H) 
                gyroY = read_raw_data(GYRO_YOUT_H) 
                gyroZ = read_raw_data(GYRO_ZOUT_H) 
 
                dt = time.time() - timer 
                timer = time.time() 
 
                if (RestrictPitch): 
                    roll = math.atan2(accY,accZ) * radToDeg 
                    pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg 
                else: 
                    roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg 
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                    pitch = math.atan2(-accX,accZ) * radToDeg 
 
                gyroXRate = gyroX/131 
                gyroYRate = gyroY/131 
 
                if (RestrictPitch): 
 
                    if((roll < -90 and kalAngleX >90) or (roll > 90 and kalAngleX < -90)): 
                        kalmanX.setAngle(roll) 
                        complAngleX = roll 
                        kalAngleX   = roll 
                        gyroXAngle  = roll 
                    else: 
                        kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt) 
 
                    if(abs(kalAngleX)>90): 
                        gyroYRate  = -gyroYRate 
                        kalAngleY  = kalmanY.getAngle(pitch,gyroYRate,dt) 
                else: 
 
                    if((pitch < -90 and kalAngleY >90) or (pitch > 90 and kalAngleY < -90)): 
                        kalmanY.setAngle(pitch) 
                        complAngleY = pitch 
                        kalAngleY   = pitch 
                        gyroYAngle  = pitch 
                    else: 
                        kalAngleY = kalmanY.getAngle(pitch,gyroYRate,dt) 
 
                    if(abs(kalAngleY)>90): 
                        gyroXRate  = -gyroXRate 
                        kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt) 
 
                #angle = (rate of change of angle) * change in time 
                gyroXAngle = gyroXRate * dt 
                gyroYAngle = gyroYAngle * dt 
 
                #compAngle = constant * (old_compAngle + angle_obtained_from_gyro) + constant * 
angle_obtained from accelerometer 
                compAngleX = 0.93 * (compAngleX + gyroXRate * dt) + 0.07 * roll 
                compAngleY = 0.93 * (compAngleY + gyroYRate * dt) + 0.07 * pitch 
 
                if ((gyroXAngle < -180) or (gyroXAngle > 180)): 
                    gyroXAngle = kalAngleX 
                if ((gyroYAngle < -180) or (gyroYAngle > 180)): 
                    gyroYAngle = kalAngleY 
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                print("Angle X 2: " + str(kalAngleX)+"   " +"Angle Y: " + str(kalAngleY)) 
                a.append(str(kalAngleX)) 
                GPIO.output(31,GPIO.HIGH) 
            except Exception as exc: 
                flag += 1 
            #time.sleep(1)        
 
 
#SENSOR3 
            GPIO.output(33,GPIO.LOW) 
            MPU_Init() 
 
            #time.sleep(1) 
            #Read Accelerometer raw value 
            accX = read_raw_data(ACCEL_XOUT_H) 
            accY = read_raw_data(ACCEL_YOUT_H) 
            accZ = read_raw_data(ACCEL_ZOUT_H) 
 
            #print(accX,accY,accZ) 
            #print(math.sqrt((accY**2)+(accZ**2))) 
            if (RestrictPitch): 
                roll = math.atan2(accY,accZ) * radToDeg 
                pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg 
            else: 
                roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg 
                pitch = math.atan2(-accX,accZ) * radToDeg 
            print(roll) 
            kalmanX.setAngle(roll) 
            kalmanY.setAngle(pitch) 
            gyroXAngle = roll; 
            gyroYAngle = pitch; 
            compAngleX = roll; 
            compAngleY = pitch; 
 
            timer = time.time() 
            flag = 0 
            if(flag >100): 
                #Problem with the connection 
                print("There is a problem with the connection") 
                flag=0 
                continue 
            try: 
                #Read Accelerometer raw value 
                accX = read_raw_data(ACCEL_XOUT_H) 
                accY = read_raw_data(ACCEL_YOUT_H) 
                accZ = read_raw_data(ACCEL_ZOUT_H) 
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                #Read Gyroscope raw value 
                gyroX = read_raw_data(GYRO_XOUT_H) 
                gyroY = read_raw_data(GYRO_YOUT_H) 
                gyroZ = read_raw_data(GYRO_ZOUT_H) 
 
                dt = time.time() - timer 
                timer = time.time() 
 
                if (RestrictPitch): 
                    roll = math.atan2(accY,accZ) * radToDeg 
                    pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg 
                else: 
                    roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg 
                    pitch = math.atan2(-accX,accZ) * radToDeg 
 
                gyroXRate = gyroX/131 
                gyroYRate = gyroY/131 
 
                if (RestrictPitch): 
 
                    if((roll < -90 and kalAngleX >90) or (roll > 90 and kalAngleX < -90)): 
                        kalmanX.setAngle(roll) 
                        complAngleX = roll 
                        kalAngleX   = roll 
                        gyroXAngle  = roll 
                    else: 
                        kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt) 
 
                    if(abs(kalAngleX)>90): 
                        gyroYRate  = -gyroYRate 
                        kalAngleY  = kalmanY.getAngle(pitch,gyroYRate,dt) 
                else: 
 
                    if((pitch < -90 and kalAngleY >90) or (pitch > 90 and kalAngleY < -90)): 
                        kalmanY.setAngle(pitch) 
                        complAngleY = pitch 
                        kalAngleY   = pitch 
                        gyroYAngle  = pitch 
                    else: 
                        kalAngleY = kalmanY.getAngle(pitch,gyroYRate,dt) 
 
                    if(abs(kalAngleY)>90): 
                        gyroXRate  = -gyroXRate 
                        kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt) 
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                #angle = (rate of change of angle) * change in time 
                gyroXAngle = gyroXRate * dt 
                gyroYAngle = gyroYAngle * dt 
 
                #compAngle = constant * (old_compAngle + angle_obtained_from_gyro) + constant * 
angle_obtained from accelerometer 
                compAngleX = 0.93 * (compAngleX + gyroXRate * dt) + 0.07 * roll 
                compAngleY = 0.93 * (compAngleY + gyroYRate * dt) + 0.07 * pitch 
 
                if ((gyroXAngle < -180) or (gyroXAngle > 180)): 
                    gyroXAngle = kalAngleX 
                if ((gyroYAngle < -180) or (gyroYAngle > 180)): 
                    gyroYAngle = kalAngleY 
 
                print("Angle X 3: " + str(kalAngleX)+"   " +"Angle Y: " + str(kalAngleY)) 
                a.append(str(kalAngleX)) 
                GPIO.output(33,GPIO.HIGH) 
            except Exception as exc: 
                flag += 1 
#SENSOR4 
 
            GPIO.output(35,GPIO.LOW) 
            MPU_Init() 
 
            #time.sleep(1) 
            #Read Accelerometer raw value 
            accX = read_raw_data(ACCEL_XOUT_H) 
            accY = read_raw_data(ACCEL_YOUT_H) 
            accZ = read_raw_data(ACCEL_ZOUT_H) 
 
            #print(accX,accY,accZ) 
            #print(math.sqrt((accY**2)+(accZ**2))) 
            if (RestrictPitch): 
                roll = math.atan2(accY,accZ) * radToDeg 
                pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg 
            else: 
                roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg 
                pitch = math.atan2(-accX,accZ) * radToDeg 
            print(roll) 
            kalmanX.setAngle(roll) 
            kalmanY.setAngle(pitch) 
            gyroXAngle = roll; 
            gyroYAngle = pitch; 
            compAngleX = roll; 
            compAngleY = pitch; 
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            timer = time.time() 
            flag = 0 
            if(flag >100): 
                #Problem with the connection 
                print("There is a problem with the connection") 
                flag=0 
                continue 
            try: 
                #Read Accelerometer raw value 
                accX = read_raw_data(ACCEL_XOUT_H) 
                accY = read_raw_data(ACCEL_YOUT_H) 
                accZ = read_raw_data(ACCEL_ZOUT_H) 
 
                #Read Gyroscope raw value 
                gyroX = read_raw_data(GYRO_XOUT_H) 
                gyroY = read_raw_data(GYRO_YOUT_H) 
                gyroZ = read_raw_data(GYRO_ZOUT_H) 
 
                dt = time.time() - timer 
                timer = time.time() 
 
                if (RestrictPitch): 
                    roll = math.atan2(accY,accZ) * radToDeg 
                    pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg 
                else: 
                    roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg 
                    pitch = math.atan2(-accX,accZ) * radToDeg 
 
                gyroXRate = gyroX/131 
                gyroYRate = gyroY/131 
 
                if (RestrictPitch): 
 
                    if((roll < -90 and kalAngleX >90) or (roll > 90 and kalAngleX < -90)): 
                        kalmanX.setAngle(roll) 
                        complAngleX = roll 
                        kalAngleX   = roll 
                        gyroXAngle  = roll 
                    else: 
                        kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt) 
 
                    if(abs(kalAngleX)>90): 
                        gyroYRate  = -gyroYRate 
                        kalAngleY  = kalmanY.getAngle(pitch,gyroYRate,dt) 
                else: 
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                    if((pitch < -90 and kalAngleY >90) or (pitch > 90 and kalAngleY < -90)): 
                        kalmanY.setAngle(pitch) 
                        complAngleY = pitch 
                        kalAngleY   = pitch 
                        gyroYAngle  = pitch 
                    else: 
                        kalAngleY = kalmanY.getAngle(pitch,gyroYRate,dt) 
 
                    if(abs(kalAngleY)>90): 
                        gyroXRate  = -gyroXRate 
                        kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt) 
 
                #angle = (rate of change of angle) * change in time 
                gyroXAngle = gyroXRate * dt 
                gyroYAngle = gyroYAngle * dt 
 
                #compAngle = constant * (old_compAngle + angle_obtained_from_gyro) + constant * 
angle_obtained from accelerometer 
                compAngleX = 0.93 * (compAngleX + gyroXRate * dt) + 0.07 * roll 
                compAngleY = 0.93 * (compAngleY + gyroYRate * dt) + 0.07 * pitch 
 
                if ((gyroXAngle < -180) or (gyroXAngle > 180)): 
                    gyroXAngle = kalAngleX 
                if ((gyroYAngle < -180) or (gyroYAngle > 180)): 
                    gyroYAngle = kalAngleY 
 
                print("Angle X 4: " + str(kalAngleX)+"   " +"Angle Y: " + str(kalAngleY)) 
                a.append(str(kalAngleX)) 
                GPIO.output(35,GPIO.HIGH) 
                with open('pitch.ods','a') as f: 
                    writer=csv.writer(f) 
                    writer.writerow(a) 
                    a=[] 
            except Exception as exc: 
                flag += 1 
        except (ZeroDivisionError,IOError) as e: 
                print("program faced an interruption") 
                 

 


