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ABSTRACT

APPLICATION OF INFRARED SPECTROSCOPY AND PARTIAL LEAST SQUARES DIS-

CRIMINANT ANALYSIS TO DETERMINE THE GONOTROPHIC STAGE OF AEDES TRIS-

ERIATUS

Mark Anthony Rothermund, M.S., Chemistry

Western Carolina University (April 2022)

Advisor: Dr. Scott W. Huffman

Mosquitoes are among the deadliest creatures in the world due to their propensity for spreading

pathogens to humans. Surveillance is an important step in controlling and monitoring mosquito

populations. The most common technique used for mosquito surveillance requires a highly trained

entomologist to identify and determine information such as sex, gonotrophic stage, infection sta-

tus of the mosquitoes morphologically by means of dissection. Identification using this method

is time-consuming and requires skills that only highly trained entomologists possess, which limit

the sample size of tested mosquitoes. A new method using Fourier transform infrared (FT-IR)

microspectroscopy eliminates these restrictions by streamlining mosquito sample processing

and lowering the skill required to perform the method. The method outlined in this study can be

completed more quickly and by technicians of varied skill levels. Samples of parous and nulli-

parous Aedes triseriatus (170 samples) identified by a trained entomologist were used to test the

method’s ability to discriminate parity. Mid-infrared spectra of the mosquitoes were collected,

preprocessed, and partial least squares discriminant analysis (PLS-DA) was used to discrimi-

nate between the parous and nulliparous mosquitoes. The method identified the parity status of

the mosquitoes with 100% accuracy, 100% true positive rate (TPR), and 100% true negative rate

(TNR).
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CHAPTER ONE: INTRODUCTION

Background

Motivation

Mosquitoes are among the deadliest creatures in the world, causing considerable morbidity, mor-

tality, and economic strain.1 More than 80% of the global population is at risk of vector-borne

disease, and mosquito-borne diseases contribute the most to human vector-borne disease bur-

den.2 Mosquito-borne diseases include dengue fever, Zika virus disease, West Nile fever, malaria,

chikungunya, St. Louis encephalitis, yellow fever, and encephalitides such as Jamestown Canyon

encephalitis and La Crosse encephalitis that are caused by California serogroup viruses.1 The

emergence and resurgence of vector-borne diseases are attributed to changes in public health pol-

icy, insecticide and drug resistance, shifts in emphasis from prevention to emergency response,

demographic and societal changes, and genetic changes in pathogens.2,3 Mosquito control efforts

such as source reduction, larvicides, and adulticides remain a primary method of disease control

and prevention.4 Surveillance, an important step of mosquito control efforts, is needed to reduce

nuisance and the spread of mosquito-borne diseases.5 Currently, surveillance is commonly con-

ducted by a skilled biologist using morphological identification.5 Morphological surveillance

is time-consuming and labor-intensive, and the current limitations involved with morphological

surveillance leads to a limited sample size of identified and analyzed mosquitoes that may not

represent the entire population of mosquitoes very well. A streamlined surveillance approach us-

ing infrared spectroscopy to analyze the mosquitoes’ biochemistry would require only skills that

should be ubiquitous for average laboratory technicians. Additionally, information such as sex,

gonotrophic stage, blood meal status, and infection status are difficult, perhaps even impossible

in some cases, to determine morphologically or anatomically without knowing the history of the

mosquito; however, this information theoretically can be determined easily by analyzing the bio-

chemical composition of the mosquito using infrared spectroscopy.
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Importance of Parity Assessment

Most female mosquito species acquire blood meals to develop their eggs after mating.6 In the

acquisition of blood, pathogens may be transferred from the host to the mosquito wherein the

mosquito becomes a vector that has the potential to spread the pathogen to another animal. Only

parous mosquitoes are potentially infectious; therefore, distinguishing between mosquitoes that

are parous (having produced offspring) and mosquitoes that are nulliparous (not having produced

offspring) is an important aspect in mosquito control efforts. A shift in parity structure in a pop-

ulation toward a lower proportion of parous mosquitoes translates to a reduction in disease trans-

mission.6 The current standard technique of assessing mosquito parity requires a specialized bi-

ologist and involves a delicate dissection of the mosquito to inspect ovaries in order to evaluate

their gonotrophic history.7 Using infrared spectroscopy to assess parity, on the other hand, would

require comparitively minimal skill.

Morphological Approach to Assessing Parity

Currently, parity is determined by dissection. After the maturation of the first batch of eggs, irre-

versible changes occur in the ovaries of the mosquitoes.8 The tightly coiled tracheoles in nulli-

parous mosquito ovaries stretch and uncoil when a mosquito becomes parous as shown in Figure

1.8 Entomologists are not only required to carefully dissect a mosquito to view its ovaries, but

must also be able to differentiate between coiled and uncoiled tracheoles in mosquito ovaries to

determine parity.

Infrared Spectroscopy

Infrared (IR) spectroscopy is an analytical technique that is rapid, non-invasive, reagent-free,

highly sensitive, and simple to use. IR spectroscopy also provides information about the chem-

ical composition of the sample, allowing for the ability to differentiate between proteins, con-

formations of the same protein, and even disease states in humans.9,10 IR spectroscopy and other

spectroscopic techniques share commonality in using the detection of light as a measurable sig-

nal. Like other spectroscopic techniques, the Beer-Lambert law can be used to determine the ab-
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Figure 1. Comparison of coiled tracheoles in nulliparous Culex quinquefasciatus ovaries (A) and
uncoiled tracheoles in parous Culex quinquefasciatus mosquito ovaries (B).8

sorbance (A) of a sample.11 The absorbance of a sample is directly proportional to the pathlength

(l) and the concentration (c) of the sample, as shown:

A = ϵcl (1)

where ϵ represents molar absorptivity and is a constant dependent on the material of the sam-

ple. IR spectroscopy provides chemical information by irradiating a sample with IR light. In a

Fourier transform infrared (FT-IR) spectrometer, all wavelengths of light in the specified interval

are emitted simultaneously.12 A Fourier transform (FT) algorithm allows the whole spectrum to

be scanned at the same time through interferometric modulation by an interferometer.12,13 The

modulated beam exits the interferometer, which is most commonly a Michelson interferome-

ter, and passes through the sample.13 The light is then detected by the detector, and the interfer-

ence pattern is converted to a digital signal that is then transformed into an FT-IR spectrum using

Fourier transformation.13 Mid-infrared spectroscopy (MIRS) uses wavenumbers within the region

of 4000–400 cm−1, and because most modern MIRS instruments use FT, FT-IR spectroscopy and

MIRS are typically synonymous.13
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FT-IR Microspectroscopy

To aid in reproducibility of the proposed method and to increase the throughput of mosquito pro-

cessing, a special kind of IR spectroscopy method, Fourier transform infrared (FT-IR) microspec-

troscopy, can be utilized. FT-IR microspectroscopy combines the FT-IR spectrometer with a mi-

croscope that can focus on a specific area of the mosquito.4 The addition of the microscope aids

in reproducibility and consistency by allowing the technician to select the same anatomical po-

sition of the mosquito every time for each sample. More importantly, FT-IR microspectroscopy

allows the production of spectra that represent the chemical makeup of the region being probed.

When analyzing the spectra to discriminate betweeen parous and nulliparous mosquitoes, it is un-

likely that there will be any obvious visible differences in the spectra. There will be several subtle

differences in the spectra that can only be pinpointed by dimensionality reduction in chemomet-

ric techniques. Before chemometric techniques can be applied, the data must first be subjected to

several preprocessing steps to prepare it for analysis.

Selection of Preprocessing Techniques

The importance of preprocessing prior to several chemometric methods, including PLS-DA, has

been demonstrated in many different studies.14–18 PLS-DA has been shown to perform better with

preprocessing than without.14 Each method of preprocessing has its own role in preparing data

for chemometric analyses.

Outlier Detection and Removal

Failure to remove outliers negatively affects statistical analyses by skewing distribution of spec-

tra.15 Several different methods of detecting outliers exist, and they have their own utility in dif-

ferent disciplines and applications. Outliers in FT-IR can be detected and removed at the discre-

tion of the researcher within reason. Reasons for spectral removal may include improper tech-

nique utilized during spectra collection and noticeable visual differences between the outlying

spectra and the average spectrum. More outliers that may not be obvious to the researcher may be

detected by means of chemometric techniques such as PCA.19,20 Outliers determined by PCA can
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be visualized as data that is found outside of the cluster.

Cropping

Cropping, although not utilized specifically for assisting processing by chemometric methods,

helps the researcher understand what regions of the spectra are important for discrimination.

Cropping is necessary so that further processing steps focus only on the region of the spectra with

varying chemical components detected by IR that are useful for chemometric analyses. Chemo-

metric techniques can be utilized on several spectral regions after cropping, and performance

metrics of the chemometric technique determine the spectral region’s utility in discrimination

of the particular variable of study.

Normalization

The importance of normalizing data prior to PLS-DA has been demonstrated by Lee et al.14 In

their study exploring practical impacts of data processing methods in IR spectra using PLS-DA,

normalization was listed as the second most important step of preprocessing.14 Normalizing is

necessary because chemometric algorithms such as PCA and PLS-DA do not make assumptions

to correct maldistribution of data. Normalization serves to equalize the statistical weight of each

sample and minimizes the effect of light scattering.16

Smoothing and Differentiation

Smoothing using the Savitzky–Golay (SG) algorithm serves two purposes: minimizing the effect

of noise and correcting sloped baselines brought on by a scattering medium.17 The SG algorithm

has three parameters: window size, polynomial order, and derivative order. The window size is

the number of data points used to calculate a function of best fit with a given polynomial order.21

The function is then differentiated according to the given derivative order.21 Differentiation is

used to de-emphasize and minimize the effect of a non-flat baseline in fitting the spectra.

Data Analysis

To analyze the spectral data, different techniques of classification can be used depending on the

required robustness. More robust techniques like PLS-DA have the benefit of yielding higher ac-

5



curacy in predictions; however, they require more data processing than simple wavelength com-

parisons.

Wavelength Comparisons

The least complex data analysis technique explored in this study is wavelength comparison. Wave-

length comparison is the visual analysis of the absorbance in the spectra of parous mosquitoes at

different wavelengths (which may manifest as peaks), and comparing with the absorbance in the

spectra of nulliparous mosquitoes at the same corresponding wavelengths. Wavelength compar-

isons can be easily achieved in instances where a peak or band in the spectra exists only in nul-

liparous mosquitoes and does not exist in parous mosquitoes or vice-versa. Using wavelength

comparisons, however, will likely not yield a conclusive result since using wavelength com-

parisons as a sole method of differentiation is used most effectively with spectra of pure com-

pounds.4 Because the spectra involved in this study are of biological samples that consist of com-

plex mixtures, a more robust technique is required.

Chemometric Techniques

Principal component analysis (PCA) is a chemometric technique used in data reduction and ex-

ploratory analysis of high-dimensional data sets, such as spectra.22,23 PCA works by identifying

which dimensions in the datasets have the most variability and grouping the data based off that

variability.22 The most variable dimension becomes a new variable called the first principal com-

ponent. Subsequent principal components are determined by spectral features of decreasing vari-

ability that are each orthogonal to each other.22 Orthogonality of the new principal components

is important in FT-IR spectra discrimination because FT-IR spectra original variables are highly

covariant, and orthogonal principal components eliminates covariance and redundancy.24 Another

chemometric technique is Partial least squares discriminant analysis (PLS-DA). Like PCA, PLS-

DA separates data into groups by using linear combinations of the original variables to create

new latent variables, but the difference is that PCA is an unsupervised technique, and PLS-DA

is a supervised technique that also determines the principal components differently.23 PCA cre-
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ates its principal components to maximize the variance in the dataset, whereas PLS-DA creates

its latent variables to maximize the covariance between the training set and the class labels.

Unsupervised Versus Supervised Technique

An unsupervised technique is one in which the algorithm groups or clusters the data on its own,

whereas in a supervised technique, the data is categorized by the algorithm into groups that are

predetermined by the researcher.23 There are advantages and disadvantages to each technique.

PCA provides unbiased dimensionality reduction while PLS-DA is biased due to the added hu-

man component of the predetermined groups.23 PCA and PLS-DA can be used in conjunction

where the initial use of PCA can provide confirmation and an informative first look at the dataset

structure prior to analysis by PLS-DA.23

PCA can be used to cluster the spectral data. If there are two clusters, one would correspond to

parous mosquitoes, and the other would correspond to nulliparous mosquitoes. An accuracy

score can be given to this method based on having the correct number of clusters, two, and cor-

rect discernment of the parity of the mosquitoes by the algorithm. If PCA performs poorly, PCA

can be used as an outlier rejection tool, and the more robust PLS-DA can be used to discriminate

the data. For PLS-DA, the data will be split into two sets, a training set and a validation set. The

parous and nulliparous status of the mosquitoes as well as their spectra in the training set will be

used to generate a PLS-DA model that can be used to predict the status of previously unfit spec-

tra, the validation set.

PLS-DA Performance Metrics

Accuracy, true positive rate (TPR), true negative rate (TNR) are the metrics that are used to mea-

sure the PLS-DA model’s ability to discriminate data in this study. In the binary classification

system used in this study, the samples of mosquito were either actually POSITIVE for parity

(parous) or NEGATIVE for parity (nulliparous). When the PLS-DA model classifies a validation

input based on training data in a binary system, it can either predict each input as POSITIVE or

NEGATIVE.25 When the algorithm correctly predicts an actual POSITIVE input as POSITIVE, it
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is counted as a true positive (TP). When the algorithm correctly identifies an actual NEGATIVE

input as NEGATIVE, it is counted as a true negative (TN). The word TRUE in “true negative”

refers to a correct prediction. Additionally, there are identifications of “false” positive (FP) and

“false” negative (FN), which mean that the model predicted an actual NEGATIVE input to be

POSITIVE, and an actual POSITIVE input to be NEGATIVE, respectively. The possible desig-

nations of TP, TN, FP, and FN from the binary system of POSITIVE or NEGATIVE determined

by the researcher, known as the actual class, and the binary system of POSITIVE or NEGATIVE

determined by the algorithm, known as the predicted class, can be represented in a 2 × 2 matrix

known as a confusion matrix as demonstrated in Figure 2.25

Figure 2. A 2× 2 confusion matrix.
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The accuracy of the model can be calculated with the following equation:25

Accuracy =
nTP + nTN

nTP + nTN + nFP + nFN
· 100% (2)

where nTP is the number of TP designations, nTN is the number of TN designations, nFP is the

number of FP designations, and nFN is the number of FN designations. The true positive rate

(TPR) is an expression of a model’s sensitivity.25 TPR is calculated with the following equa-

tion.25

TPR =
nTP

nTP + nFN
· 100% (3)

The TPR takes into account only actual POSITIVE samples determined by the researcher, so the

TPR can be thought of as the algorithm’s accuracy in correctly identifying POSITIVE samples.

The true negative rate (TNR) is an expression of the model’s specificity and is calculated with the

following equation.25

TNR =
nTN

nTN + nFP
· 100% (4)

The TNR takes into account only actual samples determined to be NEGATIVE by the researcher,

so the TNR can be thought of as the algorithm’s accuracy in correctly identifying NEGATIVE

samples.

A model with accuracy, TPR, and TNR close to 100% indicates a good performance.

Hypothesis

The efficacy of FT-IR microspectroscopy combined with chemometric techniques has been demon-

strated by Sroute et al.4 in their study distinguishing between and classifying species of mosquitoes

using spectral data coupled with PLS-DA. The hypothesis is FT-IR spectra coupled with PLS-

DA can predict gonotrophic stage of Aedes triseriatus mosquitoes, the main vectors of La Crosse
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virus which result in La Crosse encephalitis.26
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CHAPTER TWO: EXPERIMENTAL

Sample Preparation

Colonized Aedes triseriatus (originally obtained from Michigan State University) were hatched,

reared, and held using standard practices and conditions (27°C, 75% RH, 16:8 light:day pho-

toperiod). Emergent adults (> 500) were placed in a single cage (length = 32 cm × width = 31

cm × height = 9 cm) and held for 7 days to allow for mating and maturation. Mosquitoes (≈

250) were removed from the original cage and placed in a secondary, identically sized cage; fe-

male mosquitoes were allowed to feed to repletion by providing a volunteer arm (B.D. Byrd) as a

blood source; an oviposition substrate was provided 72 hours post feeding. Female mosquitoes

were concurrently (same day) removed from both the original (nulliparous) and secondary (blood-

fed) cages after cessation of oviposition. The mosquitoes were killed by freezing and stored at

−20°C. A total of 170 mosquitoes were used for IR analysis; 99 were blood-fed (expected to be

parous), and 71 had not blood-fed (known to be nulliparous).

Instrumentation and Setup Procedure

Samples were measured using the FT-IR microscope with the instrument parameters shown be-

low in Table 1.

Before beginning spectrum collection, the instrument’s dewar was filled with liquid nitrogen to

cool the detector. With the microscope focused on a gold plate and the aperture completely open,

collection was allowed to begin after the bench’s interferogram stabilized.

Background Spectrum Collection Procedure

To collect a background spectrum, the microscope was focused on a gold plate with the aper-

ture open. The background spectrum was collected as a single-beam spectrum. The background

spectrum was saved as The Joint Committee on Atomic and Molecular Physical Data - Data Ex-

change (JDX) file format and opened in the OMNIC™ software as a background spectrum before

collecting a sample spectrum.
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Table 1. Key instrument parameters.

Parameter Value
Microscope Nicolet™ Centaurµs™
FT-IR Spectrometer Nicolet™ IS™ 10
Software OMNIC™ version 9.8.372
Wavenumber interval 4000–650 cm−1

Near/mid/far IR Mid
Detector MCT/A, Liquid Nitrogen Cooled
Beamsplitter KBr
Blank Air
Scans 64
Resolution 4 cm−1

Sample Spectrum Collection Procedure

To collect a sample spectrum, the center portion of the tibia of the hind leg of the mosquito shown

in Figure 3 was measured. The tibia was chosen as the anatomical part for examination because

it is easy for a technician with limited entomology training to identify. The mosquito’s leg was

placed under the microscope, and the microscope’s coarse focus was adjusted to focus on the leg.

Depending on the ability or inability of the microscope to focus on the leg, the tibia may have

been separated from the rest of the leg to encourage it to lay flat on the microscope’s stage. The

microscope’s aperture was then closed in on the center portion of the tibia. The fine focus of the

microscope was adjusted to refocus on the leg. The spectrum was collected using the log 1
R setting

and was saved as a JDX file.

General Collection Procedure

All spectra were acquired at 20–23°C and at a humidity interval of 19.3–45.3%. A background

spectrum was acquired before collecting any sample spectra. Sample spectra collection was then

started. A new background spectrum was acquired every 20 samples or every 25 minutes, whichever

condition was satisfied first, to account for changing variables in the environment. New back-
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Figure 3. Probed region of mosquito anatomy by IR microspectroscopy represented by boxed in
region, and region containing ovaries represented by circled region. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Springer Nature, Morphology of Mosquitoes, Norbert Becker, Duan Petri, Marija Zgomba, Clive Boase, Minoo Madon, Christine Dahl, Achim Kaiser, 2010
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ground spectra may have been collected before reaching 20 samples or 25 minutes when exces-

sive water vapor interference was observed in the sample spectrum. If water vapor interference

was observed, a new background spectrum was collected, then the affected sample spectrum was

recollected. Each sample was measured, and the files were saved in the JDX file format. The

metadata for the samples were recorded. The metadata contained information about each spec-

trum or the sample itself: sample identification, time between collection of background spectrum

and sample spectrum, temperature, humidity, and optionally, miscellaneous notes. The miscella-

neous notes were used to detail striking observations like unexpected spectra or poor conditions

on a day of measurement. The JDX files containing the spectral data of the mosquitoes and the

metadata were used to compile a Hierarchial Data Format27 (HDF) file that would be loaded for

further data processing.

Data Preprocessing Method

An HDF27 file containing the spectral data of all mosquitoes and accompanying metadata was

used for processing. The mosquito spectral data was preprocessed by means of outlier removal,

cropping, normalization, and smoothing. Outlying spectra were removed visually after wave-

length comparison. Additional outliers were removed from the first two days of data collection

due to poor technique. Fifty spectra from the set of parous mosquito spectra were removed at ran-

dom through a randomizer to even out the sample size imbalance. The spectral data was cropped

3100–650 cm−1. Additional cropping regions with relevant chemical features were selected, such

as peaks representing proteins and others that represented lipids. The spectra were normalized

where the highest absorbance (the absorbance at 1653 cm−1) was set to 1, and the lowest ab-

sorbance was set to 0. The SG algorithm was then applied to the spectral data using window size

of 11, polynomial order of 2, and a derivative order of 2.

Data Processing Chemometric Methods

The preprocessed data were fit to PCA and PLS-DA models. Due to PCA performing poorly, the

PCA data was used as an exploratory method prior to PLS-DA. The accuracy, true positive rate,

14



and true negative rate of the data derived from PLS-DA were recorded.

Additional Cropping and PLS-DA

The cropped data set was cropped further to create new spectral windows to test for PLS-DA

based discrimination at different spectral regions while maintaining the same parameters for nor-

malization and smoothing. The data was cropped deliberately to close in on spectral regions that

attributed to best PLS-DA based discrimination.
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CHAPTER THREE: RESULTS AND DISCUSSION

Raw Spectra

In Figure 4, all spectra of the mosquitoes plotted prior to processing are shown (170 spectra). To

prepare the data for chemometric analysis, the spectra were preprocessed to standardize the data

and eliminate outliers that could skew the distribution of the validation and training sets which

would result in a poorer fit for the model. Preprocessing also de-emphasized spectral baseline

fluctuations due to differences in the geometries of the samples. In Table 2, the peaks found in the

spectra are assigned.

Outlier Identification, Outlier Removal, and Imbalance Correction

Outliers were first removed by visual inspection wherein spectra that obviously deviated from the

average mosquito spectrum were dropped. More outliers were identified by their separation from

the central data cluster in PCA score plots and removed. Although PCA was initially conceptu-

alized to be used as a chemometric data analysis technique, PCA performed poorly in cluster-

ing parous and nulliparous mosquitoes separately. In Figure 5, a red ellipse was used to indicate

the three outliers in a PCA scores plot of the spectra. The data from the first two days of collec-

tion, which consisted of 25 nulliparous mosquito spectra, were removed due to improper spectral

collection technique. Fifty spectra of parous mosquitoes were removed at random to correct the

imbalance in the datasets. After outlier removal and dataset imbalance correction, there were 46

parous and 41 nulliparous mosquitoes.

Cropping, Normalization, and Smoothing Results

The spectra were cropped 3100–650 cm−1, normalized by maximum absorbance, and smoothed

using SG smoothing. In Figure 6, a representative spectrum was used to demonstrate the effect

of each preprocessing step on the spectra. A representative spectrum was used to demonstrate the

effect of these preprocessing steps instead of the average spectrum because the average spectrum

does not demonstrate some of the preprocessing steps well, especially smoothing since averaging
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Figure 4. Spectra of mosquitoes prior to processing.
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Table 2. Assignment of spectral peaks.

Wavenumber / cm−1 Assignment Significance Reference
2962 CH3 stretch chitin 28

2920 C-H stretch (R2CH2) lipid 29

C-H stretch (RCH3) lipid 29

C-H stretch DNA 30

COCH3 stretch chitin 31

2876 R2-CH2 (C-H stretch) lipid 29

R3-CH (C-H stretch) lipid 29

2892 CH2 symmetric stretch of C-5 DNA 30

C-H stretch chitin 28

2852 C-H stretch (aldehyde) lipid 29

1653 Amide I (C=O stretch) protein 32

alpha helix protein 33

C=C stretch steroids 34

C-O stretch chitin 31

C=O stretch of N-acetyl group chitin 31

1550 amide II (NH bend) protein, chitin 31,33

1451 C-H bend lipid 29

1377 C-O stretch and C-OH bend lipid 29

CH bend, CH3 bend chitin 28

1302 C-O stretch and C-OH bend lipid 29

1250 C-O stretch and C-OH bend lipid 29

CH2 twist DNA 30

1196 C-O stretch and C-OH bend lipid 29

CO stretch, CC stretch DNA 30

C-N assymmetric stretch (secondary alpha carbon) protein 32

1157 C-O stretch and C-OH bend lipid 29

Bridge O asymmetric stretch chitin 28

1118 C-O stretch and C-OH bend lipid 29

chitin 28

1076 C-O stretch and C-OH bend lipid 29

chitin 28

C-N stretch protein 32

1033 C-O stretch and C-OH bend lipids 29

955 CH3 wag (along chain) chitin 28

895 C-H bend lipids 29

CC stretch, CCH in-plane bend DNA 30

700 NH bend protein 32,33

C-H bend steroids 34

N-H asymmetric bend protein 32

18



Figure 5. Scores plot of mosquitoes (170 samples) with outliers circled.

19



the spectra has similar effects to smoothing. In Figure 6a, the effect of normalizing the spectrum

to the absorbance at 1653 cm−1 is shown (blue) compared to the spectrum before normalization

(red). In Figure 6b, the effect of the normalized spectrum with an 11-point, second-order polyno-

mial smoothing (orange) compared to the pre-smoothed spectrum (blue) is shown. By setting the

derivative order to 0, the effect of only smoothing the spectrum without the added exaggerated

effects of differentiating the data is shown. In Figure 6c, the effect of differentiating the smoothed

spectrum to the 2nd order is shown. The differentiation of the smoothed data served as the final

preprocessing step prior to PLS-DA. In Figure 7, the averaged spectra of parous and nulliparous

spectra before preprocessing are shown, and in Figure 8, the averaged spectra of parous and nulli-

parous mosquitoes postprocessing, excluding SG, are shown.

Partial Least Squares Discriminant Analysis

Partial least squares discriminant analysis (PLS-DA) was used to classify and identify the dataset

of parous and nulliparous mosquitoes. In Figure 9, the PLS-DA discrimination prediction is

shown as a box plot. The vertical axis represents the actual identity of the set of mosquitoes where

np is the set of nulliparous Aedes triseriatus mosquitoes and p is the set of parous Aedes trise-

riatus mosquitoes. The color of each marker on the plot represents the identity of each mosquito

sample as determined by an entomologist (Brian Byrd, Western Carolina University) where red

markers represent mosquitoes deemed to be nulliparous and blue markers represent parous mosquitoes.

The data points were jittered so that each point can be seen. The dotted line (green) represents

the threshold placed at 0.5. Because the data labels were input into the algorithm as 0 for nulli-

parous mosquitoes and as 1 for parous mosquitoes, 0.5 was chosen as the threshold as the natural

midpoint between the two labels. Any point placed to the left of the threshold by the algorithm’s

prediction was counted as a predicted negative (predicted nulliparous), and those placed to the

right of the threshold was counted as a predicted positive (predicted parous). The data was pre-

processed by cropping 3100–650 cm−1, normalization by tallest band, and second derivative SG.
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Figure 6. Spectra after each step of preprocessing on a representative spectrum.
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Figure 7. Before preprocessing average spectra of nulliparous mosquitoes (red) compared to
parous mosquitoes (blue)
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Figure 8. After preprocessing average spectra of nulliparous mosquitoes (red) compared to
parous mosquitoes (blue).
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Figure 9. Box plot representation of PLS-DA data.
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PLS-DA with Other Spectral Windows

Additional spectral regions were selected to test PLS-DA. Although the whole-spectrum window

may suffice for successful discrimination, additional spectral windows can be used to determine

what spectral regions are most useful in discrimination. In Table 3, the letters designating the

spectral windows shown in Figure 10 are listed with their corresponding wavenumber interval

and significance along with the PLS-DA accuracy, true positive rate (TPR), and true negative rate

(TNR) of PLS-DA predictions. In Figure 11, box plot representations of three selected windows

(B, C, and J) from Table 3 are shown.

Figure 10. Average nulliparous spectrum with selected spectral windows.
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Figure 11. Box plot representation of PLS-DA results for three selected windows.
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Table 3. Selected spectral regions PLS-DA results.

Window Interval / cm−1 Significance Accuracy TPR TNR
– 3100–650 whole spectrum 100% 100% 100%
A 1826–650 chitin, DNA, lipids, protein, steroids 100% 100% 100%
B 1482–650 chitin, DNA, lipids, protein, steroids 100% 100% 100%
C 1826–1482 chitin, protein, steroids 86.2% 87.0% 85.4%
D 1187–650 chitin, DNA, lipids, protein, steroids 98.9% 100% 97.6%
E 1348–966 chitin, DNA, lipids, protein 97.7% 100% 95.1%
F 1482–1187 chitin, DNA, lipids, protein 95.4% 95.7% 95.1%
G 966–650 chitin, DNA, lipids, protein, steroids 92.0% 89.1% 95.1%
H 1187–966 chitin, lipids, protein 94.3% 97.8% 90.2%
I 1348–1187 DNA, lipids, protein 89.7% 89.1% 90.2%
J 1482–1348 chitin, lipids 78.2% 78.3% 78.0%
K 1348–650 chitin, DNA, lipids, protein, steroids 100% 100% 100%
L 1482–966 chitin, DNA, lipids, protein 95.4% 97.8% 92.7%
M 1826–1600 chitin, protein, steroids 82.8% 84.8% 80.5%
N 1600–1482 chitin, protein 86.2% 91.3% 80.5%

Discussion of Chemometric Analysis Results

When using the entire spectrum for PLS-DA discrimination, the results of the performance met-

rics were 100% accuracy, 100% TPR, and 100% TNR as shown in Figure 9 and Table 3. Further

optimizations were made to test PLS-DA discrimination using the smallest possible spectral win-

dow while maintaining the performance from the whole-spectrum discrimination. The examples

shown in Figure 11 were chosen to highlight the process by which the optimal windows were

decided and to show how PLS-DA on spectral windows with different performance metrics ap-

peared on box plots. Shown in Figure 11J is an example of a PLS-DA that performed relatively

poorly as a means of contrasting with those that peformed well. As shown in Table 3, PLS-DA

on window A returned the performance metrics of 100% accuracy, 100% TPR, and 100% TNR.

Windows B and C were regions derived from window A. PLS-DA on window B had 100% ac-

curacy, TPR, and TNR, whereas PLS-DA on window C had 86.2 % accuracy, 87.0% TPR, and
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85.4% TNR. The reduction in accuracy, TPR, and TNR in window C as compared to windows A

and B indicates that the optimal window is more likely to be contained in window B, so window

B can be further reduced to find the smallest optimal window size. Windows D–J and window L

were smaller windows derived from window B, but they did not maintain the performance met-

rics of window B. Window K had the smallest possible window size that maintained the 100%

performance metrics. By finding the smallest possible window, insights into what chemicals are

affected by mosquito parity can be made. These insights are limited, however, due to covariance

in IR spectra where a compound may be represented on multiple areas of the spectrum, and sev-

eral compounds may be represented on a single area of the spectrum. For example, window K,

which was found to be the optimal window in this study, contains spectral features that can be at-

tributed to lipids, DNA, protein, chitin, and steroids. Further study would be required to deliniate

the role of these compounds in parity discrimination using PLS-DA.

PLS-DA Scores Median Analysis

An advantage of representing the PLS-DA scores on a box plot is facilitating statistical analyses

at a glance. Shown in Figure 12 is a plot of the absolute error calculated using the median of the

PLS-DA scores (which can be seen as the 2nd quartile in the box plots in Figure 9 and Figure 11)

of parous mosquitoes versus TPR, and shown in Figure 13 is a plot of the absolute error calcu-

lated using the median of the PLS-DA scores of nulliparous mosquitoes versus TNR. Because it

can be expected that the median of the PLS-DA scores data should fall near the designation de-

termined in the class labels (1 for parous and 0 for nulliparous), the absolute error can be thought

of as an auxillary performance metric. Absolute error is calculated with the following general

equation35

Absolute error = |true value − measured value| (5)
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which was adapted to the true value being the class label designation, 1 or 0, and the measured

value being the median of parous or nulliparous PLS-DA scores data respectively. TPR was used

to compare to the absolute error in parous mosquitoes because TPR is a performance metric of

the algorithm’s ability to correctly identify parous mosquitoes, and similarly for TNR for the ab-

solute error in nulliparous mosquitoes. The plots in Figure 12 and Figure 13 display expected

correlation where higher TNR or TPR corresponds to lower absolute error, which gives additional

confidence in the windows that were determined to be optimal.

Figure 12. Parous statistics of PLS-DA showing absolute difference of the median vs. TPR and
annotated with window designation.
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Figure 13. Nulliparous statistics of PLS-DA showing absolute difference of the median vs. TNR
and annotated with window designation.
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PLS-DA Scores Dispersion

Another statistical metric that can be analyzed from the box plots is dispersion in the form of in-

terquartile range (IQR) which is calculated with the equation

IQR = Q3−Q1 (6)

where Q3 is the third quartile represented by the right-most edge of the box, and Q1 is the first

quartile represented by the left-most edge of the box.36 A table of each window and the IQR of

the nulliparous and parous data are shown in Table 4. A window that has greater dispersion, for

Table 4. Selected spectral windows with IQR for parous and nulliparous data.

Window nulliparous IQR parous IQR
– 0.21 0.19
A 0.21 0.22
B 0.24 0.19
C 0.32 0.37
D 0.26 0.32
E 0.31 0.33
F 0.29 0.37
G 0.27 0.27
H 0.40 0.39
I 0.34 0.35
J 0.36 0.39
K 0.21 0.25
L 0.36 0.27
M 0.38 0.50
N 0.29 0.27

example window M, indicates that the algorithm detects greater differences between the sam-

ples of the same class designation compared to a window, like window B, with less dispersion. A
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possible interpretation is that because the cropping of the region restricts the number of orignial

variables that can be used in the creation of the latent variables, the dispersion may be greater if

the chosen window does not contain as many of the original variables that are covariant between

spectra of the same class designation. Although a high dispersion does not necessarily indicate

a poorly performing model, further validation with more samples may be used to prove the per-

formance of models that have good performance metrics but have high dispersion. Methods used

for detecting statistically significant high dispersion are determined at the discretion of the re-

searcher; however, in this study, none of the models with good performance metrics appeared to

have worrisome dispersion warrenting such a test.

Possible Explanation of Poor Performance of PCA

The reason PCA performed poorly in this study compared to PLS-DA may be explained by a

deeper look into the underlying algorithms governing their discrimination. PCA creates principal

component variables that explain the greatest variation in the whole dataset without indication of

the class designations. For the algorithm to correctly cluster parous mosquitoes as one cluster and

nulliparous as another, the greatest variation in the dataset must be the latent variable “parity”.

However, if there is another variable (such as one of the natural variables that exist between in-

dividual samples) that is varied more in the samples than parity, the PCA algorithm will use that

variable instead of parity to create the principal components. In contrast, PLS-DA creates latent

variables that explain the greatest covariance between the training set and the class labels. The

input of the class labels of parous versus nulliparous mosquitoes essentially gives the algorithm

a “hint” that the latent variable that should be focused on is the parity of the mosquitoes instead

of any other possible variation in the data. The supervision of the PLS-DA algorithm versus the

unsupervised method of the PCA algorithm explains why PLS-DA performed better than PCA.
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CHAPTER FOUR: CONCLUSION

This study shows the ability of PLS-DA to discriminate between parous and nulliparous Aedes

triseriatus mosquitoes. The model was able to discriminate between parous and nulliparous Aedes

triseriatus mosquitoes with 100% accuracy. The 100% accuracy performance metric of the PLS-

DA model was maintained to a window as small as window K (1348–650 cm−1), but further re-

ducing of the window size resulted in poorer performance. This window, being the optimized

window, contains all spectral signatures required for parity descrimination and has the same

performance as using the entire spectrum. PCA did not work in this study as a discrimination

method, but was used instead as an outlier detection tool. To improve this study, (1) the perfor-

mance of the PLS-DA model can be validated with more samples that were measured using the

optimal parameters (window K), (2) more samples can be included in the training set or used in

a new training set to further optimize the model, (3) the method used in this study could be tested

with wild-caught Aedes triseriatus mosquitoes, (4) other species of mosquitoes can be used to

test this method, and (5) the loading vectors that provide information on how much each of the

original wavelengths contributed most to the creation of the latent variables derived from the

PLS-DA model could be used as a feature selection tool to improving cropping methods before

repeating chemometric data analysis. Studies that can build upon this study could use this method

to (1) discriminate parity in wild-caught Aedes triseriatus mosquitoes, (2) discriminate parity in

other species of mosquitoes, (3) discriminate between information and statuses other than parity

(such as infection status) in mosquitoes.
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