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ABSTRACT 

 

Classification of Drug of Abuse Using Mass Spectral Data for the Identification of Novel 

Psychoactive Substances (NPSs). 

Garion Schneider 

Western Carolina University (November 2022) 

Advisor: Dr. Nuwan Perera 

 

Novel psychoactive substances (NPSs) have been increasingly reported in recent years and possess 

significant risks to public health worldwide. These substances, sometimes known as “legal highs”, 

are newly designed drugs that mimic the effects of commonly abused drugs and are comprised of 

several drug classes which include opioids, cannabinoids, stimulants, and benzodiazepines. Many 

NPSs share similar chemical structures with commonly abused drugs and produce similar 

psychoactive responses by binding to receptors in the body. These NPSs are designed to 

circumvent the regulations that limit the use of recreational drugs and to create more potent drugs 

such as fentanyl derivatives. In a typical forensic laboratory analysis, an analyst uses a panel of 

known drug standards or reference materials to identify and quantify drugs present in a sample (or 

evidence) using chromatographic methods such as gas chromatography mass spectrometry (GC-

MS) or liquid chromatography mass spectrometry (LC-MS). If a compound present in the sample 

is not included in the test panel, mass spectral libraries can be used to find the identity of that 

compound by comparing the mass spectrum of the unknown with the mass spectra of known 

compounds present in the library. In the case of new NPSs that have not been reported, no reference 

materials or reference spectra are available. In this scenario, forensic labs have to rely on gathered 
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intelligence data, prior knowledge of these NPSs, and some additional analysis methods, such as 

nuclear magnetic resonance spectroscopy (NMR) or high-resolution mass spectral data (HRMS), 

to determine the presence of NPSs. However, structural elucidation of novel compounds is time 

consuming and costly, thus there is a growing interest to develop methods that can proactively 

determine the presence of NPSs using chemometric methods. The focus of the current research 

work is to develop proactive solutions to identify newly designed NPSs when the reference spectra 

are not present in the spectral libraries used in forensic laboratories. A classification system is 

developed using existing data of known substances that can be used to determine the presence of 

NPSs. Herein, we demonstrated a model developed using mass spectral data and chemometric 

methods, such as principal component analysis (PCA) and partial least square discriminant 

analysis (PLS-DA), that can accurately discriminate novel fentanyl derivatives from non-fentanyl 

related drugs. Furthermore, we have developed a sub-model using aforementioned methods to 

discriminate fentanyl derivatives based on structural modifications. Validation results show that 

these methods are robust with high accuracy (>95%), true positive rates (>95%), and true negative 

rates (>95%).  
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CHAPTER ONE: INTRODUCTION 

 

Background 

NPSs became popular worldwide around the late 2000’s and over 1150 NPS compounds 

have been reported to the United Nations Office on Drugs and Crime (UNODC) Early Warning 

Advisory (EWA) by 137 countries and territories by October 2022.1,2,3,4 It is reported that there 

were 24 NPSs identified for the first time in the USA in 2020.5 There are over 60,000 deaths 

reported in the US attributed to opioid crisis and the majority of them are related to fentanyl and 

related substances.3  In post-mortem analysis related to drug overdoses, synthetic opioids like 

fentanyl derivatives made up 23% of the cases, second only to sedatives/hypnotics.  4 Currently, 

this epidemic is taking the form of synthetic fentanyl derivatives with various structural 

modifications.5 In a typical forensic laboratory analysis, an analyst uses a panel of known drug 

standards or reference materials to identify and quantify drugs present in a sample (or evidence) 

using chromatographic methods such as gas chromatography mass spectrometry (GCMS) or 

liquid chromatography mass spectrometry (LCMS). If a compound present in the sample is not 

included in the panel, mass spectral libraries can be used to find the identity of that compound by 

comparing the mass spectrum of the unknown with the mass spectra of known compounds 

present in the library. These libraries are continuously updated to include NPSs that are 

identified by various institutions such as crime laboratories. In the case of new NPSs that are not 

reported before, since there are no reference materials or reference spectra are available, these 

labs rely on intelligence data, prior knowledge on NPSs, and some additional analysis methods 

such as nuclear magnetic resonance spectroscopy (NMR) or high-resolution mass spectral data 
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(HRMS) to determine the presence of NPSs. However, structural elucidation of novel 

compounds is time consuming and there is a growing interest to develop methods that can 

proactively determine the presence of NPSs using chemometric methods.6,7,8  

Fentanyl Related Compounds 

Fentanyl is a synthetic opioid that interacts with the opioid receptors present in the central 

nervous system. It is used as a strong pain medication in clinical settings and used illicitly as a 

recreational drug. Different sites of fentanyl core structure can be substituted to create novel 

fentanyl related substances. These sites include phenethyl group, piperidine ring, aniline ring, and 

amide group (see Figure 1.) and minute changes on these sites would create compounds that have 

similar chemical behaviors to fentanyl.1 Fentanyl and fentanyl related substances are responsible 

for majority of opioid-related overdose deaths in the USA.5 In a recent study, Koshute, et al.  have 

shown that mass spectral data can be used to differentiate fentanyl derivatives from other drugs 

using machine learning techniques as a complimentary technique for mass spectral library search 

of unknown compounds.8 However, this study does not extend to the subclasses of fentanyl 

analogues. In a separate study, Gilbert, et al. have developed a chemometric model to classify 

fentanyl related substances based on the structural position of a modification using hierarchical 

classification and principal component analysis (PCA).6 However, this study does not include a 

method to classify fentanyl related compounds from other drug classes. Fentanyl subgroups used 

in this study has only a few samples (3 to 19 samples per class) and total number of samples used 

in the model calculation was 54.  
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Figure 1: Mass spectrum and common fragmentation pattern of fentanyl1,10. 

Gas Chromatography 

Gas chromatography is the most widely used instrument in forensic drug analysis. The 

gas chromatograph can separate compounds in a mixture based on their polarity and boiling 

point. When a mixture of chemical compounds is injected into the gas chromatograph, it is 

constantly transported through a capillary column by an inert gas called the carrier gas. The 

molecules in the sample interact with a stationary phase either coated or packed in the column. 

Based on these interactions’ the molecules separate and reach a detector located at the end of the 
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capillary column.  A tandem instrument like a GCMS will then pass each compound into a mass 

spectrometer.9,10 

Mass Spectrometry 

A mass spectrometer contains three parts: the ionization source, the mass analyzer, and 

the detector. When a sample enters the instrument, it is ionized in the ionization source. 

Ionization sources can be hard, which will generally fragment the analyte molecule into many 

pieces, or soft, which will generally have less fragmentation. All spectra in this study were 

obtained using a hard ionization technique called electron ionization. During this process, the 

analyte is bombarded with high energy electrons that will knock an electron off the analyte. The 

sample compound will then break a bond and turn into fragments; one with a positive charge, 

and a neutral radical fragment. The location of this bond breakage is most likely to be the 

weakest bond on the molecule, but several bonds will break following predictable trends. After 

being ionized, the charged fragment is propelled into the mass analyzer, where it is subjected to a 

magnetic field. This field deflects the fragment off its original path based on its mass to charge 

ratio. The magnetic field can be manipulated so that the fragments interact with the detector in 

order of their mass to charge ratio. This detector will measure how many of each fragment 

interacts with it to create a mass spectrum. Most fragments will have a positive charge of one, 

therefore, the spectrum is generally only based on the mass of each fragment. The most common 

or intense fragment, which is known as the base peak, is assigned a value for abundance, usually 

either 100 or 1000, and all the other fragments are given relative abundance values based on their 

ratio to the most common fragment. Since a molecule will fragment the same way when put 

under the same ionization conditions, these spectra can be used to identify a single compound. 
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An unknown compound can be identified using mass spectral data by comparing its mass 

spectrum with a library of spectra of known compounds.9,10  

Library 

Mass spectral data used in this study was obtained from the Scientific Working Group for 

Seized Drug Identification (SWGDrug). This library is comprised of mass spectra of the known 

drugs, metabolites and other drug related compounds. All spectra of this library were collected 

using electron impact ionization (EI) and it is continuously updated to include novel compounds 

reported from various sources.11  

PCA 

The PCA is an unsupervised learning method that is used to reduce the dimensionality of 

complex data.  In PCA, the covariance of each possible combination of variables is calculated in 

a matrix called the covariance matrix. This matrix will have both dimensions equal to the number 

of variables in a set. In the case of a mass spectrum, each mass to charge ratio would be 

considered one variable. The eigenvectors of this matrix correspond with the axes in the plot that 

contain the most variance in the data. This means that a line can be drawn through the data to 

represent the information contained in it using less variables. This is referred to as a principal 

component. These lines are orthogonal to each other, so that the information contained in one 

never overlaps with another. The principal components are ranked by how much information 

they contain. Ideally, the classes of the resulting graph from PCA should show samples from one 

class grouping together and separate from the other classes.12,13,14 

𝑐𝑜𝑣௫,௬ =
Σ(𝑥௜ − 𝑥)(𝑦௜ − 𝑦)

𝑁 − 1
(1) 
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PLS-DA 

Like PCA, PLS-DA is also a dimensionality reduction tool that can be used as a 

discriminant analysis to predict class membership of a dataset. A significant difference in PCA 

and PLS-DA is that PCA is an unsupervised process, and PLS-DA is a supervised process. PLS-

DA uses the class of the known compounds when making a model. PLS relates two matrices of 

information where one is an independent variable (like mass spectra), and one is a dependent 

variable (class in this case). These two sets of information can be related by  

𝑀 = 𝑆𝑋 (2) 

𝐶 = 𝑈𝑌 (3) 

Where M is a matrix made up of the independent variable, C is a matrix made up of the 

dependent variable, S and U are score matrices similar to those calculated in PCA, and X and Y 

are matrices of the loading vectors. PLS-DA differs from partial least square (PLS) in that the 

dependent variable, C, is a categorical class defined by the user. Two different forms of PLS 

were used in this study, known as PLS1 and PLS2. PLS1 is used when C has only two values 

(when only one class is being discriminated), and PLS2 is used to expand C to contain more than 

two values.15 The loading vectors of these models can be plotted to observe where the model 

assigns value. The x loading vector can be plotted to show which variables (m/z in this study) 

carry the most weight in determining the discrimination value for whichever class they are used 

in (see Appendix A). The y loading vectors can be plotted to show which x loading vectors are 

used to calculate discrimination values for each class (see Appendix B). 

 This has made PLS-DA models more accurate, but caution should be exercised when 

choosing what drug classes should be used to avoid overfitting the data. In the PLS-DA analysis. 
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This allows variable selection programs to accurately judge their own fitness. Using PLS-DA, 

DA prediction plots can be generated for each class, and any sample that is identified as that 

class will show up above the determination threshold is considered correctly classified with the 

class of interest. Cross validation was performed on each model in this study to ensure their 

accuracy. This was performed using the venetian blinds method, which divides the model 

samples into n number of windows then takes every nth window for validation. The models in 

this study were all validated using this method with 20 windows. 

The classification models developed using PLS-DA were evaluated by using true positive 

rate (TPR) and true negative rate (TNR). TPR is the proportion of positive samples that were 

correctly identified by the model and TNR is the proportion of negatives samples that were 

classified correctly as negative samples.  

These values were calculated using following equations after building the PLS-DA 

models, 

𝑇𝑃𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (4) 

𝑇𝑁𝑅 =  
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
  (5) 

where TP is true positives, FN is false negatives, TN is true negatives, and FP is false positives. 

The true positive rate is a measure of how a test can predict trues positives, and the true negative 

rate predicts how well a test can predict true negatives. When determining what class, a sample 

belongs to, PLS-DA makes use of several loading vectors. These are like the principal 

components in PCA in that they show which variables in each sample are important for 

determining a specific class. In this study, variables correspond to each mass to charge ratio on a 
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mass spectrum. Models using PLS1 in this study were calculated using 8 loading vectors, while 

PLS2 models were calculated using 15 loading vectors. Using the y loading vectors, one can 

determine which x loading vectors contribute to each class, then use the x loading vectors to 

determine which variables are important.12,13,14,16 

 

Variable Selection 

Variable selection methods choose specific variables in data based on their importance in 

the model’s fitness. This can be helpful when samples contain substantial amounts of 

information that may not all be important to the purpose of the model. In this study, every 

sample is a mass spectrum, and not every mass to charge ratio (m/z) helps identify the class of a 

drug. In order to narrow the scope of the model to useful information, a genetic algorithm (GA) 

was used. 

Genetic algorithm uses concepts of natural selection to select the most useful variables in 

a dataset to maximize the performance of the models. The algorithm will first create several 

models to make up the first generation, then it will give each model an accuracy value for its 

fitness to the correct classes of the samples. The next generation of models will utilize useful 

variables for the fitness from the prior generation. Mutation and crossover are used to introduce 

new variables to the problem and improve the model performance. The algorithm will then 

assess the fit to see if that generation was an improvement, before moving to the next generation. 

This process continues until the fitness reaches a set value or a maximum number of generations. 

When variable selection is finished, the model is calculated with only those peaks in the 

spectrum that the GA identified as important. Then using a variable selection method like GA, it 

is important to avoid overfitting the model. A technique like this can easily remove a variable 
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from the study that may contain useful information for the problem at hand. Using less 

generations, and performing replicate runs of GA can alleviate this problem. Each generation of 

GA was performed using a widow width of one, population size of 30% of the initial terms 

(m/z), and a mutation rate of 0.005. Each PLS-DA model used 15 loading vectors and the initial 

population included 64 PLS-DA models. This GA routine was performed on 80 maximum 

generations and three replicate runs were completed for each model. Using GA in this study will 

force the model to only use the m/z in the spectra that are important for classification of a drug. 

Hierarchical Clustering 

Ward’s method is a hierarchal clustering can be used to generate groups from data. This 

can be applied to large amount of data to create a classification without prior knowledge about 

the samples. The method is an agglomerative method, meaning that each sample starts the 

process as its own cluster. These clusters are then combined into larger clusters in such a way 

that the variance within the cluster is minimized. In this study, Ward’s method was performed on 

the PCA scores of the data using four principal components. This can be used to create new 

classes for use in PLS-DA without having to manually define them.8 

Research Objectives 

This research work focuses on providing a proactive solution to identify newly designed 

NPSs when the reference spectra are not present in the spectral libraries used in forensic 

laboratories. A classification system is developed using existing data of known substances that can 

be used to determine the presence of NPSs. The initial work is designed to classify major drug 

classes in order to identify the class that an unknown belongs to, for example if an unknown drug 

is a fentanyl derivative or not. The second half of this work if focused on extending this 
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classification system to identify the position of the derivatization on the fentanyl molecule. 

Fentanyl related compounds are divided to three groups based on the structural position of the 

modifications.  

Starting with a library of known compounds with known classes, one can calculate an 

initial model in order to divide the mass spectral library into different drug classes. These classes 

can then be further divided into subclasses by use of another calculated sub-model. Use of sub-

models allows one a great amount of liberty to decide how specific of a structural difference is 

being classified. Once this model framework is calculated with the known compounds, an 

unknown structure can be inserted into this framework to place it into one of the predetermined 

classes (see Figure 2). 

 

Figure 2: General scope of hierarchal model. 
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CHAPTER 2: EXPERIMENTAL 

 

Mass Spectral Data 

Data for this study was acquired from the scientific working group for the analysis of 

seized drugs (SWGDrug). A total of 102 mass spectra were used in the feasibility study to 

determine if there is sufficient variability among different drug groups present to build a 

classification system. A total of 474 mass spectra were used in the next step, and these spectra 

represent eight drug classes.  (See Table 1). These mass spectra are comprised of mass to charge 

ratios (m/z) and the relative abundance.  

Table 1: Number of samples in each model and class in each study. 

Model 
Initial 
PCA 

Second PCA/ 
Initial PLS-DA 

Second PLS-
DA/ Binary 

Problem 
Fentanyl Sub-Model 

Number of 
Samples 

102 474 498 173 

Fentanyl 
Derivatives 

15 194 194 
Class 1 92 

Cannabinoids 15 156 156 
Opioids 9 27 27 

Class 2 48 Cathinones 15 49 
121 Tryptamines 7 7 

Phenethylamines 14 14 
Class 3 33 Steroids 15 15 0 

Barbiturates 12 12 0 
 
Data Pre-Processing 

The data from the library first had to be made into a uniform shape. This meant adding 

zeroes to the shorter spectra until their dimensions matched the longest spectrum. Once the initial 

analysis on this was done, it was found that there was a specific range of mass to charge ratios 

that were important in modeling, and other peaks were lowering the model’s accuracy. This was 

remedied by cropping the spectra to the helpful range before further analysis. Originally, the 
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spectra were measured from 11 m/z to 662 m/z, but this was found to be too many variables to 

make an effective model. The useful information in a spectrum for class identification in this 

setting is a smaller range of mass to charge ratios. The data was cropped from 40 m/z to 300 

m/z to remove the less helpful variables from model calculation and reduce the variance in the 

model to a more manageable size.  

Software 

MATLAB is a software commonly used in science for data analysis. Short for MATrix 

LABoratory, MATLAB works well for analyzing large amounts of data in a matrix. MATLAB 

can also be used to visualize data in figures with its inbuilt plotting software.  

In MATLAB, a toolbox called PLS toolbox was used for all PCA, PLS-DA, and GA 

analysis. This toolbox allows one to perform several analysis methods on a single data set while 

simplifying the process through a GUI and saving each model as it is created. 

Data Analysis Methods 

Two machine learning techniques are used in this study to create models to differentiate 

drugs based on their mass spectra: principal component analysis (PCA), and partial least squares 

discriminate analysis (PLS-DA). The goal of this study is to build a classification model to be 

used to identify the class of an unknown drug using mass spectral data. Both PCA and PLS-DA 

decompose substantial amounts of data into more manageable pieces by assigning them variance 

values to contain the same information in less variables. The resulting graph from PCA should 

show the different classes of drug grouping together separate from the other classes. In this 

study, an initial analysis was performed to determine if discrimination was possible using this 

technique. 
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 Using PLS-DA, the program gives different graphs for each class, and any sample that is 

identified as that class will show up above the determination threshold. PLS-DA was used after 

initial analysis to more accurately separate classes in the study. Cross validation was performed 

on each model in this study to ensure their accuracy. This was performed using the venetian 

blinds method, which divides the model samples into n number of windows then takes every nth 

window for validation. The models in this study were all validated using this method with 20 

windows. 
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CHAPTER THREE: RESULTS AND DISCUSSION 

 

Initial PCA 

The mass spectra from the SWGDrug library were converted to a comma separated value 

(.csv) file and imported into MATLAB workspace for analysis. To determine if there was 

enough variance in the data to differentiate these drugs, a small number of compounds (7 to 15) 

were identified from eight drug classes including fentanyl derivatives, cannabinoids, 

phenethylamines, cathinones, tryptamines, barbiturates, steroids, and opioids with no fentanyl 

derivatives and an initial PCA was performed. The drugs representing each group were chosen 

based on the classifications used by Drug Enforcement Administration (DEA), World Health 

Organization (WHO) and Federal Bureau of investigation (FBI) literature. PC score plots are 

usually constructed using the first two principal components, since they contain the most 

information, or variance of the original data. More dimensions can be used, but it was decided 

that the result of two PCs provides necessary information for this study. While it was not 

expected that this initial PCA be able to classify each compound, some initial grouping should be 

present to support further work.  

The results of this analysis show some separation of data suggesting that there was 

enough variance between classes of drugs for further analysis. It was hypothesized that there 

might not be enough representatives or samples in each class with enough spectral information to 

effectively separate the classes. First, more samples were identified from the SWGDRUG library 

and another round of PCA was performed to see if the added samples improved the variance in 

the study. 
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Figure 3: PCA score plot of 102 compounds on PC 1 vs. scores on PC 2. Evidence of grouping 
and limited separation implies that further work can be done to classify samples. 
  
  

Cannabinoids 
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Second PCA 

More samples were added for each drug class except phenethylamines, steroids, 

tryptamines, and barbiturates to construct second PCA scores plot (see Table 1.). More samples 

increase the variance within each group, causing them to spread out on the plot, but it will also 

increase variance between the classes as more representative compounds are added to each class. 

Special attention was given to synthetic cannabinoids and derivatives of fentanyl, as they are 

currently the most common NPSs encountered thus, more samples were included in this study. 

This PCA showed a greater correlation within each class, but not enough variance to cluster them 

in different areas of the PCA scores plot. Although, some clustering of data is visible, significant 

overlap between classes is present. 

 Fentanyl derivatives, cannabinoids, steroids, and opioids show significant grouping 

while the drug classes barbiturates, cathinones, phenethylamines, and tryptamines do not show a 

separation.  This can be due to two reasons. First, the drug classes barbiturates, cathinones, 

phenethylamines, and tryptamines share common chemical groups such as phenyl, amine, short 

alkyl chains, and contain smaller drug molecules compared to fentanyl derivatives, opioids, 

cannabinoids, and steroids. Second, drug classes barbiturates, cathinones, phenethylamines, and 

tryptamines contain small number of samples compared to fentanyl derivatives and 

cannabinoids, and therefore, the spectral information related to fentanyl derivatives and 

cannabinoids are well represented in the data space.  

Initial PLS-DA 

Initial PLS-DA was performed for all the samples that are used in the second PCA study. 

Since each class is defined, and every sample must be put in a class before a model can be made 

in PLS-DA, the model can specifically use the variance between classes to discriminate them. 
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Each compound in the study was assigned a class for the model based on their structure, then the 

first PLS-DA analysis was performed using seven classes of drugs. In a PLS-DA model, DA 

prediction values are plotted per sample, and a threshold is set for a positive identification. If a 

prediction value falls above that threshold (above the red line in Figure 4), then it is considered a 

part of the class for which that plot was generated. In the case of a sample scoring above the 

threshold of multiple classes, the class that had the higher prediction value is chosen for that 

sample.  

 

  
Figure 4: PCA score plot of 474 compounds. More group correlation and significant overlap is 
evident.  
  

Cannabinoids 
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Figure 5: Initial PLS-DA results plotted prediction values vs. sample number for 474 
compounds. Discrimination of Cannabinoids and Fentanyl Derivatives is observed, more work is 
required to separate smaller groups including Phenylethylamines and Tryptamines 

Cannabinoids 

(a) (b) 

(c) (d) 
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Figure 5 Cont.: Initial PLS-DA results plotted prediction values vs. sample number for 474 
compounds. Discrimination of Cannabinoids and Fentanyl Derivatives is observed, more work is 
required to separate smaller groups including Phenylethylamines and Tryptamines 
  

Cannabinoids 

(e) (f) 

(g) (h) 
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The initial PLS-DA model classified many samples incorrectly (See Figure 5). Most 

cannabinoids (green) and fentanyl derivatives (blue) are correctly classified or projected above 

the threshold line in their corresponding PLS-DA plots (see Figure 5. (b) and (d)) with only a 

few false positives and false negatives.  All other drug classes show a significant number of false 

positives or false negatives in corresponding DA plots. This may have been due to unnecessary 

peaks and extra m/z ratios that had no discriminatory value that were included in the mass 

spectral data. The original mass spectra used in this initial PLS-DA included m/z ratios from 11 

to 605, and all sample spectra were cropped to include only the m/z values from 40 to 300 that 

were found to contain the most useful information of each class. This eliminates the unnecessary 

peaks such as peaks for small fragments and large peaks such as the molecular ion peak that have 

no discriminatory value. Since the molecular mass of a given compound plays no or little role 

related to the drug class, the molecular ion peak is not helpful in this analysis. 

To improve the model further, more samples were added to each class to increase the 

performance of the model (see table 1.). Barbiturate and steroid drug classes were problematic in 

the classification problem. Since the compounds belong to the steroid class tend to be larger than 

the other compounds, their mass spectra contain many peaks that can be present in other classes 

but are not representative of that drug class. There were a large number of extraneous peaks, that 

the variable selection (GA) was not able to remove before reaching its maximum number of 

generations (data not shown). This was causing the model to include these peaks in the data 

space and misclassify large number of compounds.  
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Figure 6: PLS-DA of 498 compounds using reduced number of classes. Large amount of 
spreading in prediction values can be seen in CTP class and opioid class. 

Cannabinoids 

Cannabinoids 

Opioids 

Opioids 

(b) 

(a) 

CTP 

CTP 
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Figure 6 Cont.: PLS-DA of 498 compounds using reduced number of classes. Large amount of 
spreading in prediction values can be seen in CTP class and opioid class. 
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Figure 7: First two loading vectors for the DA plots of Figure 6. (a) LV 1, positive peaks 
correspond to m/z values that are responsible for classification in the fentanyl derivative class. 
(b) LV 2, positive peaks correspond to m/z values that are responsible for classification in the 
cannabinoid class. 
  

(a) 

(b) 
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Additionally, during a typical drug analysis, acidic drugs and basic drugs are extracted 

using two separate extraction procedures using acidic and basic pH buffers. Therefore, it is not 

possible to encounter an acidic drug in a basic drug analysis process and thus, it is not required to 

retain them in this classification problem. Due to this reason, steroids and barbiturates were 

removed from further studies. Although cannabinoids share the same chemical properties, they 

were used in further models to understand the performance of this method. Additionally, the 

cathinone, tryptamine, and phenethylamine drug classes from the previous model were combined 

to form the cathinones, tryptamines, and phenethylamines (CTP) class.1  

The results of this PLS-DA analysis show improved discrimination between classes (see 

Figure 6.). Reducing the number of classes helped the model differentiate fentanyl derivatives 

from other drugs included in the study while small number of samples are misclassified 

compared to the previous model (see Figure 6). To understand the mass spectral features that are 

important for this discrimination, loading vectors (LVs) were analyzed. Each LV shows the 

loadings of features (variables) that on individual spectra will cause a sample to be placed within 

a drug class. The fentanyl derivative class (Figure 6 (c)) is dependent on positive peaks on LV 1 

(Figure 7. (a)), and negative peaks on LV 2 (Figure 7. (b)) meaning that a presence of peaks that 

have higher values in LV 1 and the absence of peaks that have higher values of LV 2 in a mass 

spectrum of a drug sample will be resulted in classifying that sample as a fentanyl derivative. In 

LV 1, the positive peaks include common fragments found in fentanyl related compounds such 

as m/z = 91, m/z = 146, and m/z = 245, the base peak of fentanyl (see Figure 2). Positive peaks 

on LV 2 serve to remove samples from the fentanyl derivative class include m/z = 214, 215, 

231, 232 and these peaks are found to be present in mass spectra of common cannabinoids.1 
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Figure 8: PLS-DA performed with reduced number of classes using GA as a variable selection 
method. Reduced prediction value spreading observed, but two outliers appear. 
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Figure 8 Cont.: PLS-DA performed with reduced number of classes using GA as a variable 
selection method. Reduced prediction value spreading observed, but two outliers appear. 
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Figure 9. First two loading vectors for the DA plots of Figure 8. (a) LV 1, positive peaks 
correspond to m/z values that are responsible for classification in the cannabinoid class, while 
negative peaks correspond to the fentanyl derivative class. (b) LV 2, positive peaks correspond to 
m/z values that are responsible for classification in the cannabinoid class. 

 

 

(a) 

(b) 
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   Figure 10: Mass spectra of misclassified fentanyl derivative in Figure 8. (d). 

 

To improve the class separation, GA was used as a variable selection method. Special 

care was taken to ensure that the GA was not causing the model to overfit the data. The number 

of generations was reduced to where the fitness no longer improved significantly, and three 

replicate runs were performed for each model. GA improves the study by removing peaks in the 

mass spectrum that are not contributing to meaningful variance (see Figure 9.). Some peaks are 

common to specific classes, while other peaks are simply randomly distributed between the 

classes. These randomly distributed peaks reduce the effectiveness of the model by causing it to 

associate them with a class erroneously and assign them a higher prediction value in calculation.  

The peak at 245 is retained for the fentanyl derivative class in LV 1 and LV 3, while the 

peak at 91 m/z is removed from the model, as many compounds can form fragments at that mass 

since toluene and tropylium are common fragments for many compounds not just fentanyl 

derivatives. The misclassified fentanyl derivative (circled in Figure 8. (d)) is found to be N,N-
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Dimethylamido-despropionyl fentanyl and the mass spectrum of this compound (see Figure 10.) 

shows that the common mass fragments found in the fentanyl related compounds are not present. 

This causes the model to classify this compound as a non-fentanyl related compound. Table 2. 

shows that this model has a very high TPR and TNR for fentanyl derivatives (more than 0.95) 

and can predict other drug classes reasonably well.  

Table 2: Model prediction results and cross validation prediction results before and after variable 
selection for PLS-DA using 4 classes. 

Model Results 
Before Genetic Algorithm 

 Accuracy TPR  TNR FPR FNR 
CTP 0.962 0.950 0.966 0.034 0.050 
Cannabinoids 0.970 0.936 0.985 0.015 0.064 
Fentanyl Der. 0.992 0.985 0.997 0.003 0.015 
Opioids 0.988 0.889 0.994 0.006 0.111 

 After Genetic Algorithm 
 Accuracy TPR TNR FPR FNR 
CTP 0.970 0.958 0.973 0.027 0.041 
Cannabinoids 0.964 0.930 0.980 0.020 0.071 
Fentanyl Der. 0.992 0.985 0.997 0.003 0.015 
Opioids 0.986 0.889 0.992 0.008 0.111 

Cross Validation Results 
Before Genetic Algorithm 

 Accuracy TPR TNR FPR FNR 
CTP 0.946 0.917 0.955 0.045 0.083 
Cannabinoids 0.956 0.917 0.974 0.026 0.083 
Fentanyl Der. 0.984 0.969 0.993 0.007 0.031 
Opioids 0.978 0.815 0.987 0.013 0.185 

After Genetic Algorithm 
 Accuracy TPR TNR FPR FNR 
CTP 0.950 0.934 0.955 0.045 0.066 
Cannabinoids 0.950 0.904 0.971 0.029 0.096 
Fentanyl Der. 0.984 0.959 1.000 0 0.041 
Opioids 0.976 0.852 0.983 0.017 0.148 

 
To simplify the problem, the analysis was modified as a binary problem, meaning the 

number of classes were reduced to two. All non-fentanyl drugs are grouped (as one class to in 

this two-class problem). The goal of this study is to investigate if fentanyl derivatives can be 
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separated from all possible drug classes to mimic a real-life scenario. In a hypothetical analysis, 

if an unknown compound found during a GCMS analysis will allow an analyst to obtain a 

compound classification for that mass spectrum of that unknown without having to collect 

additional data about individual m/z peaks. This two-class model will allow the analyst to 

determine if that unknown is a fentanyl derivative. Several methods of validation were 

implemented throughout the study to estimate the robustness of the models. In this binary 

problem, all data was divided into a training set and a test set.  

The training set was used to develop the model and the test set was used to test the model 

by predicting these samples with the model. This test set comprised of about ten percent of all 

mass spectra used in the study (5). The PLS-DA plots were first generated without applying GA 

and only two samples were misclassified as shown in Figure 11. All samples were correctly 

classified after using GA for feature selection (Figure 12).  TPR and TNR for this model is more 

than 0.99 (see Table 3.) meaning that this can predict if an unknown drug is a fentanyl derivative 

or not with more than 99% accuracy. The one missed compound is shown in Figure 14; its major 

feature in the mass spectrum is its base peak at m/z = 278. This peak does not coincide with any 

peaks on the model’s loading vector, so a low prediction value is given to this compound. 
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Figure 11. (a) DA plot of training set before GA for fentanyl derivatives. (b) The first LV for the 
model was included showing negative peaks present in fentanyl derivative class. 

(a) 

(b) 
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Figure 12. (a) DA plot of training set and after GA for fentanyl derivatives. The first LV for the 
model was included showing negative peaks present in fentanyl derivative class. 

 
 
 
 
 

(a) 

(b) 
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Table 3: Model prediction and cross validation prediction results for PLS-DA of the binary 
problem 

Model Results 
 Accuracy TPR  TNR FPR FNR 
Fentanyl 1.000 1.000 1.000 0 0 
Other 1.000 1.000 1.000 0 0 

 Cross Validation Results 
 Accuracy TPR  TNR FPR FNR 
Fentanyl 0.997 1.000 0.995 0.005 0 
Other 0.997 0.995 1.000 0 0.005 

 

Figure 13. Prediction results from separate validation. Correct identification of all compounds 
except one. 
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Figure 14. Mass spectrum for the misclassified compound from the test set. 
 
 

Fentanyl Derivative Sub-Model 

Once an acceptable model to discriminated fentanyl derivatives from other drugs, a sub-

model was developed to separate a number of substituted fentanyl derivative compounds into 

classes based on their structural modifications. In the preliminary studies, fentanyl derivatives 

were grouped based on a method described in a previous study,6 and a corresponding model was 

developed using PLS-DA. This model did not provide satisfactory results as the classes used did 

not seem to correlate with the structural modifications, and not all types of fentanyl derivative 

were represented in this study. A new way to classify these compounds was needed and to 

accomplish this, hierarchal clustering Ward’s method was performed for 173 fentanyl 

derivatives. This produced three subgroups based on the PCA data (see Figure 15) (see Appendix 

C). These groups were analyzed to determine the structural modifications on the fentanyl core 

structure.  
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Figure 15. Dendrogram of the three derived classes resulting from Ward’s method on the sub-
model data. 
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Figure 16: Labeled structure of fentanyl. 

 

Class three compounds appeared to be mainly halogen containing compounds. The 

compounds in this class contained mostly a fluorine atom, or in some compounds a chlorine 

atom, on the alpha side of the molecule (see Figure 16). Class two compounds primarily 

contained modifications on the alpha prime and beta prime carbons. This would cause class two 

compounds to have a similar fragmentation pattern to fentanyl (see Figure 2). Class one was 

comprised of compounds that do not belong to Class 2 or Class 3. Common structural 

modifications in this group were changes to the ortho, meta, and para carbons, or groups at alpha 

prime that were able to form a fragment stable enough to change the mass spectral fragmentation 

pattern of the entire molecule. PLS-DA analysis was performed on the fentanyl derivatives using 

these three classes. The model performance shows discrimination between classes, but several 

compounds were predicted outside of their class that is predicted by the hierarchical 

classification (see Figure 17).  Once the structural characteristics of each class were identified, 

the important fragments for each class were determined.  
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Figure 17. Initial fentanyl sub-model. significant differentiation, but with several misclassified 
compounds 
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Then, chemical structures of all fentanyl derivatives used in this study were analyzed to 

determine if hierarchical classification is accurate in predicting the class. During this process, it 

was discovered that several compounds in this class data were deuterium labelled compounds, 

which are identical to their non-deuterated counterparts but have a slightly higher mass. 

Deuterated compounds are commonly used as internal standards in forensic drug analysis. These 

samples were removed as the fragments created from these molecules will have heavier masses 

compared to non-deuterated counterparts. After the data was “cleaned” in this manner, the model 

performance improved. However, the cross-validation results show that there were ten 

misclassified samples. This required us to use GA to select the variables that are important in the 

discrimination. PLS-DA plots generated using GA is shown in Figure 18, and the TPR and TNR 

of this method can be found in Table 4.   

The resulting sub-model accurately predicted the three classes of fentanyl derivatives. 

Despite some incorrect predictions, this study demonstrates that hierarchal clustering can 

effectively be used in the initial determination of the sub-classes when chemical structural 

similarities are not fully understood.  
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Figure 18: Fentanyl sub-model using cleaned data and GA. Reduced number of misclassified 
compounds  
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Figure 19: First three loading vectors for fentanyl sub model. Positive values in LV 1 correspond 
to class one compounds. Negative values in LV 2 correspond to class 2 compounds while 
positive values correspond to the other 2 classes. Positive values in LV3 correspond to class 3 
compounds. 
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Table 4: Model prediction results and cross validation prediction results before and after variable 
selection for fentanyl sub-model. 
 

Model Results 
 Accuracy TPR  TNR FPR FNR 
Class 1 0.983 0.989 0.975 0.025 0.011 
Class 2 0.983 0.958 0.992 0.080 0.042 
Class 3 1.000 1.000 1.000 0 0 

Cross Validation Results 
 Accuracy TPR  TNR FPR FNR 
Class 1 0.965 0.957 0.975 0.025 0.043 
Class 2 0.971 0.958 0.976 0.024 0.042 
Class 3 0.994 1.000 0.993 0.007 0 

 
 

Loading vectors calculated for this model reinforce (See Figure 19.) the structural 

identities of each class. LV1 has higher Emphasis on m/z of peaks related to the fentanyl core 

structure (m/z = 91, 189, and 245) and positive values of LV1 corresponds to class one. This 

explains the presence of have many important peaks from both other classes with less weight. 

The largest peak in LV 1, m/z = 91, is present in most compounds in the fentanyl derivative 

class. Class two has many of the same qualities of unmodified fentanyl, and this can be seen by 

the presence of 245 m/z, the base peak for fentanyl and 189 m/z, another common fragment of 

fentanyl. Class three generally contains heavier atoms in its modifications like fluorine and 

chlorine. This can be seen in the peaks in LV 3 which correspond to peaks in fentanyl but have 

higher m/z ratios. 
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CHAPTER FOUR: CONCLUSION 

 

A new method was developed for the presumptive identification of novel fentanyl 

derivatives using mass spectral data of known compounds. Further, a sub-model was developed 

to discriminated fentanyl derivatives based on substitution patterns. Most importantly, we 

demonstrated that hierarchical clustering combined with classification methods such as PLS-DA 

can be used not only to develop a model to classify mass spectral data of compounds without 

knowing the structural modifications on them but also to find the important m/z ratios that can be 

used to discriminate the classes. Validation results show that these methods are robust with high 

accuracy, TPR and TNR. This method was simple and easy to develop and use in forensic labs 

without generating additional data. Routine drug analysis generates mass spectra of all the 

compounds present in a mixture injected into GCMS and the mass spectra of unknown 

compounds from the same analysis can be projected into these models and determine if fentanyl 

derivatives are present. Structural determination of these compounds can then be easily 

performed as the subclass of the drug can be predicted using sub-models. This method can also 

be useful when the amount of drug recovered is not adequate to be used in structural elucidation 

using HRMS, FTIR, or NMR.  

Future experimentation will be focused on (I) validate the performance of the models by 

using newly reported NPSs. Mass spectra of these drugs will be obtained from SWGDrug or will 

be generated in-house using GCMS. (II) Develop sub-models for cannabinoids drug class using 

the same methodology.  

 

 
 



  
 

43 
 

REFERENCES 

 

(1) Feeney, W.; Moorthy, A.; Sisco, E. Spectral Trends in GC-EI-MS Data Obtained 
from the SWGDRUG Library and Literature: A Resource for the Identification of 
Unknown Compounds. Forensic Chemistry 2022, 31. 

(2) Strano Rossi, S.; Odoardi, S.; Gregori, A.; Peluso, G.; Ripani, L.; Ortar, G.; 
Serpelloni, G.; Romolo, F. S. An Analytical Approach to the Forensic Identification 
of Different Classes of New Psychoactive Substances (Npss) in Seized Materials. 
Rapid Communications in Mass Spectrometry 2014, 28 (17), 1904–1916.  

(3) Winokur, A. D.; Kaufman, L. M.; Almirall, J. R. Differentiation and Identification of 
Fentanyl Analogues Using GC-IRD. Forensic Chemistry 2020, 20, 100255.  

(4) Current NPS threats. https://www.unodc.org/unodc/en/scientists/current-nps-
threats.html (accessed Nov 2, 2022).  

(5) Mohr, A. L.; Logan, B. K.; Fogarty, M. F.; Krotulski, A. J.; Papsun, D. M.; Kacinko, 
S. L.; Huestis, M. A.; Ropero-Miller, J. D. Reports of Adverse Events Associated 
with Use of Novel Psychoactive Substances, 2017–2020: A Review. Journal of 
Analytical Toxicology 2022, 46 (6).  

(6) Gilbert, N.; Mewis, R. E.; Sutcliffe, O. B. Classification of Fentanyl Analogues 
through Principal Component Analysis (PCA) and Hierarchical Clustering of GC–MS 
Data. Forensic Chemistry 2020, 21, 100287.  

(7) Levitas, M. P.; Andrews, E.; Lurie, I.; Marginean, I. Discrimination of Synthetic 
Cathinones by GC–MS and GC–MS/MS Using Cold Electron Ionization. Forensic 
Science International 2018, 288, 107–114.  

(8) Koshute, P.; Hagan, N.; Jameson, N. J. Machine Learning Model for Detecting 
Fentanyl Analogs from Mass Spectra. Forensic Chemistry 2022, 27, 100379.  

(9) Granger, R. M.; Yochum, H. M.; Granger, J. N.; Sienerth, K. D. Instrumental 
analysis, First ed.; Oxford University Press: New York, NY, 2017.  

(10) Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. Spectrometric identification of 
Organic Compounds; John Wiley & Sons: Hoboken, NJ, NJ, 2005.  

(11) https://www.swgdrug.org/index.htm (accessed Nov 2, 2022).  
(12) Huffman, S. Chem455 course. https://doi.org/10.15139/S3/6J9ZAU (accessed 

Nov 4, 2022).  
(13) Gromski, P. S.; Xu, Y.; Correa, E.; Ellis, D. I.; Turner, M. L.; Goodacre, R. A 

Comparative Investigation of Modern Feature Selection and Classification 
Approaches for the Analysis of Mass Spectrometry Data. Analytica Chimica Acta. 
2014, 829. DOI: 10.1016/j.aca.2014.03.039 

(14) Kranenburg, R. F.; Peroni, D.; Affourtit, S.; Westerhuis, J. A.; Smilde, A. K.; van 
Asten, A. C. Revealing Hidden Information in GC-MS Spectra from Isomeric Drugs: 
Chemometrics Based Identification from 15 eV and 70 eV EI Mass Spectra. Forensic 
Chemistry. 2020, 18. DOI: 10.1016/j.forc.2020.100225 

(15) Cheek M. E.  An exploration of chemometric regression techniques to analyze 
infrared spectra of aqueous sugar mixtures (dissertation). ProQuest LLC. 2019 



  
 

44 
 

(16) Pereira, L. S.A.; Lisboa, F. L.C.; Neto, J. C.; Valladao, F. N.; Sena, M. M. 
Screening Method for Rapid Classification of Psychoactive Substances in Illicit 
Tablets Using Mid Infrared Spectroscopy and PLS-DA. Forensic Science  

(17) Valdez, C. A. Gas Chromatography-Mass Spectrometry Analysis of Synthetic 
Opioids Belonging to the Fentanyl Class: A Review. Critical Reviews in Analytical 
Chemistry 2021, 1–31.  

(18) Werther, W.; Lohninger, H.; Stancl F.; Varmuza K. Classification of Mass 
Spectra A Comparison of Yes/No Classification Methods for the Recognition of 
Simple Structural Properties. Chemometrics and Intelligent Laboratory Systems. 
1994, 22 63-76. 

(19) Bell, S. Forensic chemistry, Third ed.; CRC Press: Boca Raton, FL, 2022.  
(20) Lappas, N. T.; Lappas, C. M. Forensic toxicology: Principles and concepts, 

Second ed.; Academic Press, an imprint of Elsevier: San Diego, CA, 2022.  
(21) Hassanien, S. H.; Bassman, J. R.; Perrien Naccarato, C. M.; Twarozynski, J. J.; 

Traynor, J. R.; Iula, D. M.; Anand, J. P. In Vitro Pharmacology of Fentanyl Analogs 
at the Human Mu Opioid Receptor and Their Spectroscopic Analysis. Drug Testing 
and Analysis 2020, 12 (8), 1212–1221.  

(22) United States Drug Enforcement Administration. 
https://www.dea.gov/factsheets?keywords=&page=0 (accessed Nov 2, 2022).  

(23) Valdez, C. A. Gas Chromatography-Mass Spectrometry Analysis of Synthetic 
Opioids Belonging to the Fentanyl Class: A Review. Critical Reviews in Analytical 
Chemistry 2021, 1–31.  

 

 
 

 

 

 

  

  



  
 

45 
 

APPENDIX A: LOADING VECTORS 

 

Figure A1: Loading vector 1 of Figure 6 – also shown in the text 

 

Figure A2: Loading vector 2 of Figure 6 – also shown in the text 
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Figure A3: Loading vector 3 of Figure 6 

 
Figure A4: Loading vector 4 of Figure 6 
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Figure A5: Loading vector 5 of Figure 6 

 
Figure A6: Loading vector 6 of Figure 6 
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Figure A7: Loading vector 7 of Figure 6 

 
Figure A8: Loading vector 8 of Figure 6 
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Figure A9: Loading vector 9 of Figure 6 

 
Figure A10: Loading vector 10 of Figure 6 
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Figure A11: Loading vector 11 of Figure 6 

 
Figure A12: Loading vector 12 of Figure 6



  
 

51 
 

 
Figure A13: Loading vector 13 of Figure 6 

Figure A14: Loading vector 14 of Figure 6   
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Figure A15: Loading vector 15 of Figure 6  

 
Figure A16: Loading vector 1 of Figure 8 – also shown in the text 
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Figure A17: Loading vector 2 of Figure 8 – also shown in the text 

 
Figure A18: Loading vector 3 of Figure 8 
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Figure A19: Loading vector 4 of Figure 8 

 
Figure A20: Loading vector 5 of Figure 8 
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Figure A21: Loading vector 6 of Figure 8 

 
Figure A22: Loading vector 7 of Figure 8 
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Figure A23: Loading vector 8 of Figure 8 

 
Figure A24: Loading vector 9 of Figure 8 
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Figure A25: Loading vector 10 of Figure 8 

 
Figure A26: Loading vector 11 of Figure 8 
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Figure A27: Loading vector 12 of Figure 8 

 
Figure A28: Loading vector 13 of Figure 8 



  
 

59 
 

 
Figure A29: Loading vector 14 of Figure 8 

 
Figure A30: Loading vector 15 of Figure 8
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Figure A31: Loading vector 1 of Figure 11a – also shown in the text 

 
Figure A32: Loading vector 2 of Figure 11a 



  
 

61 
 

 
Figure A33: Loading vector 3 of Figure 11a 

 
Figure A34: Loading vector 4 of Figure 11a 
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Figure A35: Loading vector 5 of Figure 11a 

 
Figure A36: Loading vector 6 of Figure 11a 
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Figure A37: Loading vector 7 of Figure 11a 

 
Figure A38: Loading vector 8 of Figure 11a
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Figure A39: Loading vector 1 of Figure 12a – also shown in the text 

 
Figure A40: Loading vector 2 of Figure 12a 
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Figure A41: Loading vector 3 of Figure 12a 

 
Figure A42: Loading vector 4 of Figure 12a 
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Figure A43: Loading vector 5 of Figure 12a 

 
Figure A44: Loading vector 6 of Figure 12a 
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Figure A45: Loading vector 7 of Figure 12a 

 
Figure A46: Loading vector 8 of Figure 12a 
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Figure A47: Loading vector 1 of Figure 18 – also shown in the text 

 
Figure A48: Loading vector 2 of Figure 18 – also shown in the text 
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Figure A49: Loading vector 3 of Figure 18 – also shown in the text 

 
Figure A50: Loading vector 4 of Figure 18
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Figure A51: Loading vector 5 of Figure 18

 
Figure A52: Loading vector 6 of Figure 18
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Figure A53: Loading vector 7 of Figure 18

 
Figure A54: Loading vector 8 of Figure 18
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Figure A55: Loading vector 9 of Figure 18

 
Figure A56: Loading vector 10 of Figure 18
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Figure A57: Loading vector 11 of Figure 18

 
Figure A58: Loading vector 12 of Figure 18
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Figure A59: Loading vector 13 of Figure 18

 
Figure A60: Loading vector 14 of Figure 18
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Figure A61: Loading vector 15 of Figure 18 
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APPENDIX B: Y LOADING VECTORS 

 
Figure B1: Y Loading vector 1 of Figure 6 

 
Figure B2: Y Loading vector 2 of Figure 6 
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Figure B3: Y Loading vector 3 of Figure 6 

 
Figure B4: Y Loading vector 4 of Figure 6 
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Figure B5: Y Loading vector 5 of Figure 6 

 
Figure B6: Y Loading vector 6 of Figure 6 
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Figure B7: Y Loading vector 7 of Figure 6 

 
Figure B8: Y Loading vector 8 of Figure 6 
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Figure B9: Y Loading vector 9 of Figure 6 

 
Figure B10: Y Loading vector 10 of Figure 6 
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Figure B11: Y Loading vector 11 of Figure 6 

 
Figure B12: Y Loading vector 12 of Figure 6 
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Figure B13: Y Loading vector 13 of Figure 6 

 
Figure B14: Y Loading vector 14 of Figure 6 
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Figure B15: Y Loading vector 15 of Figure 6

 
Figure B16: Y Loading vector 1 of Figure 8 
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Figure B17: Y Loading vector 2 of Figure 8 

 
Figure B18: Y Loading vector 3 of Figure 8 
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Figure B19: Y Loading vector 4 of Figure 8 

 
Figure B20: Y Loading vector 5 of Figure 8 
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Figure B21: Y Loading vector 6 of Figure 8 

 
Figure B22: Y Loading vector 7 of Figure 8 
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Figure B23: Y Loading vector 8 of Figure 8 

 
Figure B24: Y Loading vector 9 of Figure 8 
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Figure B25: Y Loading vector 10 of Figure 8 

 
Figure B26: Y Loading vector 11 of Figure 8 
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Figure B27: Y Loading vector 12 of Figure 8 

 
Figure B28: Y Loading vector 13 of Figure 8 
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Figure B29: Y Loading vector 14 of Figure 8 

 
Figure B30: Y Loading vector 15 of Figure 8



  
 

91 
 

 
Figure B31: Y Loading vector 1 of Figure 11a 

 
Figure B32: Y Loading vector 2 of Figure 11a 
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Figure B33: Y Loading vector 3 of Figure 11a 

 
Figure B34: Y Loading vector 4 of Figure 11a 
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Figure B35: Y Loading vector 5 of Figure 11a 

 
Figure B36: Y Loading vector 6 of Figure 11a 
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Figure B37: Y Loading vector 7 of Figure 11a 

 
Figure B38: Y Loading vector 8 of Figure 11a
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Figure B39: Y Loading vector 1 of Figure 12a 

 
Figure B40: Y Loading vector 2 of Figure 12a 
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Figure B41: Y Loading vector 3 of Figure 12a 

 
Figure B42: Y Loading vector 4 of Figure 12a 
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Figure B43: Y Loading vector 5 of Figure 12a 

 
Figure B44: Y Loading vector 6 of Figure 12a 
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Figure B45: Y Loading vector 7 of Figure 12a 

 
Figure B46: Y Loading vector 8 of Figure 12a
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Figure B47: Y Loading vector 1 of Figure 18 

 
Figure B48: Y Loading vector 2 of Figure 18
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Figure B49: Y Loading vector 3 of Figure 18

 
Figure B50: Y Loading vector 4 of Figure 18
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Figure B51: Y Loading vector 5 of Figure 18

 
Figure B52: Y Loading vector 6 of Figure 18
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Figure B53: Y Loading vector 7 of Figure 18

 
Figure B54: Y Loading vector 8 of Figure 18
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Figure B55: Y Loading vector 9 of Figure 18

 
Figure B56: Y Loading vector 10 of Figure 18
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Figure B57: Y Loading vector 11 of Figure 18

 
Figure B58: Y Loading vector 12 of Figure 18
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Figure B59: Y Loading vector 13 of Figure 18

 
Figure B60: Y Loading vector 14 of Figure 18
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Figure B61: Y Loading vector 15 of Figure 18 
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APPENDIX C: FENTANYL DERIVATIVE SUB-CLASSES 

Table C1: Fentanyl sub-class members listed 

Class 1 Class 2 Class 3 
alpha'-methyl Butyryl fentanyl alpha-Methyl Thiofentanyl 2'-Fluoro ortho-Fluorofentanyl 

alpha-Methyl Butyryl fentanyl alpha-Methylfentanyl 
2'-Fluoro, ortho-fluoro-cis-3-
methyl Fentanyl 

beta-methyl Acetyl fentanyl beta-Hydroxyfentanyl 
2'-Fluoro, ortho-fluoro-trans-3-
methyl Fentanyl 

2,2,3,3-Tetramethyl-
Cyclopropyl fentanyl beta-Hydroxythiofentanyl 3'-Fluoro ortho-Fluorofentanyl 

2,3-Seco-Fentanyl beta-Methyl Fentanyl 
4'-Fluoro, ortho-fluoro-cis-3-
methyl Fentanyl 

2-Furanyl fentanyl 2'-Fluorofentanyl 
4'-Fluoro, ortho-fluoro-trans-3-
methyl Fentanyl 

2'-Methyl Acetyl fentanyl 2'-Methyl Fentanyl 
4'-Fluoro, para-fluoro-cis-3-
methyl Fentanyl 

3-Furanyl fentanyl 3-Methyl butyryl fentanyl 
4'-Fluoro, para-fluoro-trans-3-
methyl Fentanyl 

3'-Methyl Acetyl fentanyl 3'-Methyl Fentanyl 4-Fluorobutyrylfentanyl 

4'-Methyl acetyl fentanyl 3-Methylfentanyl 
Despropionyl 2'-fluoro ortho-
Fluorofentanyl 

4-Phenyl fentanyl 4'-Fluorofentanyl 
Despropionyl meta-
Fluorofentanyl 

Acetyl fentanyl Acetyl norfentanyl 
Despropionyl para-
Fluorofentanyl 

Acrylfentanyl 
Acetyl-alpha-methyl 
fentanyl Despropionyl-2-fluorofentanyl 

Benzodioxole fentanyl Butyryl norfentanyl meta-Fluoro Acrylfentanyl 

Benzyl Acrylfentanyl 
cis-3-Methyl Butyryl 
fentanyl meta-Fluoro Valeryl fentanyl 

Benzylfentanyl cis-3-methyl Norfentanyl meta-Fluorobutyryl fentanyl 
beta'-Phenyl fentanyl cis-3-Methyl Thiofentanyl meta-Fluorofentanyl 
Butyryl fentanyl Cyclopropyl norfentanyl meta-Fluoroisobutyryl fentanyl 

cis-Isofentanyl 
Despropionyl meta-
Methylfentanyl o-Fluorofentanyl 

Crotonyl fentanyl 
Despropionyl ortho-
Methylfentanyl ortho-Fluoro Acrylfentanyl 

Cyclobutyl fentanyl 
Despropionyl para-
Methylfentanyl ortho-Fluorobutyryl fentanyl 

Cyclohexyl fentanyl Fentanyl ortho-Fluoroisobutyryl fentanyl 

Cyclopentenyl fentanyl 
Fentanyl meta 
methylphenyl analog para-Chloro Acrylfentanyl 

Cyclopentyl fentanyl Fentanyl meta tolyl analog para-Fluoro Acrylfentanyl 
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Class 1 Class 2 Class 3 

Cyclopropyl fentanyl 
Fentanyl ortho tolyl acetyl 
analog para-Fluoro Crotonyl fentanyl 

Ethoxyacetyl fentanyl Fentanyl ortho tolyl analog 
para-Fluoro Cyclopentyl 
fentanyl 

Fentanyl Carbamate 
Fentanyl para methylphenyl 
analog 

para-Fluoro Cyclopropyl 
fentanyl 

Fentanyl meta methylphenyl 
acetyl analog 

Fentanyl para tolyl acetyl 
analog 

para-Fluoro Tetrahydrofuran 
fentanyl 

Fentanyl methyl acetyl analog Fentanyl propyl analog para-Fluoro Valeryl fentanyl 
Fentanyl Methyl Carbamate Furanylethyl fentanyl para-Fluoroacetyl fentanyl 
Fentanyl ortho methylphenyl 
acetyl analog Isobutyryl norfentanyl para-Fluorobutyryl fentanyl 

Fentanyl propyl acetyl analog 
meta-Methyl Acetyl 
fentanyl para-Fluoroisobutyryl fentanyl 

Furanyl norfentanyl 
meta-Methyl Cyclopropyl 
fentanyl p-Fluorofentanyl 

Heptanoyl fentanyl meta-Methylfentanyl 
Hexanoyl fentanyl N-(3-ethylindole) Norfentanyl 
Isobutyryl fentanyl Norfentanyl 
Isovaleryl fentanyl ortho-Methyl Acetyl fentanyl 
meta-Fluoro Furanyl fentanyl ortho-Methyl Acrylfentanyl 
meta-Fluoro Methoxyacetyl 
fentanyl ortho-Methyl Cyclopropyl fentanyl 
meta-Methoxy Furanyl 
fentanyl ortho-Methylfentanyl 
meta-Methyl Furanyl fentanyl para-Methyl Acetyl fentanyl 
meta-Methyl Methoxyacetyl 
fentanyl para-Methyl Acrylfentanyl 
Methacrylfentanyl para-Methyl Cyclopentyl fentanyl 
Methoxyacetyl fentanyl para-Methyl Cyclopropyl fentanyl 
Methoxyacetyl norfentanyl para-Methylfentanyl 
N,N-Dimethylamido-
despropionyl fentanyl Thiofentanyl 
N-benzyl Furanyl norfentanyl Trans-3-methyl Norfentanyl 
N-Benzyl meta-fluoro 
Norfentanyl trans-3-Methyl Thiofentanyl 
N-benzyl para-fluoro Cyclopropyl norfentanyl 
N-benzyl para-fluoro norfentanyl 
N-Benzyl para-fluoro Norfentanyl 
N-Benzyl phenyl norfentanyl 
N-methyl Cyclopropyl norfentanyl 
N-methyl Norfentanyl 
ortho-Fluoro Furanyl fentanyl 
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Class 1 
ortho-Methoxy Furanyl fentanyl 
ortho-Methoxy-Butyryl fentanyl 
ortho-Methyl Furanyl fentanyl 
ortho-Methyl Methoxyacetyl fentanyl 
para-Chloro Cyclobutyl fentanyl 
para-Chloro Cyclopentyl fentanyl 
para-Chloro Cyclopropyl fentanyl 
para-Chloro Furanyl fentanyl 
para-Chloro Furanyl fentanyl 3-furancarboxamide 
para-Chloro Methoxyacetyl fentanyl 
para-Chloro Valeryl fentanyl 
para-Chlorobutyryl fentanyl 
para-Chlorofentanyl 
para-Chloroisobutyryl fentanyl 
para-Fluoro Furanyl fentanyl 
para-Fluoro Furanyl fentanyl 3-furancarboxamide isomer 
para-Fluoro Methoxyacetyl fentanyl 
para-Hydroxy Butyryl fentanyl 
para-Methoxy Acrylfentanyl 
para-Methoxy Furanyl fentanyl 
para-Methoxy Methoxyacetyl fentanyl 
para-Methoxy Valeryl fentanyl 
para-Methoxy-Butyrylfentanyl 
para-Methoxyfentanyl 
para-Methyl Furanyl fentanyl 
Phenoxyacetyl fentanyl 
Phenyl fentanyl  
Pivaloyl fentanyl  
Senecioylfentanyl  
Tetrahydrofuran fentanyl 
Tetrahydrofuran fentanyl 3-tetrahydrofurancarboxamide isomer 
Tetrahydrothiophene fentanyl 
Thienyl fentanyl  
Thiofuranyl fentanyl 
Thiophene fentanyl 3-thiophenecarboxamide 
Tigloyl fentanyl  
Valeryl fentanyl  

 


