

A NEXT GENERATION NEURAL PROSTHESIS TO IMPROVE GAIT IN PEOPLE
WITH MUSCLE WEAKNESS

A thesis presented to the faculty of the Graduate School of
Western Carolina University in partial fulfillment of the

requirements for the degree of Master of Science in Technology

By
Premkumar Subbukutti

Advisor: Dr. Martin L. Tanaka

School of Engineering and Technology

Committee:
Dr. David Hudson, Department of Physical Therapy

Dr. Paul Yanik, School of Engineering and Technology

April 2020

© 2020 by Premkumar Subbukutti

ii

TABLE OF CONTENTS

ABSTRACT -- v

CHAPTER1: INTRODUCTION -- 1

CHAPTER 2: LITERATURE REVIEW --- 3

2.1 Human Gait --- 3

2.2 Gait cycle -- 3

2.3 Muscles and Joints involved in Human Locomotion --- 4

2.4 Natural and Artificial muscle stimulation -- 6

2.5 Second Generation Neural Prosthesis Devic --- 6

2.6 Inertial Measurement Unit -- 8

2.6.1 Accelerometer --- 9

2.6.2 Gyroscope --- 10

2.6.3 Complementary filter -- 10

2.6.4 Kalman filter -- 11

2.7 Raspberry Pi 3 Model B -- 13

2.8 Camera Motion Capture System -- 13

CHAPTER3: NEURAL PROSTHESIS DEVELOPEMENT --- 15

3.1 Foot Pressure Detection -- 15

3.2 Detection of Human Gait Characteristics -- 20

3.3 Microcontroller/microprocessor -- 23

3.4 Complementary filter --- 24

3.4.1 Complementary filter code explanation --- 25

3.5 Determining complementary filter settings -- 30

3.6 Gait detection -- 30

3.7 Effect of complementary filter weighting factor -- 31

CHAPTER4: TESTING --- 34

4.1 Equipment preparation --- 34

4.2 Participant’s preparation --- 34

4.3 Markers and Sensor placements --- 35

4.4 Testing Procedure --- 36

4.5 Data collection --- 37

CHAPTER 5: RESULTS -- 38

5.1 Gait detection using the Neural Prosthesis -- 38

iii

5.2 Camera motion capture system’s data -- 42

5.3 IMUs and camera motion capture system’s data comparison ---------------------------------- 46

CHAPTER 6: DISCUSSION --- 50

CHAPTER 7: CONCLUSION --- 52

REFERENCE --- 54

APPENDIX A: COMPLEMENTARY FILTER --- 59

APPENDIX B: KALMAN FILTER --- 64

iv

LIST OF TABLES

Table 2.1 Specifications of EMS .. 7

Table 3.1 Specifications of FSRs (Interlink Electronics Inc, California, USA) [30]. 16

Table 3.2 Specifications of MPU-6050 (InvenSense, California, USA) [21] 21

v

LIST OF FIGURES

Figure 2.1 EMS-5000 (photograph by Premkumar Subbukutti) ... 8

Figure 2.2 Block diagram of Kalman filter ... 12

Figure 2.3 Raspberry Pi 3(RPi3) [35]. .. 13

Figure 2.4 3-D Camera motion capture system (Photograph by Martin Tanaka). 14

Figure 3.1 FSR (photograph by Premkumar Subbukutti). .. 16

Figure 3.2 FSRs attached to foot pad (photograph by Premkumar Subbukutti). 17

Figure 3.3 MCP3008 IC (photograph by Premkumar Subbukutti). .. 18

Figure 3.4 FSRs and MCP3008 connected with RPI3. ... 18

Figure 3.5 PCB Development board for MCP3008 (photograph by Premkumar Subbukutti). 19

Figure 3.6 Schematic diagram of MCP3008 connected with RPi3 [32]. 20

Figure 3.7 IMU with RPI3(image created by Premkumar Subbukutti). 22

Figure 3.8 MPU6050 with RPI3 Wiring Diagram [32]. ... 23

Figure 3.9 RPI3 Pin Diagram. ... 24

Figure 3.10 Block diagram of complementary filter. .. 25

Figure 3.11 Gait detection using neural prosthesis device. ... 31

Figure 3.12 Foot angle measured by the complementary filter with different alpha values. 33

Figure 4.1 Participant with IMUs attached .. 35

Figure 4.2 Participant with markers and sensors attached . .. 36

Figure 4.3 Qualisys Track Manager software ... 37

Figure 5.1 Ankle angle measured by the neural prosthesis ... 38

Figure 5.2 Knee angle measured by the neural prosthesis .. 40

Figure 5.3 Hip angle measured by the IMUs .. 41

Figure 5.4 Average angles measured by the IMUs ... 42

Figure 5.5 Ankle angle measured by the camera motion system. ... 43

Figure 5.6 Knee angle measured by the camera motion system ... 44

Figure 5.7 Hip angle measured by the camera motion system ... 45

Figure 5.8 Average angles measured by the camera system. .. 46

Figure 5.9 Error Estimation of ankle angle. .. 47

Figure 5.10 Error Estimation of knee angle .. 48

vi

Figure 5.11 Error Estimation of hip angle .. 49

v

ABSTRACT

A NEXT GENERATION NEURAL PROSTHESIS TO IMPROVE GAIT IN PEOPLE WITH

MUSCLE WEAKNESS

Premkumar Subbukutti, M.S.T.

Western Carolina University (April 2020)

Director: Dr. Martin L. Tanaka

Some of the 5.3 million people in the US who are living with some form of paralysis may

be assisted by a neural prosthesis that employs Functional Electrical Stimulation (FES). FES

produces muscular contractions by applying an electrical stimulation to nerves that supply a

muscle. The specific goal of this research was to develop a neural prosthesis capable of accurately

detecting human gait characteristics to determine proper timing for artificial muscle stimulation.

 This third-generation neural prosthesis uses four force sensitive resistors, four inertial

measurement units (IMUs), a Raspberry Pi microcontroller, and has improve data collection and

storage software, real time data filtering and add wireless communication. Tests on a healthy

individual were performed to evaluate the device’s ability to measure and record gait data.

Collected data was compared to the data collected from the camera motion capture system to

determine the device’s accuracy.

 Testing showed that the neural prosthesis was able to capture the general shape of the joint

angle curves when compared to the camera motion capture system. However, the joint angles

obtained from the neural prosthesis device lagged the actual joint angles found using the camera

system. This is likely due to a slow response time in the gyroscope. In the future, measures will

vi

be taken to reduce lag in the gyroscope and reduce jitter in the accelerometer so that data from

both sensors can be combination to obtain more accurate readings.

1

CHAPTER1: INTRODUCTION

Neurological diseases in America is estimated to impact about 100 million people every

year [2]. It is predicted that by 2030 dementia and stroke alone will cost $600 billion annually [2].

Among the most common neurological diseases, paralysis is dramatically more widespread than

previously thought. The number of people reported to be living with some form of paralysis [6]

has reached approximately 1.7 percent of the U.S. population, about 5,357,970 people. Paralysis

may be defined as a central nervous system disorder resulting in difficulty or inability to move the

upper or lower extremities. The leading cause of paralysis is stroke (33.7 percent), followed by

spinal cord injury (27.3 percent) and multiple sclerosis (18.6 percent) [7]. More than 50 million

people are getting treatment every year, which is estimated to be $306 billion annually, twice the

$158 billion spent on home care and nursing home services combined. Considering the cost of

paralysis, developing effective solution can be beneficial to society. So, the research team is

developing a device to augment the body’s natural function of muscle contraction with the use of

artificial electrical stimulation.

Our bodies naturally use electrical signals as part of the nervous system. When we move,

the brain generates and sends electrical impulses along the spinal cord and nerves to initiate the

muscles contractions. Functional Electrical Stimulation (FES) is a technique used to produce

contractions in paralyzed muscles by the application of small pulses of electrical stimulation to

nerves that supply the paralyzed muscle. The stimulation is controlled in such a way that the

movement produced provides useful function. FES is usually applied through electrodes that are

placed on the surface of the skin [26], although electrodes can also be implanted into the muscles

[27]. Electrodes are placed over nerves or part of muscle that needs artificial stimulation to work.

The electrodes are then attached to a device that generates the stimulation. The electrical

2

stimulation level is then gradually turned up until the muscles begin to tense or contract. An intact

peripheral nerve and healthy muscle tissue is required to enable the external source of electricity

to facilitate the muscle contraction.

The overall goal of this line of research is to develop a neural prosthesis using FES

technology to improve gait in people with muscle weakness. There are several muscles that

contribute to gait, but the research team chose to focus initially on the muscles associated with

plantarflexion. Thus, the specific goal of this research was to develop a neural prosthesis capable

of accurately detecting human gait characteristics in order to determine proper timing for muscle

stimulation.

3

CHAPTER 2: LITERATURE REVIEW

2.1 Human Gait

 Human gait refers to locomotion achieved through the movement of human limbs.

Different gait patterns are characterized by differences in limb movement patterns. The movement

patterns include, differences in overall velocity, forces, and kinetic and potential energy cycles.

Human gait describes the various ways in which a human move, either naturally or as a result of

specialized training. There are different gaits in human locomotion, such as walking, running and

hoping [8]. This project will focus only on walking because it is the most frequently used gait. In

general, a gait analysis method consists of data acquisition, modelling and assessment. The raw

gait data are used to calculate features in a specific gait model. Various sensors are used to measure

the parameters associated with the person’s gait [7]. Human gait data measured for gait analysis

mainly include lower limb kinematics usually collected with motion capture camera systems [8]

[10] and ground reaction forces (GRFs) measured with force places implanted into the floor,

however, full body motion capture is also used in gait analysis[8]. Human gait can also be detected

with wearable sensors. Inertia Measurement Units (IMUs), containing accelerometers,

gyroscopes, and magnetometers, are the most widely used wearable sensors in clinical studies.

2.2 Gait Cycle

 The gait cycle consists of stance phase and swing phase from heel strike to heel strike

on the same foot. Normally 60% of one gait cycle is spend in stance and 40% spend in swing.

During the gait cycle, when the both feet are in contact with the ground, it is considered as a stance

phase. When one foot is in contact with the ground other is not in contact with the ground, it is

considered as a swing phase [19]. The stance phase can be divided in to five main parts [15]: Heel

strike, foot flat, mid stance, terminal stance and toe off. The heel strike is the moment when the

4

heel strikes the ground. After the heel strike, the rest of the foot begins to contact the ground,

finishing with the toes. The foot is now flat on the ground and the body weight is shifted to the

stance foot. This part of the gait cycle is known as the foot flat. After the weight is shifted, the

body balances upon the stance foot while the contralateral limb is swung through. This part of the

gait cycle is called the mid stance. When the contralateral limb makes heel strike, the heel of the

ipsilateral foot starts rising from the ground, and the foot enters the terminal stance. This is the

part of the gait cycle where the heel is in the air and the toe is still in contact with the ground. The

rising of the foot continues until the toe off. The toe off is the moment that the toe rises in air

which is the end of the stance phase and beginning of the swing phase. The swing phase is divided

in to three main parts: initial swing, mid swing, and terminal swing. The initial swing begins with

elevation of the limb from the ground and ends with the knee at maximal flexion. During mid

swing, the knee is extended to keep the shank generally vertical. During the terminal swing part

of the gait cycle, the knee continues to extend, raising the shank out of vertical alignment and ends

just prior to initial contact of the heel to the ground.

2.3 Muscles and Joints involved in Human Locomotion

 Human movement is achieved by a complex and highly coordinated mechanical

interaction between bones, muscles, ligaments and joints within the musculoskeletal system under

the control of nervous system. Each leg consists of 3 segments, the thigh, the shank, and the foot,

and segments are pivot jointed. During gait, each foot periodically interacts with the ground [10].

Three main joints and their corresponding muscles contribute to the human locomotion, the hip,

knee, and ankle. During walking, the ankle provides a great portion of the required energy, so this

project will focus on enhancing ankle joint torque [11].

5

 Using a simple model, the ankle joint can be considered as a hinge type joint, with

movement permitted in one plane, the sagittal. The sagittal plane is a plane which divides the body

in to two parts, the right and left sides. The sagittal plane is also called the longitudinal plane.

Plantarflexion and dorsiflexion are the main movements that occur at the ankle joint.

Plantarflexion is a movement which extends the top of your foot points away from the shank, like

the movement used to push a seed into the ground with the foot (i.e. planter). Plantarflexion is

used whenever a person stands on his or her toes or points the toes. Dorsiflexion is the movement

in the opposite direction. With dorsiflexion, the foot moves upwards, so that the top of the foot is

closer to the shin. The important muscle associated with ankle movement are described below

[12].

 Gastrocnemius Muscle: The gastrocnemius muscle is a muscle located on the back portion of

the lower leg. It is a major component of the calf muscle. It connects to the femur just above the

knee and attaches to the Achilles tendon, connecting it to the heel. Because the muscle spans two

joints, contracting the gastrocnemius muscle leads to plantar flexion of the foot at ankle joint and

flexing the leg at knee joint. It is involved in running, jumping and other fast movement of the leg.

 Soleus Muscle: The soleus is a powerful muscle in the back part of the lower leg. It is another

muscle comprising the calf muscle. It attaches to the tibia and fibula just below the knee and to

the heel by passing forces through the Achilles tendon. Because this muscle spans only one joint,

contracting the soleus muscle produces only plantarflexion. This muscle is involved in standing

and walking.

Anterior Tibialis Muscle: The anterior tibialis muscle enables the ankle and foot to turn upward.

It starts from upper lateral surface of the tibia and ends to the base of the first metatarsal bone in

the foot. The tibialis anterior is needed for dorsiflexion.

6

2.4 Natural and Artificial Muscle Stimulation

 Natural muscle contraction in human body occurs when the nervous system generates an

electrical signal called an action potential [29]. This action potential travels through a type of nerve

cell called motor neuron. The location where the motor neuron interacts with a muscle cell is

called as neuromuscular junction. When the nervous system signal reaches the neuromuscular

junction, chemicals are released at the synaptic junction. This causes chemicals to be released in

the muscle fibers causing the microscopic filaments within the muscle to reorganize themselves

in the way that shortens the muscle. This shortening of microscopic elements causes overall

muscle contraction. When the nervous system stops generating electrical signal, the chemical

process reverses, and the muscle fibers rearrange again leading to muscle relaxation [30].

 Artificial Electrical Muscle Stimulation (EMS) works by delivering an electrical pulse that

activates nerves in the body, causing muscles to contract [5]. Medical applications for this

technology include slowing muscle wasting, making muscles stronger and increasing flexibility

(range of motion) [28]. It can be used to re-train a muscle and to build strength after a surgery or

a period of disuse.

2.5 Second Generation Neural Prosthesis Device

The previous version of the neural prosthesis, the second-generation device, was designed

to stimulate the gastrocnemius (GN) muscle during the push off phase using a manual switch

[33][34]. This research used artificial EMS to induce muscular contractions during gait

(Figure2.1). EMS was used to contract and relax the muscle at the appropriate time. The EMS

were connected to the muscle via two electrode pads. Larger electrode pads enable a stronger

contraction to take place in the muscle, but there is less accuracy in contracting the target muscle.

7

The 1.75-inch x 3.75-inch electrode pads were utilized, because the size was large enough to have

an enough contraction on the GN muscle.

The slow twitch muscle fibers respond to frequencies around 30 Hz and the fast twitch

muscle fiber respond to 80-150 Hz frequencies [13]. EMS 5000 has three pulse frequency range

5HZ, 30 HZ and 100HZ. Pulse frequency can be chose based on the intensity required to contract

the muscle. The EMS 5000 was selected for this research because of its low cost and it is approved

by the FDA [33]. The features of the EMS 5000 are shown in table 2.1 below.

Table 2.1 Specifications of EMS

Specification Value

Pulse Amplitude 0-80 mA

Pulse Frequency 5, 30, 100 Hz

Contraction Time 1-30 Seconds

Relaxation Time 1-45 Seconds

Power Source 9-Volt Battery

The device was tested on a healthy individual who walked in a straight line. Test were

performed with and without the neural prosthesis activated. The results showed that muscle

stimulation effectively changed the gait of the person walking.

8

Figure 2.1 EMS-5000 (photograph by Premkumar Subbukutti)

2.6 Inertial Measurement Unit

 Today gait analysis is usually performed with optical systems [10]. These systems can

deliver highly accurate data, but these camera systems can only see patients within a limited

viewing area. As an alternative, inertial measurement units (IMU) can be used for some human

movement detection applications and they have advantages in certain situations. An IMU is an

electronic device that measures and reports a body’s three-dimensional orientation and angular

velocity using a combination of accelerometers and gyroscopes. These sensors are low-cost

devices and can be worn all day, without disturbing the patient’s motion [14]. A considerable

amount of literature has been published on gait analysis using IMUs. IMUs have been used to

provide data for pedestrian tracking, to reconstruct walking routes, and to analyze the gait of

patients [15]. Usually IMUs have three types of sensors, accelerometers, gyroscopes and

magnetometers embedded within them. An IMU that uses a 3-axis accelerometer and a 3-axis

9

gyroscope is considered to be a 6-Degrees of Freedom (DOF) IMU. If the IMU uses a 3-axis

magnetometer along with 3-axis accelerometer and gyroscope is considered to be a 9-DOF IMU.

2.6.1 Accelerometer

 An accelerometer is an electromechanical device that measures acceleration forces.

These forces may be static, like the constant force of gravity, or they could be dynamic caused by

moving or vibrating the accelerometer. Because the acceleration of gravity has a fixed direction

and magnitude (9.8 m/�2), it can be used to determine the orientation of an IMU in 3D space.

IMUs output raw tri-axial accelerometer data, ax, ay, and az. The tilt angles relative to the x and y

axis can be calculated using the following equations [20]:

�� = tan�	(��
��� + ��

) (2-1)

�� = tan�	(��
��� + ��

)

(2-2)

In the above equations, �� and �� are the tilt angles relative to the x and y axis, respectively. ��,

�� and �� are the accelerations in x, y and z directions. The most accelerometers will have a

selectable range of forces that they can measure. These ranges can vary from ±1g up to ±250g.

An accelerometer is the most accurate sensor to determine the position when the sensor

is not moving because it measures position directly and it responds almost instantly. But when the

sensors are accelerating during walking, it can cause errors in positional detection. Accelerometers

are also vulnerable to high frequency noise caused by jarring of the accelerometer that occurs

during heel strike. These glitches can be reduced somewhat by averaging the acceleration data

over time to get a better estimate of the actual position from the accelerometer.

10

2.6.2 Gyroscope

 Gyroscopes are devices that measure angular velocity around a fixed axis with respect

to an inertial space. The triaxial gyroscope measures the angular velocity in three directions.

Gyroscopes output a voltage proportional to the angular velocity. It is determined by its sensitivity,

measured in millivolt’s per degree per second (mV/ ° /s). The gyroscope gives the rate of change

of the angular position over time (angular velocity) with a unit of [deg./s]. Thus, the angular

position can be calculated using equation (2-3) below.

�(�) = � ��(�)��
�

�
≈ � ��(�)��

�

�
 (2-3).

In this equation, �� is the measured angular velocity, � is the estimated angle, �� is the sampling

time and t is time. When gyroscope data changes faster than the sampling frequency, we will not

detect it, and the summation approximation will be incorrect. Thus, it is important that we choose

a good sampling period.

Because gyroscopes do not detect position directly and sensors are susceptible to errors

resulting from angular random walk. This cause drift and it increases over time. A high pass filter

can be used to reduce the long-term (low frequency) errors while not affecting the short-term (high

frequency) measurements [18]. To reduce the noises in the IMUs we need to design the suitable

filter to get the precise value.

2.6.3 Complementary Filter

 By combining the information obtained from both the accelerometer and the

gyroscope, a more accurate estimation of the angle can be obtained. This sensor fusion algorithm

is known as a complementary filter [14], where,

11

 � !"�#$#� = % ∗ �'�$(�)(*# + (1 − %) ∗ ��))#"#$(-#�#$ (2-4)

In this equation (2-4), �'�$(�)(*# is the angle measured by the gyroscope, ��))#"#$(-#�#$ is the

angle measured by the accelerometer, � !"�#$#� is the filtered angle and % is a tuning parameter

between 0 and 1, showing the contribution of each sensor measurement to the final

estimation. The % in the equation (2-4) is called filter coefficient because it determines how

much weighting to put on the accelerometer and the gyroscope. It can be seen from the

equation (2-4) that if the value of % is high, more weighting is put on the gyroscope value and

less weighting on the accelerometer value. Correspondingly, lower values of % indicate a

higher weighting is put on the accelerometer data and a lower weighting on the gyroscope.

2.6.4 Kalman Filter

The Kaman filter was designed to predict the actual value, when the measured value

contains random error. A Kalman filter uses an iterative mathematical process that uses past data

to quickly estimate the actual value of a parameter. The filter is named after Rudolf E. Kalman

one of the primary developers of its theory. The Kalman filter has numerous applications in

technology. The algorithm works in a two-step process. In the prediction step, the Kalman filter

produces estimates of the current state variables, along with their uncertainties. Once the outcome

of the next measurement is observed, these estimates are updated using a weighted average, with

more weight being given to estimates with higher certainty. The algorithm is recursive. It can run

in real time, using only the present input measurement and the previously calculated state and its

uncertainty matrix. No additional past information is required [22]. When using the Kalman filter,

the three important equations to calculate angle from raw sensor data are,

./ = 0123
012340516

 (2-5)

12

78�� = 78���	 + ./[:7; − 78���] (2-6)

70=>3 = [1 − ./][70=>3?@] (2-7)

./is the gain, 7EST is the error in the estimate, 7:7; is the error in the measured value, 78�� is the current

estimate, 78��−1 is the previous estimate and MEA is the measured value. The figure 2.2 shows a flow

chart diagram for the Kalman filter. It shows that the calculation of the current estimation is based on

previous estimation and the measured value. The Kalman gain will decide the weight factor for the previous

estimation and the measured value. The Kalman gain is calculated from the error in estimation and the

error in measurement. If the error in the estimated value is higher than the error in the measured value, the

Kalman gain will put more weight on measured value. If the error in measured value is higher than the

error in the estimated value, the Kalman gain will put more weight on estimated value.

Figure 2.2 Block diagram of Kalman filter

13

2.7 Raspberry Pi 3 Model B

 The Raspberry Pi 3 (RPi3) Model B is the third-generation Raspberry Pi (Raspberry

Pi foundation, Cambridge, United Kingdom) [31][35]. This is the small computer can be used for

many applications. The wireless LAN uses Bluetooth connectivity. Because of its 10x faster

processing when compared to Raspberry Pi 1(RPi1), it was selected for this research. The

availability of features such as the general-purpose input output (GPIO) pins make the computer

amenable to programming hardware, as well as driving electronic circuitry and collect data

through various means [16].

Figure 2.3 Raspberry Pi 3(RPi3) [35].

2.8 Camera Motion Capture System

 Gait analysis requires knowledge of parameters such as walking speed, ankle, knee, and hip

angles, stride length and width, etc. To obtain this information, a 3D human motion capture system

(Figure 2.4) can be used. Marker based systems [19] are widely used for biometrics application.

In these systems, several markers are attached to key points of test subjects’ body. These key

points are captured by the infrared cameras fixed at known positions. The marker positions are

14

transformed into 3D positions using feedback from several cameras [21]. After obtaining the

marker position from the several cameras and combining the position data with a model of human

body, one can estimate the joint angles of the test subject. The data can then be used to produce a

3D skeletal structure representing human movement.

Figure 2.4 3-D Camera motion capture system (Photograph by Martin Tanaka).

15

CHAPTER3: NEURAL PROSTHESIS DEVELOPEMENT

In this thesis, the methods are divided into two sections. The first section describes the

design and development of the third-generation neural prosthesis. Like the second-generation

device, the third-generation neural prosthesis uses four force sensitive resistors (FSRs) placed in

the shoe to measure pressure on the heel, the first metatarsal, the fifth metatarsal, and the toes. It

also uses four inertial measurement units (IMUs) [3] to measure the angle of the foot, shank, thigh,

and pelvis. From these segment angles, joint angles at the ankle, knee and hip [2] can be calculated.

The major changes with the third-generation device were to change the microcontroller from a

Teensy microcontroller to a Raspberry Pi microcontroller, improve data collection and storage

software, use real time filtering instead of post processing and add wireless communication

between the device and the supporting computer.

The second section of the methods (Chapter 4) describes testing performed to evaluate the

accuracy of the neural prosthesis. Data collected from the IMUs was compared to data collected

using a professional camera system to determine the accuracy of the IMUs.

3.1 Foot Pressure Detection

The first step in estimating gait cycle is to detect the starting point of the gait cycle. The

beginning of the gait cycle i.e. 0% is defined by the heel strike. It can be determined by using

Force Sensitive Resistor (FSR) placed on heel of the foot. The FSR 402 model was chosen because

it is cost efficient, compact and easy to use. The cost of a single FSR is approximately $7.00 US.

The specification of FSR 402 are shown below in Table 3.1.

16

Table 3.1 Specifications of FSRs (Interlink Electronics Inc, California, USA) [30].

Specification Value

Force Range 0 to 20 lb.

Resistance Change

 0 to 200 Ω

(maximum pressure)

An FSR is a device that changes its resistance when a force is applied. In other words, it

is a sensor that allows you to detect physical pressure, squeezing and weight. FSR’s are usually

composed of two substrates layers with conductive film and a plastic spacer. When external force

is applied to the sensor, the conductive film is deformed against the substrate, air in the spacer

opening is pushed through the air vent, and the conductive film comes in to contact with the

conductive print on the substrate. The more of the conductive ink area that gets touched by the

conductive film, the lower the resistance.

Figure 3.1 FSR (photograph by Premkumar Subbukutti).

17

 To make the experiment convenient for the participants, all FSRs were attached to a shoe

insole as shown below (Figure 3.2).

Figure 3.2 FSRs attached to foot pad (photograph by Premkumar Subbukutti).

The FSR sensor data were collected by a RPi3 microcontroller. Since RPi3 does not have

an analog to digital conversion (ADC) system, the MCP3008, an 8-channel 10-Bit ADC

(Microchip Technology, Arizona, USA) with SPI Interface was used. It was able to convert data

from all four analog FSR’s into digital values. The MCP3008 IC is shown in Figure 3.3.

18

Figure 3.3 MCP3008 IC (photograph by Premkumar Subbukutti).

The Figure 3.4 shows how the FSR are connected to the RPi3 using the MCP3008 (ADC

IC). The pull-down resistor was used to predict the state of high or low. It stops the output from

floating randomly when there is no input condition.

Figure 3.4 FSRs and MCP3008 connected with RPI3.

19

The Figure 3.5 shows the PCB development board designed to connect the FSR with the

RPi3 using MCP3008 analog to digital converter IC. Since we have four FSR’S we designed four

pull down resistors along with the MCP3008 IC.

Figure 3.5 PCB Development board for MCP3008 (photograph by Premkumar Subbukutti).

The Figure 3.6 is the schematic diagram showing how the MCP3008 connected with RPi3.

Since MCP3008 is working under SPI communication it used a four-pin communication, Master-

out-slave-in (MOSI), master-in-slave-out (MISO), clock (SCK) and slave-select (CE0).

20

 Figure 3.6 Schematic diagram of MCP3008 connected with RPi3 [32].

3.2 Detection of Human Gait Characteristics

Since the study participant was walking in a straight line, a decision was made not to use

an IMU equipped with a magnetometer. This is because a magnetometer is used to measure the

absolute angle in the transverse plane which does not vary much when the participant is walking

in a straight line. The MPU-6050 (Intenseness, San Jose, California, USA) [21] IMU was selected

because of its low cost and suitable performance characteristics. The cost of each MPU-6050 is

about $3.00 US. The specifications for the MPU-6050 are summarized in Table 3.2:

21

Table 3.2 Specifications of MPU-6050 (InvenSense, California, USA) [21]

Parameter Accelerometer Gyroscope

Full-Scale Range
±2 g, ±4 g, ±8 g, ±16 g ±250˚/s, 500 ˚/s,

±1000 ˚/s, ±2000 ˚/s

Sensitivity Scale Factor

16384 LSB/g, 8192

LSB/g, 4096 LSB/g,

2048 LSB/g

131 LSB/(˚/s), 65.3

LSB/(˚/s), 32.8

 LSB/(˚/s), 16.4

LSB/(˚/s)

Zero offset X and Y: ±50 mg, Z:

±80 mg

±20 ˚/s

All the four IMUs were connected to the Raspberry Pi 3 via I2C protocol (Figure 3.7). This

protocol is capable of transmitting data in series using only two busses. They are the data bus

(SDA) and clock bus (SCL) as shown in the figure below. The python code for reading the sensor’s

output via this protocol will be included in Appendix A. Each sensor’s output is a two-bytes (16-

bit) signed integer. For having symmetric data around zero, the most significant bit was used for

determining the sign of the output, thus the range of the received integer was -215 to 215-1 instead

of 0 to 216-1.

22

Figure 3.7 IMU with RPI3(image created by Premkumar Subbukutti).

This IMU can output tri-axial accelerometer and tri-axial gyroscope values. The

computing orientation from an accelerometer relies on a constant gravitational pull of 1g (9.8

m/s^2). When the IMU is accelerated either by initiating motion or jarring, errors in measurement

will occur. A gyroscope measures angular velocity (i.e. the change in orientation angle, not

angular orientation itself). Angle data can be determined by integration of the gyroscope output.

With integration an initial value must be provided, so the first step is to initialize the sensor with

a known position value from the accelerometer, then measure the angular velocity (ω). Per the

IMU’s data sheet, using a scaling factor of 131 will convert the gyroscope output into degrees/sec.

This scaling factor applies in all the three directions so:

 Angular velocity = gyroscope output/131 (degrees/sec)

Filters can be used to account for the advantages and disadvantages associated with data collected

using the accelerometer and gyroscope to better estimate the actual angle. The complementary

filter and the Kalman filter were both evaluated to determine suitable for this application. After

examining the results of several tests, the complementary filter was ultimately selected.

23

Figure 3.8 MPU6050 with RPI3 Wiring Diagram [32].

3.3 Microcontroller/Microprocessor

 A Raspberry Pi 3(RPi3) microcontroller was utilized in this project because of its

upgraded technology and popularity in embedded systems. This was an advancement over the

second-generation neural prosthesis that used a Teensy microcontroller (PJRC, Oregon, USA).

The RPi3 is powered by 3.3v lithium battery. It has two inbuilt advanced technologies, WIFI and

Internet. It works on its own operating system called Raspbian, so it is easy to save the collected

data directly in to the RPi3 memory as an excel file. The RP3 3 uses three communication

protocols I2C, SPI and UART. Thus, it can communicate with the IMUs using I2C communication

protocol and the FSRs using SPI communication protocol via the MCP3008.

RPi3 can be programmed using the python platform. The python platform is an effective

platform for embedded system technology because of its versatile nature, its multitude of libraries

24

and support from the python community. All the coding for IMUs and FSRs was done using

python. A complete list of code is attached in the appendix section A.

Figure 3.9 RPI3 Pin Diagram.

3.4 Complementary Filter

 The complementary filter was used in the neural prosthesis to estimate the actual

angle from the gyroscope and accelerometer data. The gyroscope gives precise values over

moderate time duration but drifts for longer durations and has no positional reference. The

accelerometer output does not drift over time, but significant jitter occurs on short time scales. We

implemented the complementary filter to combine the data with the hope of getting better results

than could be attained with a single sensor type.

25

Figure 3.10 Block diagram of complementary filter.

 The equation to estimate the actual angle by combining data from both the accelerometer and

gyroscope is shown below

� !"�#$#� = % ∗ �'�$(�)(*# + (1 − %) ∗ ��))#"#$(-#�#$ (see eqn. 2-4)

For our application, there are times when high frequency spikes occur. Whenever a test subject’s

heel strikes the ground, an immense vibration is generated. This can be observed as a high

frequency spike in the accelerometer data.

3.4.1 Complementary Filter Code Explanation

The import command was used to import python libraries into main program. The Import

smbus was used to get I2C functions into main program. The import math function was used to

perform mathematical calculations. The import time function was used to implement software

clock. The import RPi.GPIO as GPIO library function was used to import to control the GPIO

pins of RPi3 controller. Import CSV was included to store the sensor data’s as a CSV file.

26

Listing 1.

 The with open function was used to open CSV (Comma Separated Values) file named

“pitch.ods” and to write the sensor data into it. CSV is the most common import and export format

for spreadsheets and databases. The CSV module implements classes to read and write tabular

data in CSV format. It allows the programmer to read or write the data’s in spreadsheet format.

Programmers can also describe the CSV formats understood by other applications or define their

own special-purpose CSV formats.

Listing 2.

 The def__init__ function was used to declare and initialize all the parameters. The

MPU6050 has an embedded 3-axis MEMS gyroscope, a 3-axis MEMS accelerometer. So, we

declared and initialized gyro x_axis, gyro y_axis, gyro z_axis, accel x_axis, accel y_axis, accel

z_axis. To keep the timing count we initialized the timer to zero. The address of the MPU6050

(ox68) was initialized.

27

Listing 3.

The sensitivity functions were executed to choose the sensitivity of the IMU sensors. In

MPU6050 the gyroscope and accelerometer have 4 types of sensitivity selection each, as shown

in the figure above. So, a dictionary was created in python that has all the four options in it. The

programmer can decide the value of sensitivity depending on the application’s necessity.

28

Listing 4.

 The comFilter function was used to calculate the pitch and roll value from the

acceleration data and gyroscope data to substitute those values into complementary filter formula

to calculate the actual value. The acceleration and gyro pitch and roll were calculated using their

respective formulas as shown in the figure above. Once the pitch value of accelerometer and

gyroscope were calculated, the absolute value can be calculated by using the complementary filter

equation (2-1).

29

Listing 5.

The try and except technique was used to detect if an error occurred in current iteration it

will not crash the whole program. Instead it will skip the error in current iteration and continue

to process next step. In simple words the try block lets you test a block of code for errors. The

except block lets you handle the error.

Listing 6.

30

3.5 Determining Complementary Filter Settings

Different values of α were evaluated to observe the effect of relying on the accelerometer

and gyroscope data at different ratios. To suppress the high frequency noise, the research team

initially tried using an alpha value of 98%, highly relying on data provided by the gyroscope value.

Upon analysis, it was discovered that the gyroscope takes one second to settle back to zero before

reliable data can be collected. This finding caused the team to implement a five second wait time

prior to beginning each walking trial to allow the gyroscope to settle. When more emphasis was

placed on the accelerometer data, the signal had too much noise for a reliable reading. The research

team ultimately decided to use 98% on the gyroscope and 2% on the accelerometer to estimate the

actual angle.

3.6 Gait Detection

As discussed in the literature review, the gait will be detected from heel strike to heel

strike. To accurately determine that actual heel strike, data collected from the accelerometer (98%

weight on the accelerometer), gyroscope (98% weight on the gyroscope) and the heel FSR were

compared (Figure 3.11). The blue curve shows data collected from the IMU attached to the foot

putting 98% weight on the accelerometer, the red curve is the foot angle collected from putting

98% weight on the gyroscope and the green curve is the heel strike data during walking. In the

initial part of the curve, the first 100ms, the study participant is standing still. Notice after 100ms

the person begins to walk at regular pace taking 3 steps. The heel strike has the maximum vibration

in a single gait cycle. It shows the maximum vibration was happening at 250 ms, 500 ms , and 750

ms.

31

Figure 3.11 Gait detection using neural prosthesis device.

Since the accelerometers are vulnerable to vibrations, the accurate heel strikes can be

predicted by comparing the accelerometer data with a heel FSR data. By adding the gyroscope

with this comparison, the lagging nature of the gyroscope as well as invulnerability towards

vibration was verified. In the Figure 3.11 the glitch in accelerometer happened when the heel strike

occurred. Since the gyroscope is not vulnerable to vibration it did not have any glitch associated

with it, but it has some time lag. From this verification the walking gait was calculated from the

heel strike to heel strike.

3.7 Effect of Complementary Filter Weighting Factor

The complementary filter is used to estimate the actual angle from the gyroscope and

accelerometer data. The Figure 3.12 shows the foot angle data with different weighting factor on

the gyroscope. The blue curve shows 98 percent weight on the accelerometer and 2 percent weight

on the gyroscope. The red curve shows 98 percent weight on the gyroscope and 2 percent weight

32

on the accelerometer. The green curve shows 50 percent weight on the accelerometer and 50

percent weight on the gyroscope. As shown in the Figure 3.12, increase in the weighting factor on

the gyroscope leads to lag but no glitches. Increase in the weighting factor on the accelerometer

did not show the lag but had glitches. Putting 50 percent on both the accelerometer and gyroscope

has minimal amount of lag as well as glitches. Since the joint angle calculation is based on

difference between two IMUs, the data with the glitches cannot be used to determine the shape.

Even though the gyroscope data had time lag it can predict the shape precisely. Considering this

result, the research team decided to go with the gyroscope data over accelerometer data to

calculate joint angles.

33

Figure 3.12 Foot angle measured by the complementary filter with different alpha values.

a) b

c)
d)

34

CHAPTER4: TESTING

The purpose of the testing was to determine the ability of the neural prosthesis device to

measure and record gait data using IMUs. Tests on a healthy individual were performed in the

Human Movement Laboratory located in the Health and Human Science building at Western

Carolina University. To perform this test, the third-generation neural prosthesis device was used.

The collected data by the neural prosthesis was compared to the data collected from the camera

motion capture system to determine the accuracy of the IMUs. The camera motion capture system

is an industry accepted standard against which other methods can be compared.

4.1 Equipment Preparation

The neural prosthesis device was tested the day before to the experiment to prevent any

delay during the experiment due to technical issues. This test was performed by instructing the

participant to walk while the research team observed the collected data. We observed mainly the

quality of the data collected looking for hardware issues and the checking the wireless capability

to monitor the data collection through the laptops. The data collection rate was also monitored.

4.2 Participant’s Preparation

The test protocols were approved by the Institutional Review Board (IRB) at Western

Carolina University and the participant signed a consent form prior to participating in the

experiment. The participant was asked to wear shorts so that the camera system could record the

movement of participant without any disturbance. The purpose of the test and the project were

explained to the participant prior to the start of the test. The participant was given a trail walk to

learn the protocol before starting the actual test.

35

4.3 Markers and Sensor Placements

The shoe insole equipped with the FSR sensors was placed in the right shoe of the

participant. As shown in Figure 4.1.a., four IMUs were attached to the participant on the foot,

shank, thigh and hip as shown in the figure 4.1.

Figure 4. 1 Participant with IMUs attached to the a) foot, b) shank, c) thigh, and d) hip

(Photographs by Martin Tanaka)

a) b)

c) d)

36

The difference between foot and shank IMUs can be used to calculate the ankle angle. The

difference between shank and thigh can be used to calculate knee angle. The difference between

thigh and pelvis can be used to calculate hip angle. The neural prosthesis device was carried in the

hand by the participant. The Figure 4.2 shows the participant with markers and sensors attached.

Figure 4.2 Participant with markers and sensors attached (Photograph by Martin Tanaka).

4.4 Testing Procedure

Two different testing conditions were performed by the participant. One used

complementary filter to collect IMU data and the other collected IMU data using the Kalman filter.

Even though different methods were used to measure the movement data, for the participant, the

walking trials were identical.

37

During testing, one researcher called out the trial number and the testing condition, to make

sure the researcher collecting the IMU data was ready to record the data. After data recording

began, the participant was asked to stand still for 5 seconds to calibrate gyroscope in the IMUs.

Next, a signal was given to instruct the participant to start walking in a straight line. The participant

walked normally while the sensors recorded the motion data.

4.5 Data Collection

The data from the IMUs and FSRs were collected using RPi3 microcontroller. The data

was stored as a csv file into the microcontroller. Acceleration and angular velocities in three

dimensions were captured using four IMUs. Simultaneously, data was collected using the camera

motion capture system Qualisys Miqus M3 (Qualisys Americas, Chicago, IL, USA) [18]. The data

was obtained, and post processed in the Qualisys Track Manager software (Qualisys Americas,

Chicago, IL, USA) [31]. The figure 4.3 shows Qualisys Track Manager software.

Figure 4.3 Qualisys Track Manager software (Photograph by Martin Tanaka)

38

CHAPTER 5: RESULTS

In this section, the results obtained from the neural prosthetic device were discussed. The

ankle, knee and hip angle were measured using the IMUs and camera motion capture system. The

comparison of the two measurement systems was used to determine the accuracy of the IMUs.

5.1 Gait Detection using the Neural Prosthesis

 The data collected by the neural prosthesis during gait analysis is discussed in this

section. Figure 5.1 shows the ankle angle data. These data were calculated by subtracting the data

collected using the IMU on the foot from the IMU on the shank. The green curves are plots for

the seven individual trials that were tested. The average of all seven trails is plotted in red.

Figure 5.1 Ankle angle measured by the neural prosthesis

39

0% of the gait cycle represents heel strike. At that time the ankle angle was 5 degrees with

the toe pointing upward. Over the next 18% of the gait cycle the foot drops to flat on the ground

putting the ankle into about 8 degree of plantarflexion. Weight is applied to the foot and the shank

begins to roll over the ankle decreasing the ankle angle about 15 degree of dorsiflexion before the

heel raises from the ground at about 55% of the gait cycle. The ankle angle drops sharply as the

GN and soleus muscles contract propelling the body forward. The ankle is at approximately 15

degrees of plantar flexion, just prior to toe off at 75% of the gait cycle. At this point, the foot lifts

off the ground and the toes are lifted (dorsiflexion) to avoid tripping during the swing phase. At

the end of the gait cycle the ankle is back to 5 degrees dorsiflexion in preparation for the next step.

To calculate the knee joint angle, the data from shank and thigh IMUs were used. Figure

5.2 shows the knee angle data. These data were calculated by subtracting the data collected from

the IMU on the shank from the IMU on the thigh. The green curves are plots for the seven

individual trials that were tested. The average of all seven trails is plotted in red.

40

Figure 5.2 Knee angle measured by the neural prosthesis

At heel strike, the knee angle was close to 0 degree indicating that the shank and thigh are

in straight line, so there is no flexion in the knee. Over the next 18% of the gait cycle the knee

bends as weight is applied achieving a maximum deflection of about 10 degree of flexion, then

returning to 0 degree by about 50% of the gait cycle. The knee begins to bend in preparation for

the forced is applied through the GN and soleus muscles, and it continues to bend trough toe off

and into the swing phase reaching a maximum value of almost 50 degree of flexion at 80% of the

gait cycle. In the remaining 20% of the gait cycle, the knee straightens, returning the 0 degrees

before the next heel strike.

To calculate the hip joint angle, the data from thigh and pelvis IMUs were used. Figure

5.3 shows the hip angle data. These data were calculated by subtracting the data collected from

41

the IMU on the thigh from the IMU on the pelvis. The green curves are plots for the seven

individual trials that were tested. The average of all seven trails is plotted in red.

Figure 5.3 Hip angle measured by the neural prosthesis

At heel strike, the thigh is angled out in front of the body at a hip angle close to 25 degree

of flexion. Over the next 60% of the gait cycle the hip extends as the body moves over the limb

putting the hip into 8 degree of extension. Then the weight is transferred to the contralateral limb

(the forward limb without the sensor). The hip flexes again as the ipsilateral limb (the limb for

which data is being collected) swings through. At the end of the gait cycle the hip is back to 25

degrees of flexion in preparation for the next step.

The Figure 5.4 shows the average plot of ankle, knee and hip. The average plot of ankle is

shown in blue color, the average plot of knee is shown in magenta and the average plot of hip is

shown in cyan. The curves generated by data collected form the neural prosthesis device shows

42

that the device can detect the gait movement. Now we have angles obtained by neural prosthesis

these can be compared to data collected by the camera motion capture system to see how

accurately the neural prosthesis device can calculate human gait.

Figure 5.4 Average angles measured by the IMUs

5.2 Camera Motion Capture System’s Data

 The data of the joint angles collected using the camera motion capture system is discussed

in this section. Figure 5.5 shows the ankle angle collected using camera motion capture system. It

shows an over plot of ankle angle and the average of all the seven trails. The individual seven

trails were plotted in sky blue color and their average was plotted in red.

43

Figure 5.5 Ankle angle measured by the camera motion system.

Figure 5.6 shows the knee angle and the average of all the seven trails. The individual

seven trails were plotted in sky blue color and their average was plotted in red.

44

Figure 5.6 Knee angle measured by the camera motion system

The Figure 5.7 shows an over plot of hip angle and the average of all the seven trails. The

individual seven trails were plotted in sky blue color and their average was plotted in red.

45

Figure 5.7 Hip angle measured by the camera motion system

The Figure 5.8 shows the average of ankle, knee and hip on the same plot. The average of

ankle is shown in blue color, the average of knee is shown in magenta and the average of hip is

shown in cyan.

46

Figure 5.8 Average angles measured by the camera system.

5.3 IMUs and Camera Motion Capture System’s Data Comparison

The Figure 5.9 shows the error curve of ankle data collected from camera system versus

ankle data collected from neural prosthesis. It shows clearly that the peaks of the neural prosthesis

data lags 10 percentage in gait cycle when compared to peaks of the camera data. Because the

angle was calculated using gyroscope data, it is expected to have some lag associated with it

because of the slow changing nature of the gyroscope. The average error of ankle angle calculated

between camera system and neural prosthesis is about 6 degrees.

47

Figure 5.9 Error Estimation of ankle angle.

 Figure 5.10 shows the error curve of knee angle data collected from camera system versus

knee data collected from neural prosthesis. In the knee angle measurement error is minimal except

for between 70 to 90 percentage of the gait cycle. The average error of the knee angle data is about

8 degrees.

48

Figure 5.10 Error Estimation of knee angle

The Figure 5.11 shows the error curve of hip angle data collected from camera system

versus hip data collected from neural prosthesis. Other than the starting and ending point it has a

lot of error associated with it. It unknown why this error exists. The average error of hip angle

calculated between camera system and neural prosthesis is about 9 degrees.

49

Figure 5.11 Error Estimation of hip angle

50

CHAPTER 6: DISCUSSION

The specific goal of this research was to develop a neural prosthesis capable of accurately

detecting human gait characteristics in order to determine proper timing for artificial muscle

stimulation. In this section the strength and weakness of neural prosthesis will be discussed.

The neural prosthesis device was developed using a RPi3 microcontroller. Advanced and

powerful CPU core, faster clock speed, high Random-Access Memory (RAM) and advanced

technologies like WIFI and python platform in RPi3 convinced our research team to go with this

microcontroller over teensy microcontroller which was used in second generation of the neural

prosthesis device. The FSR which was used to find the pressure of various parts of foot is an

analog sensor which means it will give only the analog output (voltage). It needs a conversion

from analog to digital value. The RPi3 does not have a built-in ADC to convert the analog value

produced by the FSR to a usable digital input. Absence of inbuilt ADC is the major disadvantage

verses the Arduino or the Teensy microcontrollers used in previous generations. As a result, a

separate ADC processor (MCP3008 IC) was used. It led to the addition of extra component in the

device.

Upon analysis of the collected data, the ankle angle calculated by the neural prosthesis

clearly showed that the trails were not tight when compared to the camera motion capture system.

Especially around 80 percent of the gait cycle, it seemed that the neural prosthesis had some

trouble measuring the lower peak. However, near 0% and 100% of the gait cycle the curves look

tight when compared to the peaks of the trail. This could be because of the gyroscope’s slow nature

in processing the change of values. All the seven trails of the knee angle measured by the neural

prosthesis were tight when compared to ankle angle trails. It had a problem of detecting the peak

precisely as well. The knee angle was also vulnerable to sudden peak changes. The hip angle

51

measured using neural prosthesis seems it had lot of errors between the trails when compared to

ankle and knee.

On other hand the ankle angle, knee angle, hip angle measured by the camera motion

capture system replicates all the seven trails were close and tight to each other. There is not much

of the peak amplitude difference between camera system and neural prosthesis. This says we are

not facing any problem on predicting the shape or magnitude, but the time lag is the problem

causing the error.

 The error curves of joint angle data collected with camera system versus neural prosthesis

shows clearly that the peaks of the neural prosthesis data lags in gait cycle when compared to

peaks of the camera system. This lagging nature could be caused by the gyroscope as we know

that the gyroscopes predicts the change very slowly. The error in start and end of the gait cycle is

almost zero. If we notice clearly whenever the peak happens the error tend to increase. It could be

because of the gyroscope vulnerability towards sudden changes. However, the neural prosthesis

successfully captures the shape of ankle joint and the knee joint. But it had trouble on capturing

hip joint. This may be the problem associated with pelvis IMU. Because the pelvis had very

minimal movement on IMU sensor.

52

CHAPTER 7: CONCLUSION

The neural prosthesis device utilizing integrated IMUs was able to estimate the gait

characteristics while walking. Usage of RPi3 allowed us to utilize WIFI to monitor the data

collection at real time. The PCB design for the hardware reduced the wiring complications. The

design of the complementary filter using python software allowed us to do real time filtering

instead of post processing which was in the case of second-generation neural prosthesis device.

This improvement opens the way to utilize the filtered real time data for the future upgrades. The

results showed that the neural prosthesis was able to capture the general shape of the joint angle

curves when compared to the camera motion capture system. However, the joint angles obtained

from the neural prosthesis device lagged that actual joint angles found using the camera system.

This is likely due to a slow response time in the gyroscope.

Future work will include measures taken to suppress lag and the drift in the gyroscope

data. This can be done by including a high pass filter in the design. Since our MPU6050 IMU is a

digital sensor, implementing a digital high pass filter will be easy to build and test. Digital filters

also do not drift with temperature or humidity and it does not require precision components like

analog filters. In addition, a digital filter does not suffer from aging. The main drawback is that

the digital filter will require additional processing power in the microcontroller processor and must

be implemented in real time. Even though we implement high pass filter to the gyroscope data it

will only reduce the drift not the lag. There are also high performance IMUs available in the

market which has faster processing speed and response time than the MPU6050 IMU which could

be good option to reduce lag in the gyroscope.

53

On the other hand, we can also utilize the accelerometer data to calculate joint angles once

we suppress the high frequency noise associated with the accelerometer data. This can also be

done by designing digital low pass filter or buying the advanced IMU with a low pass filter built

into the hardware. The inbuilt hardware low pass filter can reduce the accelerometer noise without

placing extra stress on microcontroller processor in the neural prosthesis.

RPi3 microcontroller used in the third-generation neural prosthesis can also be replaced

with the latest version of Raspberry Pi or with some other improved microcontroller. This change

will improve the overall device performance. The latest version of RPi family is RPi4 which has

advanced CPU with fastest clock speed of 1.5GHZ and 4GB RAM. Which will be literally twice

as fast as the RPi3.

There is one other idea that could further improve the performance of the neural prosthesis.

This study quantified that accuracy of joint angle data collected from the neural prosthesis using

data collected from camera system as a reference. Instead of post processing the neural prosthesis

data to calculate joint angles, we can directly use the data from foot, shank, thigh and pelvis IMU

to predict the gait on real time. For our future goal is to design an artificial neural network to

stimulate the gastrocnemius muscle on the particular percent of the gait. Real time data is needed

for this application, so using the data directly from foot, shank, thigh and pelvis will be most

helpful.

54

REFERENCE

[1] K. Tong and M. H. Granat, “A practical gait analysis system using gyroscopes,”

Medical Engineering & Physics, vol. 21, no. 2, pp. 87–94, 1999.

[2] Clifton L. Gooch, Etienne Pracht, Amy R. Borenstein. “The Burden of

Neurological Disease in the United States: A Summary Report and Call to

Action”. Annals of Neurology 2017; DOI: 10.1002/ana.24897

[3] G. P. Panebianco, R. Stagni, and S. Fantozzi, “Comparative analysis of 12

methods using wearable inertial sensors for gait parameters estimation during

walking,” Gait & Posture, vol. 57, p. 21, 2017.

[4] Y. Li and J. J. Wang, “A robust pedestrian navigation algorithm with low cost

IMU,” 2012 International Conference on Indoor Positioning and Indoor

Navigation (IPIN), 2012.

[5] L. Meng, B. Porr, C. A. Macleod, and H. Gollee, “A functional electrical

stimulation system for human walking inspired by reflexive control principles,”

Proceedings of the Institution of Mechanical Engineers, Part H: Journal of

Engineering in Medicine, vol. 231, no. 4, pp. 315–325, 2017.

[6] Ate and M. Abdelrahim, “Controlling the temperature reactor based on Raspberry

Pi system control,” 2018 5th International Conference on Electrical and

Electronic Engineering (ICEEE), 2018.

[7] Christopher & Dana Reeve Foundation

https://www.christopherreeve.org/living-with-paralysis/stats-about-paralysis.

55

[8] Human Gait Modeling and Analysis Using a Semi-Markov Process with Ground

Reaction Forces Hao Ma, Student Member, IEEE, and Wei-Hsin Liao, Senior

Member, IEEE.

[9] J. J. Kavanagh and H. B. Menz, “Accelerometry: A technique for quantifying

movement patterns during walking,” Gait Posture, vol. 28, no. 1, pp. 1–15, Jul.

2008.

[10] N. C. Bejarano et al., “A novel adaptive, real-time algorithm to detect gait events

from wearable sensors,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 3,

pp. 413–422, May 2015.

[11] Simulation of Human Locomotion Using A Musculoskeletal Model Taesoo Kim

and Sungho Jo Department of Electrical Engineering and Computer Science,

KAIST, Daejeon, Korea

(Tel: +82-42-869-3540; E-mail: {tsgates, shjo}@kaist.ac.kr)

[12] Farris, Dominic James, and Gregory S. Sawicki. "The mechanics and energetics

of human walking and running: a joint level perspective." Journal of The Royal

Society Interface (2011): rsif20110182.

[13] Moore, K. L., Dalley, A. F., & Agur, A. M. (2013). Clinically oriented anatomy.

Lippincott Williams & Wilkins

[14] Lazar, Eric, and Juan Nicolás Cuenca. "Functional electrical simulation (FES) in

stroke." (2008).

[15] Gait Analysis with IMU Gaining New Orientation Information of the Lower Leg

Steffen Hacker, Christoph Kalkbrenner, Maria-Elena Algorri and Ronald

56

Blechschmidt-Trapp Institute of Medical Engineering, University of Applied

Science Ulm, Albert-Einstein-Allee 55, 89075 Ulm, Germany.

[16] An Open-source Multi Inertial Measurement Unit (MIMU) Platform Isaac Skog,

JohnOlof Nilsson, and Peter Handel ¨ Department of Signal Processing, ACCESS

Linnaeus Centre KTH Royal Institute of Technology Oscula’s vat 10, SE- ¨ 100

44 Stockholm, Sweden.

[17] Raspberry Pi Foundation. “About Us”. (2017 Jun 25). [Online]. Available:

https://www.raspberrypi.org/about/.

[18] Wang Mei, Prediction and location system of three-phase cable fault based on

neural network, Journal of Xi'an University of Science and Technology,

China,2004, 24(2), PP225-229.

[19] Shetty, Yadira K. Robust Human Motion Tracking Using Low-cost Inertial

Sensors. Diss. Arizona State University, 2016.

[20] Deluca, P. A., & Renshaw, T. S. (1995). Gait analysis: principles and applications.

 Emphasis on its use in cerebral palsy. JBJS, 77(10), 1607-1623.

[21] Shetty, Yatiraj K. Robust Human Motion Tracking Using Low-cost Inertial

Sensors. Diss. Arizona State University, 2016.

[22] Guerra-Filho, G. (2005). Optical Motion Capture: Theory and Implementation.

RITA, 12(2), 61-90.

[23] An Improved Adaptive Kalman Filtering Algorithm for balancing vehicle.

57

[24] Shetty, Yatiraj K. Robust Human Motion Tracking Using Low-cost Inertial

Sensors. Diss. Arizona State University, 2016.

[25] Abhayasinghe, Kahala Nimsiri. Human gait modelling with step estimation and

phase classification utilising a single thigh mounted IMU for vision impaired

indoor navigation. Diss. Curtin University, 2016.

[26] Lazar, Eric, and Juan Nicolás Cuenca. "Functional electrical simulation (FES) in

stroke." (2008).

[27] Guy, J. E., FUNCTIONAL ELECTRICAL STIMULATION RECUMBENT

BICYCLE FOR STROKE REHABILITATION, MST Thesis, Western Carolina

University, 2013.

[28] Haibin Wang And Qing He. “An electrical muscle simulator based on function

electrical stimulation”.2012 IEEE International Conference on Robotics and

Biomimetics (ROBIO).

[29] Matthew C. Gash; Matthew Varacallo. “Physiology, Muscle Contraction”.

[30] FSR 402, https://www.interlinkelectronics.com/fsr-402, retrieved 2018-07-26.

[31] https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[32] https://components101.com/ics/mcp3008-adc-pinout-equivalent-datasheet

[33] Reza Farsad Asadi, “A Neural Prosthesis to Improve Gait in People with Muscle

Weakness”, MST Thesis, Western Carolina University, 2013.

[34] Tanaka ML, Hudson D, Farsad R,”Development of Electrical Stimulation Devices

for Fall Prevention and Stroke Rehabilition”, ASME International Mechanical

Engineering Congress and Exposition(IMECE), November 3-9, Tampa,

Florida(2017).

58

[35] https://www.digikey.com/en/maker/blogs/raspberry-pi-wi-fi-bluetooth-setup-

how-to-configure-your-pi-4-model-b-3-model-b

59

APPENDIX A: COMPLEMENTARY FILTER

import smbus
import math
import time
import RPi.GPIO as GPIO
import csv
with open('pitch.ods','a') as f:
 writer=csv.writer(f)
 writer.writerow(['Pitch(98-2)','pitch1(2-98)','pitch2(50-50)','pitch3(60-40)','pitch4(40-60)'])
a=[]

class MPU:
 def __init__(self, gyro, acc, tau):
 # Class / object / constructor setup
 self.gx = None; self.gy = None; self.gz = None;
 self.ax = None; self.ay = None; self.az = None;

 self.gyroXcal = 0
 self.gyroYcal = 0
 self.gyroZcal = 0

 self.gyroRoll = 0
 self.gyroPitch = 0
 self.gyroYaw = 0

 self.roll = 0
 self.pitch = 0
 self.yaw = 0

 self.dtTimer = 0
 self.tau = tau

 self.gyroScaleFactor, self.gyroHex = self.gyroSensitivity(gyro)
 self.accScaleFactor, self.accHex = self.accelerometerSensitivity(acc)

 self.bus = smbus.SMBus(1)
 self.address = 0x68

 def gyroSensitivity(self, x):
 # Create dictionary with standard value of 500 deg/s
 return {
 250: [131.0, 0x00],
 500: [65.3, 0x08],

60

 1000: [32.8, 0x10],
 2000: [16.4, 0x18]
 }.get(x, [65.3, 0x08])

 def accelerometerSensitivity(self, x):
 # Create dictionary with standard value of 4 g
 return {
 2: [16384.0, 0x00],
 4: [8192.0, 0x08],
 8: [4096.0, 0x10],
 16: [2048.0, 0x18]
 }.get(x,[8192.0, 0x08])

 def setUp(self):
 # Activate the MPU-6050
 self.bus.write_byte_data(self.address, 0x6B, 0x00)

 # Configure the accelerometer
 self.bus.write_byte_data(self.address, 0x1C, self.accHex)

 # Configure the gyro
 self.bus.write_byte_data(self.address, 0x1B, self.gyroHex)

 # Display message to user
 print("MPU set up:")
 print('\tAccelerometer: ' + str(self.accHex) + ' ' + str(self.accScaleFactor))
 print('\tGyro: ' + str(self.gyroHex) + ' ' + str(self.gyroScaleFactor) + "\n")
 #time.sleep(2)

 def eightBit2sixteenBit(self, reg):
 # Reads high and low 8 bit values and shifts them into 16 bit
 h = self.bus.read_byte_data(self.address, reg)
 l = self.bus.read_byte_data(self.address, reg+1)
 val = (h << 8) + l

 # Make 16 bit unsigned value to signed value (0 to 65535) to (-32768 to +32767)
 if (val >= 0x8000):
 return -((65535 - val) + 1)
 else:
 return val

 def getRawData(self):
 self.gx = self.eightBit2sixteenBit(0x43)
 self.gy = self.eightBit2sixteenBit(0x45)
 self.gz = self.eightBit2sixteenBit(0x47)

61

 self.ax = self.eightBit2sixteenBit(0x3B)
 self.ay = self.eightBit2sixteenBit(0x3D)
 self.az = self.eightBit2sixteenBit(0x3F)

 def calibrateGyro(self, N):
 # Display message
 print("Calibrating gyro with " + str(N) + " points. Do not move!")

 # Take N readings for each coordinate and add to itself
 '''for ii in range(N):
 self.getRawData()
 self.gyroXcal += self.gx
 self.gyroYcal += self.gy
 self.gyroZcal += self.gz

 # Find average offset value
 self.gyroXcal /= N
 self.gyroYcal /= N
 self.gyroZcal /= N'''

 # Display message and restart timer for comp filter
 '''print("Calibration complete")
 print("\tX axis offset: " + str(round(self.gyroXcal,1)))
 print("\tY axis offset: " + str(round(self.gyroYcal,1)))
 print("\tZ axis offset: " + str(round(self.gyroZcal,1)) + "\n")'''
 #time.sleep(2)
 self.dtTimer = time.time()

 def processIMUvalues(self):
 # Update the raw data
 self.getRawData()

 # Subtract the offset calibration values
 '''self.gx -= self.gyroXcal
 self.gy -= self.gyroYcal
 self.gz -= self.gyroZcal'''

 # Convert to instantaneous degrees per second
 self.gx /= self.gyroScaleFactor
 self.gy /= self.gyroScaleFactor
 self.gz /= self.gyroScaleFactor

 # Convert to g force
 self.ax /= self.accScaleFactor
 self.ay /= self.accScaleFactor
 self.az /= self.accScaleFactor

62

 def compFilter(self):
 # Get the processed values from IMU
 self.processIMUvalues()

 # Get delta time and record time for next call
 dt = time.time() - self.dtTimer
 self.dtTimer = time.time()

 # Acceleration vector angle
 accPitch = math.degrees(math.atan2(self.ay, self.az))
 accRoll = math.degrees(math.atan2(self.ax, self.az))

 # Gyro integration angle
 self.gyroRoll -= self.gy * dt
 self.gyroPitch += self.gx * dt
 self.gyroYaw += self.gz * dt
 self.yaw = self.gyroYaw

 # Comp filter
 self.roll = (self.tau)*(self.roll - self.gy*dt) + (1-self.tau)*(accRoll)
 self.pitch = (self.tau)*(self.pitch + self.gx*dt) + (1-self.tau)*(accPitch)
 self.pitch1 = (1-self.tau)*(self.pitch + self.gx*dt) + (self.tau)*(accPitch)
 self.pitch2 = (0.5)*(self.pitch + self.gx*dt) + (1-0.5)*(accPitch)
 self.pitch3= (0.6)*(self.pitch + self.gx*dt) + (1-0.6)*(accPitch)
 self.pitch4= (0.4)*(self.pitch + self.gx*dt) + (1-0.4)*(accPitch)

 # Print data
 print(" R: " + str(round(self.roll,1)) \
 + " P: " + str(round(self.pitch,1)) \
 + " Y: " + str(round(self.yaw,1)))
 a.append(str(round(self.pitch,1)))
 '''a.append(str(round(self.pitch1,1)))
 a.append(str(round(self.pitch2,1)))
 a.append(str(round(self.pitch3,1)))
 a.append(str(round(self.pitch4,1)))'''

'''GPIO.setmode(GPIO.BOARD)
GPIO.setup(7,GPIO.OUT)
GPIO.setup(31,GPIO.OUT)
GPIO.setup(33,GPIO.OUT)
GPIO.setup(35,GPIO.OUT)

GPIO.output(29,GPIO.HIGH)
GPIO.output(31,GPIO.HIGH)
GPIO.output(33,GPIO.HIGH)

63

GPIO.output(7,GPIO.HIGH)'''
#GPIO.output(29,GPIO.LOW)

Set up class
gyro = 250 # 250, 500, 1000, 2000 [deg/s]
acc = 2 # 2, 4, 7, 16 [g]
tau = 0.98
mpu = MPU(gyro, acc, tau)

Set up sensor and calibrate gyro with N points
mpu.setUp()
mpu.calibrateGyro(500)
while Actual:
 '''#GPIO.output(29,GPIO.LOW)

 # Set up class
 gyro = 250 # 250, 500, 1000, 2000 [deg/s]
 acc = 2 # 2, 4, 7, 16 [g]
 tau = 0.98
 mpu = MPU(gyro, acc, tau)

 # Set up sensor and calibrate gyro with N points
 mpu.setUp()
 mpu.calibrateGyro(500)'''

 '''# Run for 20 secounds
 startTime = time.time()
 while(time.time() < (startTime + 20)):'''
 try:
 mpu.compFilter()
 with open('pitch.ods','a') as f:
 writer=csv.writer(f)
 writer.writerow(a)
 a=[]
 except (ZeroDivisionError,IOError) as e:
 print("program faced an interruption")

64

APPENDIX B: KALMAN FILTER

#Connections
#MPU6050 - Raspberry pi
#VCC - 5V (2 or 4 Board)
#GND - GND (6 - Board)
#SCL - SCL (5 - Board)
#SDA - SDA (3 - Board)

import RPi.GPIO as GPIO
from Kalman import KalmanAngle
import smbus #import SMBus module of I2C
import time
import math
#SPI
import Adafruit_GPIO.SPI as SPI
import Adafruit_MCP3008

import csv
with open('pitch.ods','a') as f:
 writer=csv.writer(f)
 writer.writerow(['fp1','fp2','fp3','fp4','p1','p2','p3','p4'])
a=[]

#Configuration of SPI ports
SPI_PORT = 0
SPI_DEVICE = 0
mcp = Adafruit_MCP3008.MCP3008(spi=SPI.SpiDev(SPI_PORT, SPI_DEVICE))

kalmanX = KalmanAngle()
kalmanY = KalmanAngle()

RestrictPitch = Actual
radToDeg = 57.2957786
kalAngleX = 0
kalAngleY = 0
#some MPU6050 Registers and their Address
PWR_MGMT_1 = 0x6B
SMPLRT_DIV = 0x19
CONFIG = 0x1A
GYRO_CONFIG = 0x1B
INT_ENABLE = 0x38
ACCEL_XOUT_H = 0x3B
ACCEL_YOUT_H = 0x3D
ACCEL_ZOUT_H = 0x3F

65

GYRO_XOUT_H = 0x43
GYRO_YOUT_H = 0x45
GYRO_ZOUT_H = 0x47

#Read the gyro and acceleromater values from MPU6050
def MPU_Init():
 #write to sample rate register
 bus.write_byte_data(DeviceAddress, SMPLRT_DIV, 7)

 #Write to power management register
 bus.write_byte_data(DeviceAddress, PWR_MGMT_1, 1)

 #Write to Configuration register
 bus.write_byte_data(DeviceAddress, CONFIG, 0)

 #Write to Gyro configuration register
 bus.write_byte_data(DeviceAddress, GYRO_CONFIG, 24)

 #Write to interrupt enable register
 bus.write_byte_data(DeviceAddress, INT_ENABLE, 1)

def read_raw_data(addr):
 #Accelero and Gyro value are 16-bit
 high = bus.read_byte_data(DeviceAddress, addr)
 low = bus.read_byte_data(DeviceAddress, addr+1)

 #concatenate higher and lower value
 value = ((high << 8) | low)

 #to get signed value from mpu6050
 if(value > 32768):
 value = value - 65536
 return value

bus = smbus.SMBus(1) # or bus = smbus.SMBus(0) for older version boards
DeviceAddress = 0x68 # MPU6050 device address

#GPIO pin setup
GPIO.setmode(GPIO.BOARD)
GPIO.setup(29,GPIO.OUT)
GPIO.setup(31,GPIO.OUT)
GPIO.setup(33,GPIO.OUT)

66

GPIO.setup(35,GPIO.OUT)

GPIO.output(29,GPIO.HIGH)
GPIO.output(31,GPIO.HIGH)
GPIO.output(33,GPIO.HIGH)
GPIO.output(35,GPIO.HIGH)
while Actual:
 try:
 # Read all the ADC channel values in a list.
 values = [0]*8
 for i in range(8):
 # The read_adc function will get the value of the specified channel (0-7).
 values[i] = mcp.read_adc(i)
 values[i]=(values[i]/(1024*3.3))*500
 # Print the ADC values.
 print('| {0:>4} | {1:>4} | {2:>4} | {3:>4} | {4:>4} | {5:>4} | {6:>4} | {7:>4}
|'.format(*values))
 a.append(values[0])
 a.append(values[1])
 a.append(values[2])
 a.append(values[3])

 GPIO.output(29,GPIO.LOW)
 MPU_Init()

 #time.sleep(1)
 #Read Accelerometer raw value
 accX = read_raw_data(ACCEL_XOUT_H)
 accY = read_raw_data(ACCEL_YOUT_H)
 accZ = read_raw_data(ACCEL_ZOUT_H)

 #print(accX,accY,accZ)
 #print(math.sqrt((accY**2)+(accZ**2)))
 if (RestrictPitch):
 roll = math.atan2(accY,accZ) * radToDeg
 pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg
 else:
 roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg
 pitch = math.atan2(-accX,accZ) * radToDeg
 print(roll)
 kalmanX.setAngle(roll)
 kalmanY.setAngle(pitch)
 gyroXAngle = roll;
 gyroYAngle = pitch;
 compAngleX = roll;
 compAngleY = pitch;

67

 timer = time.time()
 flag = 0
 if(flag >100):
 #Problem with the connection
 print("There is a problem with the connection")
 flag=0
 continue
 try:
 #Read Accelerometer raw value
 accX = read_raw_data(ACCEL_XOUT_H)
 accY = read_raw_data(ACCEL_YOUT_H)
 accZ = read_raw_data(ACCEL_ZOUT_H)

 #Read Gyroscope raw value
 gyroX = read_raw_data(GYRO_XOUT_H)
 gyroY = read_raw_data(GYRO_YOUT_H)
 gyroZ = read_raw_data(GYRO_ZOUT_H)

 dt = time.time() - timer
 timer = time.time()

 if (RestrictPitch):
 roll = math.atan2(accY,accZ) * radToDeg
 pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg
 else:
 roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg
 pitch = math.atan2(-accX,accZ) * radToDeg

 gyroXRate = gyroX/131
 gyroYRate = gyroY/131

 if (RestrictPitch):

 if((roll < -90 and kalAngleX >90) or (roll > 90 and kalAngleX < -90)):
 kalmanX.setAngle(roll)
 complAngleX = roll
 kalAngleX = roll
 gyroXAngle = roll
 else:
 kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt)

 if(abs(kalAngleX)>90):
 gyroYRate = -gyroYRate
 kalAngleY = kalmanY.getAngle(pitch,gyroYRate,dt)
 else:

68

 if((pitch < -90 and kalAngleY >90) or (pitch > 90 and kalAngleY < -90)):
 kalmanY.setAngle(pitch)
 complAngleY = pitch
 kalAngleY = pitch
 gyroYAngle = pitch
 else:
 kalAngleY = kalmanY.getAngle(pitch,gyroYRate,dt)

 if(abs(kalAngleY)>90):
 gyroXRate = -gyroXRate
 kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt)

 #angle = (rate of change of angle) * change in time
 gyroXAngle = gyroXRate * dt
 gyroYAngle = gyroYAngle * dt

 #compAngle = constant * (old_compAngle + angle_obtained_from_gyro) + constant *
angle_obtained from accelerometer
 compAngleX = 0.93 * (compAngleX + gyroXRate * dt) + 0.07 * roll
 compAngleY = 0.93 * (compAngleY + gyroYRate * dt) + 0.07 * pitch

 if ((gyroXAngle < -180) or (gyroXAngle > 180)):
 gyroXAngle = kalAngleX
 if ((gyroYAngle < -180) or (gyroYAngle > 180)):
 gyroYAngle = kalAngleY

 print("Angle X 1: " + str(kalAngleX)+" " +"Angle Y: " + str(kalAngleY))
 a.append(str(kalAngleX))
 #print(str(roll)+" "+str(gyroXAngle)+" "+str(compAngleX)+" "+str(kalAngleX)+"
"+str(pitch)+" "+str(gyroYAngle)+" "+str(compAngleY)+" "+str(kalAngleY))
 #time.sleep(0.005)
 #a.append(str(pitch))
 #a.append(str(compAngleX))
 GPIO.output(29,GPIO.HIGH)
 except Exception as exc:
 flag += 1
 #time.sleep(1)
#SENSOR2

 GPIO.output(31,GPIO.LOW)
 MPU_Init()

 #time.sleep(1)
 #Read Accelerometer raw value
 accX = read_raw_data(ACCEL_XOUT_H)

69

 accY = read_raw_data(ACCEL_YOUT_H)
 accZ = read_raw_data(ACCEL_ZOUT_H)

 #print(accX,accY,accZ)
 #print(math.sqrt((accY**2)+(accZ**2)))
 if (RestrictPitch):
 roll = math.atan2(accY,accZ) * radToDeg
 pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg
 else:
 roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg
 pitch = math.atan2(-accX,accZ) * radToDeg
 print(roll)
 kalmanX.setAngle(roll)
 kalmanY.setAngle(pitch)
 gyroXAngle = roll;
 gyroYAngle = pitch;
 compAngleX = roll;
 compAngleY = pitch;

 timer = time.time()
 flag = 0

 if(flag >100): #Problem with the connection
 print("There is a problem with the connection")
 flag=0
 continue
 try:
 #Read Accelerometer raw value
 accX = read_raw_data(ACCEL_XOUT_H)
 accY = read_raw_data(ACCEL_YOUT_H)
 accZ = read_raw_data(ACCEL_ZOUT_H)

 #Read Gyroscope raw value
 gyroX = read_raw_data(GYRO_XOUT_H)
 gyroY = read_raw_data(GYRO_YOUT_H)
 gyroZ = read_raw_data(GYRO_ZOUT_H)

 dt = time.time() - timer
 timer = time.time()

 if (RestrictPitch):
 roll = math.atan2(accY,accZ) * radToDeg
 pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg
 else:
 roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg

70

 pitch = math.atan2(-accX,accZ) * radToDeg

 gyroXRate = gyroX/131
 gyroYRate = gyroY/131

 if (RestrictPitch):

 if((roll < -90 and kalAngleX >90) or (roll > 90 and kalAngleX < -90)):
 kalmanX.setAngle(roll)
 complAngleX = roll
 kalAngleX = roll
 gyroXAngle = roll
 else:
 kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt)

 if(abs(kalAngleX)>90):
 gyroYRate = -gyroYRate
 kalAngleY = kalmanY.getAngle(pitch,gyroYRate,dt)
 else:

 if((pitch < -90 and kalAngleY >90) or (pitch > 90 and kalAngleY < -90)):
 kalmanY.setAngle(pitch)
 complAngleY = pitch
 kalAngleY = pitch
 gyroYAngle = pitch
 else:
 kalAngleY = kalmanY.getAngle(pitch,gyroYRate,dt)

 if(abs(kalAngleY)>90):
 gyroXRate = -gyroXRate
 kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt)

 #angle = (rate of change of angle) * change in time
 gyroXAngle = gyroXRate * dt
 gyroYAngle = gyroYAngle * dt

 #compAngle = constant * (old_compAngle + angle_obtained_from_gyro) + constant *
angle_obtained from accelerometer
 compAngleX = 0.93 * (compAngleX + gyroXRate * dt) + 0.07 * roll
 compAngleY = 0.93 * (compAngleY + gyroYRate * dt) + 0.07 * pitch

 if ((gyroXAngle < -180) or (gyroXAngle > 180)):
 gyroXAngle = kalAngleX
 if ((gyroYAngle < -180) or (gyroYAngle > 180)):
 gyroYAngle = kalAngleY

71

 print("Angle X 2: " + str(kalAngleX)+" " +"Angle Y: " + str(kalAngleY))
 a.append(str(kalAngleX))
 GPIO.output(31,GPIO.HIGH)
 except Exception as exc:
 flag += 1
 #time.sleep(1)

#SENSOR3
 GPIO.output(33,GPIO.LOW)
 MPU_Init()

 #time.sleep(1)
 #Read Accelerometer raw value
 accX = read_raw_data(ACCEL_XOUT_H)
 accY = read_raw_data(ACCEL_YOUT_H)
 accZ = read_raw_data(ACCEL_ZOUT_H)

 #print(accX,accY,accZ)
 #print(math.sqrt((accY**2)+(accZ**2)))
 if (RestrictPitch):
 roll = math.atan2(accY,accZ) * radToDeg
 pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg
 else:
 roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg
 pitch = math.atan2(-accX,accZ) * radToDeg
 print(roll)
 kalmanX.setAngle(roll)
 kalmanY.setAngle(pitch)
 gyroXAngle = roll;
 gyroYAngle = pitch;
 compAngleX = roll;
 compAngleY = pitch;

 timer = time.time()
 flag = 0
 if(flag >100):
 #Problem with the connection
 print("There is a problem with the connection")
 flag=0
 continue
 try:
 #Read Accelerometer raw value
 accX = read_raw_data(ACCEL_XOUT_H)
 accY = read_raw_data(ACCEL_YOUT_H)
 accZ = read_raw_data(ACCEL_ZOUT_H)

72

 #Read Gyroscope raw value
 gyroX = read_raw_data(GYRO_XOUT_H)
 gyroY = read_raw_data(GYRO_YOUT_H)
 gyroZ = read_raw_data(GYRO_ZOUT_H)

 dt = time.time() - timer
 timer = time.time()

 if (RestrictPitch):
 roll = math.atan2(accY,accZ) * radToDeg
 pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg
 else:
 roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg
 pitch = math.atan2(-accX,accZ) * radToDeg

 gyroXRate = gyroX/131
 gyroYRate = gyroY/131

 if (RestrictPitch):

 if((roll < -90 and kalAngleX >90) or (roll > 90 and kalAngleX < -90)):
 kalmanX.setAngle(roll)
 complAngleX = roll
 kalAngleX = roll
 gyroXAngle = roll
 else:
 kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt)

 if(abs(kalAngleX)>90):
 gyroYRate = -gyroYRate
 kalAngleY = kalmanY.getAngle(pitch,gyroYRate,dt)
 else:

 if((pitch < -90 and kalAngleY >90) or (pitch > 90 and kalAngleY < -90)):
 kalmanY.setAngle(pitch)
 complAngleY = pitch
 kalAngleY = pitch
 gyroYAngle = pitch
 else:
 kalAngleY = kalmanY.getAngle(pitch,gyroYRate,dt)

 if(abs(kalAngleY)>90):
 gyroXRate = -gyroXRate
 kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt)

73

 #angle = (rate of change of angle) * change in time
 gyroXAngle = gyroXRate * dt
 gyroYAngle = gyroYAngle * dt

 #compAngle = constant * (old_compAngle + angle_obtained_from_gyro) + constant *
angle_obtained from accelerometer
 compAngleX = 0.93 * (compAngleX + gyroXRate * dt) + 0.07 * roll
 compAngleY = 0.93 * (compAngleY + gyroYRate * dt) + 0.07 * pitch

 if ((gyroXAngle < -180) or (gyroXAngle > 180)):
 gyroXAngle = kalAngleX
 if ((gyroYAngle < -180) or (gyroYAngle > 180)):
 gyroYAngle = kalAngleY

 print("Angle X 3: " + str(kalAngleX)+" " +"Angle Y: " + str(kalAngleY))
 a.append(str(kalAngleX))
 GPIO.output(33,GPIO.HIGH)
 except Exception as exc:
 flag += 1
#SENSOR4

 GPIO.output(35,GPIO.LOW)
 MPU_Init()

 #time.sleep(1)
 #Read Accelerometer raw value
 accX = read_raw_data(ACCEL_XOUT_H)
 accY = read_raw_data(ACCEL_YOUT_H)
 accZ = read_raw_data(ACCEL_ZOUT_H)

 #print(accX,accY,accZ)
 #print(math.sqrt((accY**2)+(accZ**2)))
 if (RestrictPitch):
 roll = math.atan2(accY,accZ) * radToDeg
 pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg
 else:
 roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg
 pitch = math.atan2(-accX,accZ) * radToDeg
 print(roll)
 kalmanX.setAngle(roll)
 kalmanY.setAngle(pitch)
 gyroXAngle = roll;
 gyroYAngle = pitch;
 compAngleX = roll;
 compAngleY = pitch;

74

 timer = time.time()
 flag = 0
 if(flag >100):
 #Problem with the connection
 print("There is a problem with the connection")
 flag=0
 continue
 try:
 #Read Accelerometer raw value
 accX = read_raw_data(ACCEL_XOUT_H)
 accY = read_raw_data(ACCEL_YOUT_H)
 accZ = read_raw_data(ACCEL_ZOUT_H)

 #Read Gyroscope raw value
 gyroX = read_raw_data(GYRO_XOUT_H)
 gyroY = read_raw_data(GYRO_YOUT_H)
 gyroZ = read_raw_data(GYRO_ZOUT_H)

 dt = time.time() - timer
 timer = time.time()

 if (RestrictPitch):
 roll = math.atan2(accY,accZ) * radToDeg
 pitch = math.atan(-accX/math.sqrt((accY**2)+(accZ**2))) * radToDeg
 else:
 roll = math.atan(accY/math.sqrt((accX**2)+(accZ**2))) * radToDeg
 pitch = math.atan2(-accX,accZ) * radToDeg

 gyroXRate = gyroX/131
 gyroYRate = gyroY/131

 if (RestrictPitch):

 if((roll < -90 and kalAngleX >90) or (roll > 90 and kalAngleX < -90)):
 kalmanX.setAngle(roll)
 complAngleX = roll
 kalAngleX = roll
 gyroXAngle = roll
 else:
 kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt)

 if(abs(kalAngleX)>90):
 gyroYRate = -gyroYRate
 kalAngleY = kalmanY.getAngle(pitch,gyroYRate,dt)
 else:

75

 if((pitch < -90 and kalAngleY >90) or (pitch > 90 and kalAngleY < -90)):
 kalmanY.setAngle(pitch)
 complAngleY = pitch
 kalAngleY = pitch
 gyroYAngle = pitch
 else:
 kalAngleY = kalmanY.getAngle(pitch,gyroYRate,dt)

 if(abs(kalAngleY)>90):
 gyroXRate = -gyroXRate
 kalAngleX = kalmanX.getAngle(roll,gyroXRate,dt)

 #angle = (rate of change of angle) * change in time
 gyroXAngle = gyroXRate * dt
 gyroYAngle = gyroYAngle * dt

 #compAngle = constant * (old_compAngle + angle_obtained_from_gyro) + constant *
angle_obtained from accelerometer
 compAngleX = 0.93 * (compAngleX + gyroXRate * dt) + 0.07 * roll
 compAngleY = 0.93 * (compAngleY + gyroYRate * dt) + 0.07 * pitch

 if ((gyroXAngle < -180) or (gyroXAngle > 180)):
 gyroXAngle = kalAngleX
 if ((gyroYAngle < -180) or (gyroYAngle > 180)):
 gyroYAngle = kalAngleY

 print("Angle X 4: " + str(kalAngleX)+" " +"Angle Y: " + str(kalAngleY))
 a.append(str(kalAngleX))
 GPIO.output(35,GPIO.HIGH)
 with open('pitch.ods','a') as f:
 writer=csv.writer(f)
 writer.writerow(a)
 a=[]
 except Exception as exc:
 flag += 1
 except (ZeroDivisionError,IOError) as e:
 print("program faced an interruption")

