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ABSTRACT 
 
 
 

ASSESSMENT OF THE EFFECTS OF SUPEROXIDE-GENERATING AGENTS ON 
THE GROWTH AND VIABILITY OF ESCHERICHIA COLI USING TRADITIONAL 
MICROBIOLOGICAL METHODS AND FLUORESCENCE METHODS 
 
Jennifer Lynn Patterson, M.S. 
 
Western Carolina University, July 2010 
 
Director:  Dr. Lori B. Seischab 
 

 The effects of superoxide-generating agents on the growth and viability of 

Escherichia coli was investigated using two different strains, a lab strain (ER2566) and a 

clinical isolate (ATCC 4157).  Endogenous superoxide was generated using the redox-

cycling agent paraquat, while exogenous superoxide was generated using the 

xanthine/xanthine oxidase (X/XO) enzyme system.  Using optical density measurements 

to monitor culture growth, the bacteriostatic effect of paraquat was tested in three 

different growth media:  Luria-Bertani broth, double strength Luria-Bertani broth, and 

nutrient broth.  For both strains, paraquat toxicity was greatest in nutrient broth, with 

toxicity in each medium dependent upon the time of paraquat addition following 

inoculation.  Protection against paraquat toxicity by salts and yeast extract was suggested 

by the differences observed between growth rates of ER2566 treated cultures in each 

medium.  Addition of the copper/zinc superoxide dismutase inhibitor 

diethyldithiocarbamate decreased paraquat toxicity, consistent with its role in induction 

of the superoxide response regulon (soxRS).  Based on colony-forming unit (CFU) 

counts, the toxicity of X/XO-generated superoxide on ER2566 was found to be altered by 

pH, with cell viability lower at a pH of 6.5 than at 7.5.  Using CFU counts obtained with 
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the spread-plate method and total cell counts obtained with a hemacytometer, the 

relationship between optical density and cell number was found to be different between 

cultures of the two strains at both log and stationary phases.  Reliable cell counts were 

necessary to avoid the inner filter effect otherwise encountered during optimization of the 

BacLight Bacterial Viability Kit for ATCC 4157.  Assessment of cell viability following 

X/XO treatment with the BacLight kit indicated this method was more sensitive than the 

traditional spread plate method for determining cell viability.      
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INTRODUCTION 
 
 
 

1.  EFFECTS OF OXIDATIVE STRESS ON THE BACTERIAL CELL 

Reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and 

hydroxyl radicals are present within all aerobic cells.  On its own, superoxide has many 

deleterious effects within the cell, one of which is the oxidation of iron sulfur clusters 

[4Fe-4S] that serve as cofactors in a family of enzymes known as dehydratases.  This 

family includes the enzymes aconitase, dihydroxy acid dehydratase, 6-phosphogluconate 

dehydratase, fumarase A, and fumarase B (Fridovich 1995).  These clusters are composed 

of four iron atoms connected by inorganic sulfide, three of which are coordinated to 

sulfur atoms of cysteine residues, with the fourth iron coordinated to water and exposed 

to solvent (Figure 1).  As a result of oxidation by superoxide, this fourth iron is removed 

and the enzyme is deactivated.     

 

Figure 1.  Superoxide oxidation of the iron-sulfur cluster of a dehydratase (Imlay 2003). 
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Iron-sulfur clusters were essential to formation of primordial enzymes as both 

iron and sulfur were abundant in Earth’s early anaerobic atmosphere (Imlay 2006).  

However, oxygenation of the atmosphere forced microorganisms unable to find alternate 

electron transfer pathways to remain obligate to anaerobic environments.  The 

inactivation of these enzymes halts biosynthesis of amino acids and progression of the 

TCA cycle (Korshunov and Imlay 2002).   

In addition to inactivating enzymes with iron-sulfur clusters, superoxide serves as 

a precursor to the formation of additional reactive oxygen species including hydrogen 

peroxide and the hydroxyl radical.  Hydrogen peroxide can be converted to harmless 

molecules, water and oxygen, by the enzyme catalase.  However, it can also react with 

iron released from damaged iron-sulfur clusters to produce hydroxyl radicals, a reaction 

known as the Fenton reaction (Equation 1).   

 
H2O2 + Fe2+ → OH- + FeO2+ + H+ → Fe3+ + OH- + HO·     (1) 
 
 

While both superoxide and hydrogen peroxide are limited in their reactivity, the 

neutral hydroxyl radical is highly reactive and nonselective, making it extremely 

detrimental to the cell due to its ability to damage DNA, proteins, and membranes.  The 

ability of organisms to adapt to oxygen is most extreme in bacteria.  Bacteria exhibit a 

wide range of oxygen tolerance, with the two extremes being obligate anaerobes and 

obligate aerobes.  In addition, microaerophiles require environments where the oxygen 

concentration is less than 20% and aerotolerant bacteria are unaffected by changes in 

oxygen concentration.   
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2.  CYTOSOLIC SUPEROXIDE PRODUCTION IN BACTERIA 

 Reactive oxygen species are not intentionally produced by the cell but occur as an 

unavoidable consequence of aerobic respiration.    Molecular oxygen is an ideal molecule 

to serve as the terminal electron acceptor in aerobic respiration as a large amount of 

energy is released once its double bond is broken.  In addition, it does not easily react 

with other biomolecules minimizing damage to amino acids and nucleic acids.  This 

limited reactivity is due to its triplet state.  The two unpaired spin-aligned electrons 

present in its pi antibonding orbital restrict electron exchange with most molecules.  

Therefore, only molecules capable of univalent electron transfer are able to transfer 

electrons to molecular oxygen (Imlay 2003).  Redox enzymes of the respiratory chain are 

capable of autooxidation through the electron transfer capability of their flavin cofactors, 

and collision of oxygen with reduced flavins results in the reduction of diradical oxygen 

to the free radical superoxide.  Several enzymes with this ability have been identified in 

Escherichia coli including NADH dehydrogenase II, succinate dehydrogenase, sulfite 

reductase, and fumerate reductase (Messner and Imlay 2002).  The amount of superoxide 

produced as a byproduct of aerobic respiration within the cytosol of E. coli is estimated to 

be 5 µM per second (Imlay 2003).  Once produced, superoxide remains within the 

cytoplasm of the cell as its negative charge prevents its passive diffusion through the 

plasma membrane.        
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3.  INTRACELLULAR SUPEROXIDE PRODUCTION IN BACTERIA BY 

EXTERNAL AGENTS 

 The ability of bactericidal antibiotics to kill bacteria was long attributed solely to 

their capacity to inhibit the synthesis of critical cell macromolecules such as DNA, 

proteins, and the cell wall (Kohanski et al. 2007).  However, for each of the three major 

classes of bactericidal antibiotics, aminoglycosides, quinolones, and β-lactams, it is now 

known that part of their lethality is due to the production of superoxide.  Each antibiotic 

causes an increase in the consumption of NADH by increasing the production of NADH 

dehydrogenase I which results in hyperactivation of the electron transport chain, thereby 

increasing the amount of superoxide produced.  As described above, as a result of 

damage caused by superoxide, highly reactive hydroxyl radicals are generated through 

the Fenton reaction.  Hydroxyl radical formation is key to the lethality of bactericidal 

drugs.  Bacteriostatic drugs that slow bacterial growth do not promote generation of 

hydroxyl radicals (Kohanski et al. 2007).   

A well-known external agent used for the generation of intracellular superoxide is 

the herbicide paraquat (1,1'-dimethyl-4,4'-bipyridylium dichloride).  The toxicity of 

paraquat is due to its ability to undergo redox cycling within the cytoplasm.  It is reduced 

to a monocation by a soluble NADPH-diaphorase and oxidized by molecular oxygen to 

regenerate the dication along with production of superoxide (Figure 2).  Paraquat toxicity 

has been reported for mammals, plants, and bacteria.  Within bacteria it exerts a 

bacteriostatic effect which has been shown to be dependent upon the presence of 

molecular oxygen (Kitzler and Fridovich 1987).    
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Figure 2.  Paraquat redox cycling with generation of superoxide (modified from Bus and 
Gibson 1984). 
 
 
 
4.  SUPEROXIDE WITHIN THE PERIPLASM 
 

A proposed source of superoxide within the periplasm of some gram-negative 

bacteria is the bc1 complex, a component of the respiratory chain located within the 

cytoplasmic membrane (Imlay 2003).  Autooxidation of this complex results in reduction 

of molecular oxygen located within the periplasm to superoxide.  Recently, superoxide 

production within the periplasm was detected in E. coli during aerobic growth 

(Korshunov and Imlay 2006).  The bc1 complex is absent in the respiratory chain of E. 

coli; instead periplasmic superoxide production has been attributed to the autooxidation 

of dihydromenaquinone present within the cytoplasmic membrane.   

Phagocytic cells of the innate immune system produce superoxide as part of their 

attack on pathogenic bacteria in a process known as the respiratory burst.  Following 

phagocytosis of a bacterium, functional NADPH oxidases are assembled by translocation 

of cytosolic components of the oxidase to a membrane bound component, b cytochrome 

(Karlsson and Dahlgren 2002).  These oxidases are formed on the plasma membrane of 

neutrophils as well as intracellularly on phagosomal and granule membranes.  The 

enzyme catalyzes the oxidation of NADPH located within the cytosol and reduces 

molecular oxygen present in the phagosome or granule, or extracellularly in the case of 
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plasma membrane NADPH oxidases, to produce superoxide.  Superoxide produced 

extracellular to a bacterium can cross the outer membrane and enter the periplasm due to 

the low pH of the phagolysosome.  At low pH the superoxide becomes protonated, 

enabling diffusion (Korshunov and Imlay 2002).  The respiratory burst is an essential 

event in phagocytic defense against invading bacteria.  In individuals suffering from 

chronic granulomatous disease (CGD), neutrophils are unable to initiate the respiratory 

burst due to a defect in a subunit of NADPH oxidase, resulting in frequent bacterial and 

fungal infections that can be fatal (Heyworth et al. 2003).   

 In the lab, superoxide can be generated extracellulary with the enzyme xanthine 

oxidase.  Xanthine oxidase is a flavoenzyme, composed of two iron-sulfur clusters, a 

molybdenum cofactor, and a flavin adenine dinucleotide (FAD).  In humans, xanthine 

oxidase is involved in the catabolism of purines.  It has been isolated from a wide variety 

of organisms, including bacteria, mice, and humans, with bovine milk being the primary 

commercial source since its discovery over 100 years ago (Harrison 2002).  Within 

mammals, the enzyme can be converted to another form, called xanthine dehydrogenase, 

and together the two are referred to as xanthine oxidoreductase.  In contrast to the 

dehydrogenase form, the oxidase form is only capable of reducing molecular oxygen, not 

NAD+.  It’s most common substrates, hypoxanthine and xanthine, bind at the 

molybdenum site, and are oxidized to xanthine and urate respectively, with transfer of the 

electron to FAD resulting in reduction of molecular oxygen to form superoxide and 

hydrogen peroxide (Figure 3).   
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Figure 3.  Production of superoxide by xanthine oxidase (Harrison 2002). 

 

5.  COMBATING SUPEROXIDE PRODUCTION:  THE ROLE OF 

SUPEROXIDE DISMUTASE 

To combat oxidative stress, aerobic organisms have enzymes that scavenge 

superoxide called superoxide dismutases (SODs).  Isolated in 1939 from bovine 

erythrocytes, the enzymatic function of these proteins remained unknown until 1969 

when it was discovered that they catalyzed the dismutation of superoxide to hydrogen 

peroxide and molecular oxygen (Equation 2). 

 
O2

- + O2
- + 2H+ → H2O2 + O2                          (2) 

 
 
Prior to this discovery, the protein had been given different names based on the tissue 

from which it was isolated and the finding that it contained copper.  For example, the 

copper-containing protein isolated from bovine erythrocytes was called erythrocuprein, 

from human brain tissue, cerebrocuprein, and from liver, hepatocuprein (McCord and 

Fridovich 1969).  In 1970 and 1973 two additional forms of the enzyme were identified 
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in E. coli, with the copper-containing enzymes not identified in the species until 1994.  

Each form is differentiated according to the metal cofactor present at the active site:  

copper-zinc SOD (CuZnSOD), iron SOD (FeSOD), and manganese SOD (MnSOD).   

 Since their discovery, the SODs of E. coli have been extensively studied.  The 

location of the three forms differs, with Fe- and MnSODs located in the cytoplasm and 

CuZnSODs located in the periplasm of the gram-negative bacterium.  Expression of each 

gene is also different, with sodB (FeSOD) constitutively expressed, sodA (MnSOD) 

upregulated in response to oxidative stress, and sodC (CuZnSOD) only expressed during 

stationary phase (Hopkin et al. 1992).  While all three are synthesized in aerobic 

environments, FeSODs are also synthesized in anaerobic environments where oxygen 

toxicity is not a threat.  The synthesis of FeSODs during anaerobiosis aids facultative 

bacteria in transitioning from an anaerobic environment to an aerobic environment, a role 

evident by a two-hour growth lag observed in E. coli sodB mutants (Kargalioglu and 

Imlay 1994).  The difference in the availability of iron(II) in anaerobic and aerobic 

environments has been suggested as an explanation as to why FeSOD rather than 

MnSOD is produced in an anaerobic environment and conversely why MnSOD is 

induced during oxidative stress in an aerobic environment and not FeSOD.  Iron is more 

abundant in anaerobic environments than manganese and exists in its soluble +2 

oxidation state.  In aerobic environments it is oxidized to the insoluble ferric ion whereas 

manganese is soluble (Kargalioglu and Imlay 1994).         

 Although both Fe- and MnSODs serve to scavenge superoxide produced within 

the cytosol, their ability to protect different targets of superoxide from damage within E. 

coli differs.  FeSODs protect superoxide-sensitive enzymes such as 6-phosphogluconate 
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dehydratase, while MnSODs are more efficient at protecting DNA (Hopkin et al. 1992).  

SODs within the cytosol reduce superoxide from the estimated production of 5 µM/s to a 

steady-state level of 0.1 nM (Imlay 2003).  The function of periplasmic CuZnSODs has 

been the subject of much investigation since their discovery due to the fact that 

cytoplasmically generated superoxide remains in the cytosol and there are no known 

targets of superoxide within the periplasm.  While components of the respiratory chain 

have been found to generate superoxide within the periplasm, the finding that E. coli 

generates periplasmic superoxide during log phase, a time during which sodC is not 

expressed, implies that CuZnSODs are not functioning to protect against damage caused 

by this source of superoxide (Korshunov and Imlay 2006).  Given their location, it has 

been assumed that their primary role is scavenging superoxide generated by phagocytic 

immune cells, offering increased virulence to pathogenic bacteria.  However, this cannot 

be the only role for this enzyme as CuZnSODs are produced by nonpathogenic and free 

living bacteria.  While the concentration of CuZnSODs is much lower than Fe- and 

MnSODs within the cell, 0.1 nU and 12 nU respectively, it is estimated that the 

concentration of cytosolic SODs would have to increase by three fold to provide the same 

protection as CuZnSODs against superoxide entering from outside the cell (Korshunov 

and Imlay 2002).  This implies that perhaps CuZnSODs are not protecting some unknown 

biomolecule within the periplasm, but are also serving to protect cytosolic targets.   

 

6.  METHODS TO ASSESS EFFECTS OF OXIDATIVE STRESS ON BACTERIA 

 Spectrophotometry has been the primary method employed to observe the 

bacteriostatic effect of superoxide generating agents such as paraquat on culture growth 
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rate (Kitzler and Fridovich 1986; Kitzler et al. 1990; Hassan and Fridovich 1978).  With 

this method, absorbance readings of a liquid culture are taken at a wavelength of 600 nm 

at time intervals, and the absorbance reading obtained is plotted against time to construct 

a growth curve.  This is not a true absorbance reading, as the light is not being absorbed 

by the bacteria, but is instead scattered; thus optical density is a more appropriate term.  

A drawback to this approach is that it does not differentiate between dead cells and viable 

cells since both are able to scatter light.   

 The traditional method used to assess viability of bacterial cells following 

treatment with a bactericidal agent is to count colony-forming units (CFUs) using the 

spread plate method (Hoerr et al. 2007).  Typically, 100 µL of a liquid culture is spread 

on an agar plate and incubated at the optimum growth temperature of the bacterium to 

produce visible colonies evenly distributed along the surface of the agar.  The range of 

CFUs present on a plate to achieve an accurate count is considered to be between 30 and 

300.  A drawback to this method is that a cell that is viable but unable to produce a 

colony will remain undetected.  Additionally, this method is time consuming, as serial 

dilutions must be performed to dilute the culture and often more than one dilution must 

be plated to achieve the accurate range of CFUs.  Furthermore, incubation time varies 

between species, with 24 hours to 5 days being typical (Stocks 2004).   

 Both viable and dead cells can be counted using a device called a hemacytometer.  

Although designed to count much larger blood cells, it is possible to count bacterial cells 

by increasing the magnification of the microscope.  Larger and thicker than a standard 

microscope slide, a hemacytometer has two square compartments on which a grid is 

etched and is covered with a special coverslip to produce an area of known volume.  Each 
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square grid is divided into 9 squares, each 1 mm2, holding a volume of 100 nL, and is 

filled by capillary action.  Dead cells are differentiated from live cells by using the vital 

stain Trypan blue, as it is unable to cross an intact membrane and therefore only stains 

dead cells.  Cells must be diluted in phosphate buffered saline to achieve a range of 20-

100 cells per square.  Disadvantages of this method include difficulty in precision, as 

cells must be counted quickly to avoid evaporation due to heating by the light source, 

locating small cells, and motile cells require immobilization prior to counting.  In 

addition, although considered a quick method, samples must often be diluted several 

times to achieve the optimal range of cells, with each dilution requiring a 5-15 minute 

incubation period with the dye to permit adequate staining.  If cells are incubated with 

Trypan blue for too long, the dye may be taken up by viable cells. 

 A more rapid technique for assessing cell viability is the LIVE/DEAD BacLight 

Bacterial Viability Kit developed by Molecular Probes (Eugene, OR).  This kit consists 

of two nucleic acid staining fluorescent dyes, the green fluorescent SYTO9 and the red 

fluorescent propidium iodide.  SYTO9 is membrane permeable and can therefore stain 

both viable and non-viable cells, while propidium iodide is membrane-impermeable and 

can only stain non-viable cells.  When both dyes are present in the cell, propidium iodide 

displaces SYTO9 due to its stronger affinity for DNA, resulting in the staining of viable 

cells green and non-viable cells red.  Both dyes are excited by the same wavelength of 

light, but have different emission spectra.  Only a fifteen minute incubation period is 

required, allowing results to be obtained quickly.  Another advantage is that the kit can be 

adapted for use with different instrumentation, including a fluorescence microplate 

reader, a fluorescent microscope, a flow cytometer, or a fluorometer.  In contrast to the 
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traditional spread-plate method, the BacLight kit allows detection of cells that are 

nonculturable but still viable.  However, some bacterial cells, including Bacillus clausii 

and Listeria monocytogenes, have been reported to be stained by both dyes 

simultaneously, making data interpretation difficult (Stocks 2004).         
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SIGNIFICANCE 
 
 
 

 Since the realization just over 40 years ago that molecular oxygen can be toxic to 

the cell and that enzymes exist to alleviate damage caused by it, the molecular basis of 

oxygen toxicity and the effects it has on the cell are still not fully understood.  The 

finding that both the innate immune system and the three major classes of bactericidal 

drugs rely on superoxide production as part of their attack on pathogenic bacteria 

highlights the need for a greater understanding of the defensive role these molecules 

fulfill.  This understanding could lead to the development of novel therapeutic strategies 

to target pathogenic bacteria for which current therapies are not successful, such as the 

causative agent of tuberculosis, Mycobacterium tuberculosis.  This disease remains a 

worldwide epidemic and is prevalent in third-world countries.  Reasons include antibiotic 

resistance of this bacterium and its ability to detoxify reactive oxygen species released by 

phagocytic immune cells, an ability attributed in part to its Fe- and CuZnSODs (Ehrt and 

Schnappinger 2009).  Given the protection provided to bacterial pathogens by superoxide 

dismutases, inhibition of these enzymes should make them more vulnerable to oxidative 

stress and increase the lethality of antibiotics and phagocytic cells.  Although SOD 

inhibitors have been identified and utilized to understand oxygen toxicity and the role of 

SODs, their therapeutic application has not been explored.   
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SPECIFIC AIMS 
 
 
 

 The aim of this project was to explore the effects of superoxide-generating agents 

on growth and viability of Escherichia coli.  The effects of endogenous and exogenous 

superoxide were investigated, with paraquat serving as the source of endogenous 

superoxide and the xanthine/xanthine oxidase (X/XO) enzyme system serving as the 

source of exogenous superoxide.  Since previous research in the laboratory has focused 

on superoxide-generation using antibiotics, the bulk of the focus was given to 

development of the paraquat assay.  Two E. coli strains were used in experimentation, a 

lab strain and a clinical isolate, to see how different strains were affected by the same 

conditions.  For the paraquat assay, the effect of paraquat concentration, time of addition 

of paraquat, and culture growth medium on paraquat toxicity was explored using three 

different growth media:  Luria-Bertani broth (LB), double strength Luria-Bertani broth 

(2XLB), and nutrient broth (NB).  Assay development focused on conditions that resulted 

in a reduction of the culture growth rate by 50%.  For the X/XO assay, the effect of pH 

on toxicity was explored using a slightly alkaline buffer (pH 7.5) and a slightly acidic 

buffer (pH 6.5). 

 During the development of oxidative stress assays, methods to assess the effect of 

oxidative stress on the cell were evaluated.  Methods that were evaluated include:  

counting colony-forming units using the spread-plate method, total cell counts with a 

hemacytometer, cell density measurements taken with a spectrophotometer, and 

fluorescence measurements taken with a fluorescence microplate reader using the 

LIVE/DEAD BacLight Bacterial Viability Kit manufactured by Molecular Probes.  Each 
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method was evaluated by comparison of the treated culture with an untreated culture 

grown in parallel.  Optimization of the BacLight kit for each E. coli strain is an important 

objective, as the kit will be essential for future high-throughput screening of potential 

SOD inhibitors.            

Following development of the paraquat assay, the CuZnSOD inhibitor 

diethyldithiocarbamate (DDC) was used to investigate the effects of SOD inhibition on 

culture growth.  The primary focus was to identify a concentration of DDC that reduces 

culture growth rate in the optimum conditions identified for the paraquat assay.  Although 

paraquat generates superoxide in the cytosol and DDC inhibits periplasmic SODs, this 

assay was important in assessing the effects of simultaneously subjecting the cell to both 

periplasmic superoxide generated by autooxidation of electron carriers within the 

respiratory chain and cytoplasmic superoxide.  Once reduction in culture growth rate was 

achieved by DDC alone, cells were treated with both DDC and paraquat simultaneously 

and the effect on growth rate evaluated. 
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MATERIALS AND METHODS 
 
 
 

1.  MAINTENANCE OF E. COLI STRAINS 

Prior to this project, the E. coli strain ER2566 (IMPACT kit, New England 

BioLabs Inc., Ipswhich, MA) was stored as a stab culture at 4oC.  The clinical isolate, 

ATCC 4157 (MicroBioLogics, Saint Cloud, MN) was rehydrated from a freeze-dried 

culture according to the manufacturer’s protocol.  Once rehydrated, a serial dilution was 

performed and isolated colonies obtained using the spread-plate method (Figure 4).  A 

stab culture was prepared from an isolated colony and stored at 4oC protected from light.  

Isolated colonies were maintained on Luria-Bertani agar plates (100 x 15 mm) using the 

streak-plate technique followed by inversion of plates and incubation at 37oC overnight in 

a Lab-Line L-C Incubator (Melrose Park, IL).  Liquid cultures were grown from isolated 

colonies in a Series 25 Incubator Shaker (New Brunswick Scientific Co, Edison, NJ) at 

37oC and a shake speed of 200 rpm.  Media recipes for Luria-Bertani broth, double 

strength Luria-Bertani broth, and nutrient broth are located in the appendix.  

 

2.  GROWTH CURVES   

 Overnight cultures were diluted 1:200 in pre-warmed growth medium in 13 x 100 

mm borosilicate glass disposable culture tubes to a total volume of 4 mL.  Tubes were 

covered with parafilm and placed in the Series 25 Incubator Shaker at 37oC and 200 rpm.  

Optical density (OD) measurements were taken at a wavelength of 600 nm with a 

Spectronic 20+ spectrophotometer (Thermo Electron Corporation).  Readings were taken 

at 30 minute intervals, and the tube vortexed briefly prior to placement into the sample 
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compartment.  Due to the ability of E. coli cells to form chains and clump, a 45 second 

delay between placement of the tube in the sample compartment and recording of the OD 

reading was necessary to allow the needle to steady.   

 

3.  PARAQUAT ASSAY 

 Overnight cultures were diluted 1:200 in pre-warmed growth medium in 13 x 100 

mm borosilicate glass disposable culture tubes.  Paraquat solutions 100X the final desired 

concentration were prepared by dissolving the solid in sterile water.  Each tube contained 

3,940 µL of fresh growth medium and 20 µL of overnight culture.  The final volume of 

each tube was 4 mL, with treated cultures receiving 40 µL of the paraquat solution 

(1:100) and untreated cultures receiving 40 µL of sterile water.  Optical density 

measurements (600 nm) were taken every 30 minutes as described in section 2.   

 

4.  SPREAD-PLATE METHOD 

 A 10 µL aliquot was removed from the culture tube and serially diluted in 2 mL 

microcentrifuge tubes containing 0.85% NaCl solution as outlined in Figure 4.  The 

samples were plated onto LB agar plates by pipetting 100 µL of the sample onto the 

center of the plate.  The solution was spread evenly on the surface of the agar using 

sterile EZ-Spread Plating Beads (Genlantis, San Diego, CA).  The plates were set aside 

for a few minutes to allow the solution to soak into the agar, followed by wrapping 

parafilm around the outside edge of the plates, inversion of the plates, and placement of 

plates into the incubator at 37oC.   
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Figure 4.  Outline of spread-plate method.  Plates having over 300 colonies were 
recorded as too many to count (TMTC). 
 
 

5.  HEMACYTOMETER COUNTS 

 A 200 µL aliquot of the cell culture was diluted 1:5 with 500 µL of Trypan blue 

stain and 300 µL of phosphate buffered saline (PBS) in a 2 mL microcentrifuge tube.  

Tubes were vortexed and incubated at room temperature for 5-15 minutes.  Prior to use, 

the hemacytometer and coverslip were cleaned with 70% isopropanol.  Chambers were 

filled by capillary action by placing the solution filled pipette tip at the loading groove at 

the edge of the coverslip, with each chamber holding approximately 20 µL of cell 

suspension.  The slide was placed on the microscope stage and the grid focused at 100X 

magnification, allowing observation of one grid at a time.  Once focused, magnification 
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was increased to 400X allowing viewing of 1 square at a time to enable counting.  Five of 

the nine squares were counted, the 4 corner squares and the center square (Figure 5).  If 

fewer than 20 or more than 100 cells were present per square, the dilution factor was 

adjusted.  Both grids were counted, and the average number of cells per square calculated 

by dividing the sum of the number of cells by 10.  The number of cells per mL was 

calculated according to Equation 3. 

 
average cell count per square x dilution factor x  104  = bacterial cells/mL                     (3) 

 

 

Figure 5.  Sections of a hemacytometer (above) and grid system (below) for cell 
counting, with squares counted numbered 1-5 (Mishell and Shiigi 1980).   
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6.  LIVE/DEAD BACLIGHT BACTERIAL VIABILITY KIT 

Optimization of SYTO9 

To optimize staining, SYTO9 was first calibrated for each strain by testing a 

range of concentrations.  Cells were harvested in late log phase, a point at which they can 

be assumed to be 100% live, by centrifugation at 4300 rpm at 4oC using a Sorvall RC 5C 

Plus centrifuge with rotor SH-3000 (Dupont).  Following centrifugation, cells were 

washed in 0.85% NaCl solution to remove growth medium.  Cells were resuspended in 

the salt solution and the optical density adjusted to the appropriate reading for the strain 

to be stained by adding more 0.85% NaCl as necessary.  To prepare a range of SYTO9 

concentrations for testing, a concentrated solution was prepared by dilution of the 3.34 

mM stock solution supplied in the kit in sterile water.  From this concentrated solution, a 

serial dilution was performed to achieve a concentration range 2X that of the desired final 

concentration.  Each dye concentration was diluted 1:1 with cells in separate wells of a 

black flat-bottom 96-well microplate (Costar 3915) for a total volume of 200 µL per well 

(100 µL cells + 100 µL dye solution).  Following incubation of the plate at room 

temperature in the dark for 15 minutes, fluorescence measurements were taken using a 

fluorescence microplate reader (POLARstar OPTIMA, BMG Labtech) with the excitation 

wavelength set to 485 nm and the emission wavelength set to 520 nm.  A plot of green 

fluorescent intensity versus dye concentration was used to determine the optimum dye 

concentration.   

 

 

 



  31  

Optimization of Propidium Iodide  

Following optimization of the SYTO9 concentration, propidium iodide was 

calibrated by testing a range of dye concentrations while keeping the concentration of 

SYTO9 constant.  Cells were prepared for staining according to the manufacturer’s 

protocol (Molecular Probes) outlined in Figure 6.  Cells were harvested using a Sorvall 

RC 5C Plus centrifuge (Dupont).   

 

Figure 6.  Protocol for preparation of cells for staining with BacLight kit.  

 

1) Log phase cells harvested by centrifugation at 4300 rpm at 4oC for 12 minutes 

2) Supernatant discarded, pellet resuspended in 2-3 mL 0.85% NaCl solution  

3) 1 mL transferred to LIVE tube 
containing 20 mL 0.85% NaCl 

3) 1 mL transferred to DEAD tube 
containing 20 mL 70% isopropanol 

4) Tubes mixed for 1 hour at room temperature on Nutator shaker 

5) Cells harvested by centrifugation at 4300 rpm at 4oC for 12 minutes 

6) Supernatant discarded, pellet resuspended in 20 mL 0.85% NaCl, and 
cell suspension centrifuged as in step #5 

7) Cells resuspended in 0.85% NaCl and OD adjusted with 0.85% NaCl to 
appropriate reading at 670 nm (0.06 for ER2566 and 0.2 for ATCC 4157) 

with Spec 20+ (both LIVE and DEAD tubes) 
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Once both 100% live and 100% dead cultures were adjusted to the appropriate 

optical density, 5 different ratios of live to dead cells were prepared by mixing different 

proportions of live and dead cell suspensions to a total volume of 2 mL.  The 5 different 

ratios of live to dead cells prepared were as follows:  0:100 (0% live), 10:90 (10% live), 

50:50 (50% live), 90:10 (90% live), and 100:0 (100% live).  A concentrated solution of 

propidium iodide was prepared from the 20 mM stock supplied in the kit by dilution in 

water.  From this concentrated solution, a serial dilution was performed to achieve a 

concentration range 4X that of the desired final concentration.  Each dye concentration 

was diluted 1:1 with a solution of SYTO9 4X its determined optimal concentration.  Each 

dye mixture was diluted 1:1 with cells in separate wells of a black flat-bottom 96-well 

microplate (Costar 3915) for a total volume of 200 µL per well (100 µL cells + 100 µL 

dye mixture).  Following incubation of the plate at room temperature in the dark for 15 

minutes, fluorescence measurements were taken using a fluorescence microplate reader 

(POLARstar OPTIMA, BMG Labtech) with the excitation wavelength set to 485 nm and 

dual emission at 520 nm and 612 nm. 

 

Fluorescence Measurements with DAPI nucleic acid stain 

 ER2566 cells in late log phase were harvested by centrifugation at 4300 rpm at 

4oC for 12 minutes using a Sorvall RC 5C Plus centrifuge, followed by a wash step in 

0.85% NaCl solution.  The pellet was resuspended in 0.85% NaCl solution and the 

optical density adjusted to 0.06 at 670 nm using a Spec 20+ spectrophotometer.  A 2 mL 

working solution (10 µg/mL) of DAPI (4',6-diamidino-2-phenyl-indole) was prepared by 

diluting 4 µL of the stock solution 1:500 in phosphate buffered saline (PBS).  Using an 
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Impact2 electronic pipette (Matrix, Hudson, NH), 1 mL of cell suspension was drawn into 

the pipette tip, and 200 µL dispensed into 5 consecutive wells within a row of a black 

flat-bottom 96-well microplate (Costar 3915).  This step was repeated to fill the next 5 

consecutive wells.  In the next row, 200 µL of cell suspension was transferred into 10 

consecutive wells with a manual pipetter.  Each well then received 50 µL of DAPI 

working solution for a final dye concentration of 2 µg/mL per well.  The plate was 

covered and incubated at room temperature overnight.  Fluorescent intensity was 

measured with a fluorescence microplate reader (POLARstar OPTIMA, BMG Labtech), 

with the excitation wavelength set at 360 nm and emission wavelength at 460 nm. 

 

Absorbance Test for Inner Filter Effects 

 Cells were prepared as described above for staining with both SYTO9 and 

propidium iodide, with 3 different ratios of live to dead cells prepared:  100% live, 50% 

live, and 0% live.  From the stock solutions provided in the LIVE/DEAD BacLight 

Bacterial Viability Kit, 450 µL of each dye and 450 µL of dye mixture (SYTO9 + PI) was 

prepared each having a dye concentration 2X the final desired concentration by dilution 

of the stocks in sterile water.  One hundred µL of each live to dead ratio was plated in 

triplicate within the same row in a clear flat bottom 96-well plate (Nunc F, Nalge Nunc 

International, Rochester, NY), resulting in 3 columns each containing one of each 

live:dead cell suspension.  One column received 100 µL of SYTO9, one column 100 µL 

of PI, and one column 100 µL dye mixture.  In a fourth column, 100 µL of each dye and 

dye mixture was plated without cells in 100 µL of 0.85% NaCl solution.  Absorbance 

measurements were taken at a wavelength of 485 nm, 520 nm, and 612 nm using a 
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microplate reader spectrophotometer (SpectraMax 190, Molecular Devices, Sunnyvale, 

CA).   

 

7.  XANTHINE/XANTHINE OXIDASE ASSAY  

 Cells were grown until stationary phase and harvested by centrifugation at 4300 

rpm at 4oC for 12 minutes in a Sorvall RC 5C Plus centrifuge.  Cells were resuspended in 

50 mM potassium phosphate buffer (PPB) and the optical density was adjusted to 0.3 at 

670 nm with a Spec 20+ (Thermo Electron Corporation, Waltham, MA).  The pH of PPB 

was adjusted to 6.5 with 1 N HCl or 7.5 with 1 N KOH.  A 0.15 mM xanthine solution 

was prepared by dissolving the solid in 1 mL 1 N NaOH followed by addition of sterile 

water and adjustment to the desired pH with 1 N HCl for a final volume of 100 mL.  One 

hundred µL of xanthine oxidase enzyme solution (XO) containing 0.2 units/mL was 

prepared by dilution of the stock (0.2 units/mg protein, 51 mg protein/mL) xanthine 

oxidase suspension (Sigma, St. Louis, MO) in cold PPB.  A 3 mL reaction mix was 

prepared for both treated and untreated cultures by adding 1.9 mL of the cell suspension 

and 1 mL of xanthine solution to a culture tube.  Treated cultures received 100 µL of XO 

while untreated tubes received 100 µL of sterile water.  Tubes were vortexed and placed 

on the Nutrator mixer.  For the LIVE/DEAD assay, 100 µL aliquots were removed at 0, 

30, 60, 90, and 120 minute time intervals and cells harvested by centrifugation in a 

microcentrifuge for 5 minutes at 14,000 rpm.  The pellets were resuspended in 0.85% 

NaCl solution and the optical density adjusted to 0.06 at 670 nm.  For the spread-plate 

method, 10 µL aliquots were removed at each time point.   
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8.  SOD INHIBITION WITH DIETHYLDITHIOCARBAMATE (DDC) 

DDC Concentration Determination 

 Overnight cultures were diluted 1:200 in pre-warmed nutrient broth in 13 x 100 

mm borosilicate glass disposable culture tubes.  A DDC solution 100X the desired final 

concentration (2 mM) was prepared by dissolving the solid in sterile water.  Each tube 

contained 3,940 µL of fresh growth medium and 20 µL of overnight culture.  The final 

volume of each tube was 4 mL, with treated cultures receiving 40 µL of the DDC solution 

(1:100) and untreated cultures receiving 40 µL of sterile H2O.  Optical density 

measurements (600 nm) were taken every 30 minutes as described in section 2.   

 

DDC and Paraquat Combination Treatment 

 Overnight cultures were diluted 1:200 in pre-warmed nutrient broth in 13 x 100 

mm borosilicate glass disposable culture tubes.  Four cultures were grown in parallel in a 

Series 25 Incubator Shaker set at a temperature of 37oC and shaking at 200 rpm.  These 

included:  untreated culture, paraquat only treated culture, DDC only treated culture, and 

paraquat + DDC treated culture.  Paraquat and DDC solutions were prepared as described 

above, with both 100X and 200X solutions prepared for final concentrations of 1 mM for 

paraquat and 20 µM for DDC.  Each tube contained a total volume of 4 mL, with tubes 

prepared according to Table 1.  Tubes were removed from the incubator shaker at 30 

minute time intervals and optical density readings taken at 600 nm with a Spec 20+ 

spectrophotometer.    
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Table 1.  Preparation of tubes for SOD inhibition assay. 
 
Tube Contents 
Untreated 3,940 µL NB 

20 µL overnight culture 
40 µL water 

DDC Treatment 3,940 µL NB 
20 µL overnight culture 
40 µL 100X DDC solution 

Paraquat Treatment 3,940 µL NB 
20 µL overnight culture 
40 µL 100X PQ2+ solution 

Paraquat/DDC Treatment 3,940 µL NB 
20 µL overnight culture 
20 µL 200X DDC solution 
20 µL 200X PQ2+ solution 
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RESULTS 
 
 
 

1.  CELL DENSITY MEASUREMENTS WITH A SPECTROPHOTOMETER 

Cell Density as a Measurement of Growth: Construction of Growth Curves 

Both E. coli strains exhibited similar growth patterns, entering stationary phase at 

around 5 hours of growth (Figures 7 & 8).  By switching from inoculation with an 

isolated colony to inoculation with an overnight culture, the lag phase for ER2566 was 

shortened from 2 hours to 30 minutes (data not shown).   
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Figure 7.  ER2566 Growth Curve.  Overnight cultures were diluted 1:200 in 4 mL fresh 
Luria-Bertani broth.  Optical density measurements were taken at 30 minute intervals 
with a Spec 20+ spectrophotometer. 
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Figure 8.  ATCC 4157 Growth Curve.  Overnight cultures were diluted 1:200 in 4 mL 
fresh Luria-Bertani broth.  Optical density measurements were taken at 30 minute 
intervals with a Spec 20+ spectrophotometer. 
 

Relationship Between Optical Density and CFUs 

 The accepted standard conversion factor for relating optical density measurements 

to cell number for E. coli is OD600 0.1= 108 cells/mL.  However, this conversion can 

differ between strains due to differences between lipopolysaccharides attached to the 

outer membrane.   In addition, the composition of lipopolysaccharides may change due to 

changes in growth conditions; therefore, it was necessary to calibrate the optical density 

measurements for each strain for both log and stationary phases (Raetz and Whitfield 

2002).  Linear regression was performed on plots of CFUs/mL vs. OD670 to determine the 

relationship between colony-forming units and optical density at 670 nm.  The number of 

colony-forming units per mL was determined using the spread-plate method.  As shown 



  39  

in Figures 9-12, different relationships were found for each strain, as well as for different 

growth stages for the same strain.  The conversion factors from OD670 to CFUs/mL 

determined for each strain and for both growth stages are shown in Table 2.  Only log 

phase ATCC 4157 cells were found to have a conversion factor equal to the standard 

conversion factor found in the literature for E. coli.   

 

Table 2.  List of OD670 to CFUs/mL conversion factors for ER2566 and ATCC 4157 
 
Strain Growth Phase Conversion Factor Between OD670 and 

CFUs/mL 
ER2566 Log Phase OD670 0.1 = 107 CFUs/mL 

Stationary Phase OD670 0.1 = 9 x 106 CFUs/mL 

ATCC 4157 Log Phase OD670 0.1 = 108 CFUs/mL 

Stationary Phase OD670 0.1 = 3 x 107 CFUs/mL 
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Figure 9.  Relationship between optical density measurements at 670 nm and colony-
forming units for log phase ER2566.   
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Figure 10.  Relationship between optical density measurements at 670 nm and CFUs/mL 
for stationary phase ER2566.  
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Figure 11.  Relationship between optical density measurements at 670 nm and CFUs/mL 
for log phase ATCC 4157. 
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Figure 12.  Relationship between optical density measurements at 670 nm and CFUs/mL 
for stationary phase ATCC 4157. 
 

Relationship Between Optical Density Measurements and Total Cell Count 

 To take into account both dead cells and nonculturable viable cells when 

determining the number of cells from optical density measurements, total cell counts 

were made using a hemacytometer for a range of optical density measurements at 670 

nm.  This was done for both E. coli strains as well as log and stationary phases for each 

strain.  As Figures 13-16 show, a different relationship between optical density 

measurements and total cell count was obtained for each strain and each growth phase.  

The relationships were also different from those obtained using colony-forming unit 

counts.  For both ER2566 and ATCC 4157, less than 5% of log phase cells were found to 

be dead for each optical density measurement and were omitted from the graphs for 

clarity.  For stationary phase cells, the number of dead cells increased with increased cell 

density, but remained less than 20% of the total cell count.  The conversion factors from 
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OD670 to total cell counts are shown in Table 3.  As with CFU/mL, a linear relationship 

was only obtained for optical density measurements below 0.45.   

 
Table 3.  List of OD670 to cells/mL conversion factors for ER2566 and ATCC 4157 
 
Strain Growth Phase Conversion Factors between OD670 and 

Cells/mL 
ER2566 Log Phase OD670 0.1 = 4 x 106 Cells/mL 

Stationary Phase OD670 0.1 = 5 x 106 Cells/mL 

ATCC 4157 Log Phase OD670 0.1 = 3 x 106 Cells/mL 

Stationary Phase OD670 0.1= 2 x 107 Cells/mL 
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Figure 13.  Relationship between total cell count and optical density measurements at 
670 nm for log phase ER2566.   
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Figure 14.  Relationship between total cell count and optical density measurements at 
670 nm for stationary phase ER2566.   
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Figure 15.  Relationship between total cell count and optical density measurements at 
670 nm for log phase ATCC 4157. 
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Figure 16.  Relationship between total cell count and optical density measurements at 
670 nm for stationary phase ATCC 4157. 
 
 

2.  DEVELOPMENT OF THE PARAQUAT ASSAY 

Effect of Paraquat on Growth Rate of ER2566 

 After performing a literature search of concentrations of paraquat previously used 

to induce oxidative stress in E. coli, paraquat concentrations ranging between 1 µM and 1 

mM were tested to assess the effect each had on the growth rate of ER2566 (data not 

shown) (Hassan and Fridovich 1978; Carr et al. 1986; Kitzler et al. 1990).  Based on 

these experimental results, a narrower range was chosen for further investigation.  Luria-

Bertani broth was chosen as the growth medium since it has been considered to be the 

standard medium for E. coli cultivation since its formulation in 1951.  As shown in 

Figure 17, all three paraquat concentrations tested reduced culture growth rate.  For 

cultures treated with 0.5 mM and 0.75 mM paraquat, a decrease in optical density 

measurements occurred 90 minutes after treatment with paraquat.  This decrease occurred 
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for a longer period and was more pronounced for the 0.75 mM paraquat treated culture 

(Figure 17).  From this data, a paraquat concentration of 0.5 mM was chosen for ER2566 

cultured in LB due to the reduction in culture growth rate greater than 50%. 

 To assess the effects of time of addition of paraquat on its toxicity, 0.5 mM 

paraquat was added to ER2566 growing in LB 60, 90, and 120 minutes following 

inoculation with overnight culture.  As shown in Figure 18, no effect on culture growth 

rate was observed when paraquat was added at 90 and 120 minutes.  When added at 60 

minutes, a time at which the culture was still in lag phase, 0.5 mM paraquat treatment 

reduced culture growth rate by more than 50% as previously observed.  This indicated 

that paraquat must be added to the culture before it enters log phase in order to exert a 

bacteriostatic effect.  Treating log phase cells with 4 mM and 8 mM paraquat confirmed 

this, as no effect on culture growth rate was observed (Figure 19).   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 30 60 90 120 150 180 210 240 270 300

Time (minutes)

O
D

 6
00

 n
m Untreated

0.4 mM PQ2+
0.5 mM PQ2+
0.75 mM PQ2+

 

Figure 17.  Effect of paraquat on growth rate of ER2566.  Untreated and treated cultures 
were grown in parallel in 4 mL LB.  Separate treated cultures received 40 µL of 0.4, 0.5, 
and 0.75 mM paraquat 60 minutes following inoculation and untreated culture received 
40 µL of sterile H2O.  Optical density measurements were taken at 30 minute intervals at 
a wavelength of 600 nm with a Spec 20+. 
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Figure 18.  Effect of 0.5 mM paraquat on growth rate of ER2566 cultured in LB.  
Untreated and treated cultures were grown in parallel in 4 mL LB.  Separate treated 
cultures received 40 µL of 0.5 mM paraquat 60, 90, 120 minutes following inoculation 
and untreated culture received 40 µL of sterile H2O.  Optical density measurements were 
taken at 30 minute intervals at a wavelength of 600 nm with a Spec 20+. 
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Figure 19.  Effect of high paraquat concentrations on growth rate of ER2566.  Untreated 
and treated cultures were grown in parallel in 4 mL LB.  Separate treated cultures 
received 40 µL of 4 mM and 8 mM paraquat 120 minutes following inoculation and 
untreated culture received 40 µL of sterile H2O.  Optical density measurements were 
taken at 30 minute intervals at a wavelength of 600 nm with a Spec 20+. 
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 To examine the effects of growth medium on paraquat toxicity, cells cultured in 

double strength Luria-Bertani broth (2XLB) and nutrient broth (NB) were subjected to 

treatment with 1 mM paraquat.  As shown in Figure 20, 1 mM paraquat had no effect on 

culture growth rate when ER2566 cells were cultured in 2XLB even when added to the 

culture as early as 30 minutes following inoculation when the culture was still in lag 

phase.  In contrast, when cultured in NB, 1 mM paraquat reduced culture growth rate at 

all three times tested, with a 50% reduction occurring when added at 120 minutes 

following inoculation when cells were in log phase (Figure 21).  A reduction greater than 

50% occurred when paraquat was added 60 and 90 minutes following inoculation.  These 

results indicate that growth medium can alter the bacteriostatic effect of paraquat. 
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Figure 20.  Effect of 1 mM paraquat on growth rate of ER2566 cultured in 2XLB.  
Untreated and treated cultures were grown in parallel in 4 mL 2XLB.  Separate treated 
cultures received 40 µL of 1 mM paraquat 30, 60, and 90 minutes following inoculation 
and untreated culture received 40 µL of sterile H2O.  Optical density measurements were 
taken at 30 minute intervals at a wavelength of 600 nm with a Spec 20+. 
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Figure 21.  Effect of 1 mM paraquat on growth rate of ER2566 cultured in NB.  
Untreated and treated cultures were grown in parallel in 4 mL NB.  Separate treated 
cultures received 40 µL of 1 mM paraquat 60, 90, and 120 minutes following inoculation 
and untreated culture received 40 µL of sterile H2O.  Optical density measurements were 
taken at 30 minute intervals at a wavelength of 600 nm with a Spec 20+. 
 
 
Effect of Paraquat on Growth Rate of ATCC 4157  
 
 The effect of 0.5 mM paraquat on ATCC 4157 cells was investigated for cells 

cultured in the three growth media tested for ER2566, Luria-Bertani broth, double 

strength Luria-Bertani broth, and nutrient broth.  In contrast to results obtained for 

ER2566, a bacteriostatic effect was observed for cells cultured in LB with 0.5 mM 

paraquat at all times tested (Figure 22).  When added 30 minutes following inoculation, 

growth rate was greatly affected, being reduced by greater than 50%, with a slight 

decrease in optical density measurements occurring 3 hours after addition of paraquat.  

Addition of paraquat 60 minutes following inoculation produced the desired reduction in 

growth rate of around 50% in this medium.   
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In contrast to ER2566, the bacteriostatic effect of paraquat was greater in 2XLB 

than LB for ATCC 4157 (Figure 23).  Culture growth rate was reduced by 50% following 

addition of 0.5 mM paraquat 90 minutes after inoculation, 30 minutes later than observed 

for cells cultured in LB.  In addition, paraquat added 60 minutes following inoculation 

resulted in a decrease in growth almost as much as observed when added at 30 minutes, 

with a decrease in optical density observed for both 3 hours after paraquat addition.  

Similar to ER2566, the greatest bacteriostatic effect of paraquat was observed on cells 

cultured in nutrient broth (Figure 24).  In this medium, the reduction in growth rate 

occurring for the culture treated 120 minutes following inoculation was greater than that 

observed for cells treated at the same time in LB and 2XLB.   

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 30 60 90 120 150 180 210 240 270 300

Time (minutes)

O
D

 6
00

 n
m Untreated

30 min
60 min
90 min
120 min

 
 
Figure 22.  Effect of 0.5 mM paraquat on growth rate of ATCC 4157 cultured in LB.  
Untreated and treated cultures were grown in parallel in 4 mL LB.  Separate treated 
cultures received 40 µL of 0.5 mM paraquat 30, 60, 90, and 120 minutes following 
inoculation and untreated culture received 40 µL of sterile H2O.  Optical density 
measurements were taken at 30 minute intervals at a wavelength of 600 nm with a Spec 
20+. 
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Figure 23.  Effect of 0.5 mM paraquat on growth rate of ATCC 4157 cultured in 2XLB.  
Untreated and treated cultures were grown in parallel in 4 mL 2XLB.  Separate treated 
cultures received 40 µL of 0.5 mM paraquat 30, 60, 90, and 120 minutes following 
inoculation and untreated culture received 40 µL of sterile H2O.  Optical density 
measurements were taken at 30 minute intervals at a wavelength of 600 nm with a Spec 
20+. 
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Figure 24.  Effect of 0.5 mM paraquat on growth rate of ATCC 4157 cultured in NB.  
Untreated and treated cultures were grown in parallel in 4 mL NB.  Separate treated 
cultures received 40 µL of 0.5 mM paraquat 30, 60, 90, and 120 minutes following 
inoculation and untreated culture received 40 µL of sterile H2O.  Optical density 
measurements were taken at 30 minute intervals at a wavelength of 600 nm with a Spec 
20+. 
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3.  LIVE/DEAD BACLIGHT BACTERIAL VIABILITY KIT 

Calibration of SYTO9 and Propidium Iodide for ER2566 

 Based on results previously obtained in the lab, SYTO9 concentrations below 2 

µM were selected for further calibration of the dye for ER2566.  The manufacturer’s 

instructions were followed for the kit, with cell density adjusted as recommended to 0.06 

at 670 nm, which the protocol states gives a cell concentration of approximately 2 x 108 

cells/mL. According to the conversion factors obtained for log phase cells with the 

spread-plate method and hemacytometer, this optical density corresponds to 6 x 106 

CFUs/mL and 2.4 x 106 cells/mL, respectively.  As shown in Figure 25, green fluorescent 

intensity measured at 520 nm peaked at a SYTO9 concentration of 1.25 µM, indicating 

saturation of the cell suspension with this concentration.     

Following calibration of SYTO9, propidium iodide was calibrated using a range 

of live to dead cell ratios (Figure 26).  Both live and dead cell suspensions were adjusted 

to OD670 0.06 as recommended by the manufacturer.  With the concentration of SYTO9 

held constant, a range of propidium iodide concentrations between 1 and 5 µM was 

tested, with each concentration tested for each live/dead ratio.  Again, this concentration 

range was narrowed based on data previously obtained in the lab using a wider range.  

The data were analyzed using a plot of green/red fluorescence ratio versus the percentage 

of live bacteria.  With the highest coefficient of determination, 4 µM was chosen as the 

optimal concentration of propidium iodide for ER2566.   

 



  52  

0

10000

20000

30000

40000

50000

60000

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

SYTO9 Concentration (µM)

G
re

en
 F

lu
o
re

sc
en

t 
In

te
n
si

ty
 (
52

0 
n
m

)

 

Figure 25.  Calibration of SYTO9 for ER2566.  Cells in late log phase were harvested by 
centrifugation and adjusted to OD670 0.06 with a Spec 20+.  Cells were incubated with 
dye in a Costar 3915 96-well microplate for 15 minutes and fluorescence measurements 
recorded at 520 nm with a POLARstar OPTIMA fluorescence microplate reader. 
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Figure 26.  Propidium Iodide Calibration for ER2566.  Five different live/dead cell ratios 
were stained with a mixture of SYTO9 and PI and fluorescence intensity measured at the 
optimum wavelength of each dye.  The green/red fluorescence ratio was calculated for 
each live/dead ratio and plotted against the percentage of live bacteria.  Linear regression 
was performed and the coefficient of determination calculated for each PI concentration 
(only 2 highest R2 values shown).   
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Calibration of SYTO9 and Propidium Iodide for ATCC 4157  

 Due to potential differences between membrane permeability of the two E. coli 

strains, SYTO9 and propidium iodide were also calibrated for ATCC 4157.  As with 

ER2566, when calibrating each dye, cell suspensions were adjusted to OD670 0.06 as 

recommended by the manufacturer.  Initially the same range of SYTO9 concentrations 

tested for ER2566 was tested for ATCC 4157 (0.5-2 µM).  However, the saturation curve 

did not appear to peak but was still increasing at the highest dye concentration tested 

(data not shown).  Therefore, a wider range of SYTO9 concentrations (2-16 µM) was 

tested.  As shown in Figure 27, fluorescent intensity did not peak until a SYTO9 

concentration of 12 µM, with quenching occurring at 16 µM.  As shown in Figure 28, the 

optimal concentration of propidium iodide was determined to be 100 µM, a concentration 

25X that required for ER2566.   
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Figure 27.  SYTO9 Calibration for ATCC 4157.  Cells in late log phase were harvested 
by centrifugation and adjusted to OD670 0.06 with a Spec 20+.  Cells were incubated with 
dye in a Costar 3915 96-well microplate for 15 minutes and fluorescence measurements 
recorded at 520 nm with a POLARstar OPTIMA fluorescence microplate reader. 
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Figure 28.  Propidium Iodide Calibration for ATCC 4157.  Five different live/dead cell 
ratios were stained with a mixture of SYTO9 and PI and fluorescence intensity measured 
at the optimum wavelength of each dye.  The green/red fluorescence ratio was calculated 
for each live/dead ratio and plotted against the percentage of live bacteria.  Linear 
regression was performed and the coefficient of determination calculated for each PI 
concentration (only 2 highest R2 values shown). 
 

 
Effect of High Dye Concentrations on Fluorescence Measurements 
 

The requirement of such high dye concentrations meant that fewer assays could 

be performed with the BacLight kit, making it a more costly means of determining cell 

viability for ATCC 4157 than for ER2566.  In addition, high dye concentrations could 

interfere with fluorescence measurements, a phenomenon known as the inner filter effect.  

The proportionality between concentration and fluorescence intensity only occurs for 

optical densities less than 0.05 as shown in Figure 29.  Therefore, it seemed unlikely that 

the kit could be used for this strain and that cell viability would have to be assessed using 

an alternative method.  Tests for the inner filter effect confirmed that at these high dye 
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concentrations, the kit could not be used.  To test for inner filter effects, absorbance at the 

excitation and emission wavelengths of the two dyes was tested for three proportions of 

live/dead cells, with separate measurements taken for the cells alone (cells with buffer), 

each dye alone (dye with buffer), cells stained with SYTO9 only, cells stained with PI 

only, cells stained with a dye mixture, and dye mixture alone (SYTO9 + PI with buffer).  

As shown in Table 4, all optical density measurements exceeded 0.05 at each wavelength.   

 

 

 
Figure 29.  Relationship between optical density and fluorescence intensity, shown using 
quinine sulfate.  The dashed line shows fluorescence intensity corrected for the inner 
filter effect for each optical density, while the solid line shows actual fluorescence 
intensity obtained at each optical density (from Lakowicz 2006).   
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Table 4.  Optical density test for inner filter effects for ATCC 4157.  Cells were prepared 
for staining according the protocol for the BacLight kit with OD670 adjusted to 0.06 with 
the Spec 20+.  The concentration of SYTO9 tested was 12 µM and the concentration of 
PI tested was 100 µM.  Optical density measurements were taken at the excitation and 
emission wavelengths for each dye with the SpectraMax 190 microplate 
spectrophotometer.   
 
 Optical Density at Emission and Excitation Wavelengths 
λ 
(nm) 

0% 
Live 
(cells 
 only) 

50% 
Live 
(cells 
only) 

100% 
Live 
(cells 
only) 

SYTO9  
(w/o 
cells) 

PI  
(w/o 
cells) 

SYTO9 
& PI  
(w/o 
cells) 

SYTO9 
w/ cells 

PI w/ 
cells 

SYTO9 
& PI w/ 
cells 

485 0.121 0.110 0.111 0.467 0.677 1.103 0.523 0.770 1.106 
520 0.116 0.106 0.107 0.076 0.550 0.568 0.156 0.624 0.617 
612 0.108 0.099 0.100 0.070 0.082 0.087 0.114 0.129 0.131 
 
 

Effect of cell density conversion factor on calibration of BacLight dyes for ATCC 4157 

 According to the conversion factor between optical density measurements and cell 

number obtained for ATCC 4157 (Tables 2 & 3), adjusting cell suspensions as 

recommended by the manufacturer to OD670 0.06 resulted in a cell concentration of 6 x 

106 CFUs/mL and 1.8 x 105 cells/mL.  Using the CFUs/mL conversion, an OD670 of 0.2 

would correspond to the manufacturer’s recommended cell concentration of 2 x 108 

cells/mL.  By adjusting the cell suspension to OD670 0.2 prior to staining, the optimal 

SYTO9 concentration was determined to be 6 µM (Figure 30) and the optimal propidium 

iodide concentration was determined to be 20 µM (Figure 31) for ATCC 4157. 
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Figure 30.  SYTO9 Saturation for ATCC 4157 with OD670 0.2.  Cells in late log phase 
were harvested by centrifugation and adjusted to OD670 0.2 with a Spec 20+.  Cells were 
incubated with dye in a Costar 3915 96-well microplate for 15 minutes and fluorescence 
measurements recorded at 520 nm with a POLARstar OPTIMA fluorescence microplate 
reader. 
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Figure 31.  Propidium Iodide Calibration for ATCC 4157 with OD670 0.2.  Five different 
live/dead cell ratios were stained with a mixture of SYTO9 and PI and fluorescence 
intensity measured at the optimum wavelength of each dye.  The green/red fluorescence 
ratio was calculated for each live/dead ratio and plotted against the percentage of live 
bacteria.  Linear regression was performed and the coefficient of determination calculated 
for each PI concentration (only 2 highest R2 values shown). 
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Assessment of Automatic Pipetter on Fluorescence Measurements  

 When transferring cell suspension and dye mixture to the 96-well microplate, an 

automatic pipetter (Impact2) was used to enable faster loading and to increase accuracy.  

To ensure that during loading cells were not settling in the pipet tip resulting in different 

cell concentrations in each well, fluorescence measurements were compared between an 

automatic pipetter and a manual pipetter using the nucleic acid stain DAPI.  As shown in 

Table 5, fluorescence intensity fluctuated with each pipetter, with fluctuations being 

greater for the automatic pipetter for the first 6 wells.  However, a similar pattern was 

found for both pipetters for the last 4 wells.  The average fluorescent intensity and 

standard deviations for the manual and automatic pipetters were calculated to be 50893 ± 

6671 and 52097 ± 9030, respectively. 

 
Table 5. Effect of Pipetter Type on Fluorescence Measurements. ER2566 cells were 
transferred into a Costar 3915 96-well microplate, one row transferred with an automatic 
pipetter and another row transferred with a manual pipetter. Cells were incubated with 
DAPI overnight and fluorescent intensity at 460 nm recorded with a POLARstar 
OPTIMA fluorescence microplate reader. 
 
 Blue Fluorescent Intensity (460 nm) 

Well Number Manual Pipetter Automatic Pipetter 
1 48543 41695 
2 48309 47212 
3 52377 59754 
4 48273 52182 
5 49039 55849 
6 50575 51036 
7 57971 57133 
8 52722 53724 
9 56495 53768 
10 44629 48612 

Average 
(± standard deviation) 

50893 ± 6671 52097 ± 9030 
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4.  SOD INHIBITION WITH DIETHYLDITHIOCARBAMATE (DDC) 
 
DDC Concentration Determination 
 
 The growth rate of ER2566 was completely inhibited when treated immediately 

following inoculation with DDC at concentrations of 0.1, 0.2, 0.4, and 1 mM (data not 

shown).  Based on these results, micromolar concentrations were tested, with the results 

of treatment with 20 µM DDC shown in Figure 32.  No increase in optical density 

occurred for the first hour following treatment, with an increase in optical density of only 

0.01 occurring between 60 minutes and 120 minutes.  However, growth resumed after 

two hours, with optical density measurements doubling as usual for log phase growth.   
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Figure 32.  Effect of 20 µM DDC on Growth Rate of ER2566.  Untreated and treated 
cultures were grown in parallel in 4 mL NB.  Treated culture received 40 µL of 20 µM 
DDC following inoculation and untreated culture received 40 µL of sterile H2O.  Optical 
density measurements were taken at 30 minute intervals at a wavelength of 600 nm with 
a Spec 20+. 
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DDC and Paraquat Combination Treatment 

 The effect of simultaneous DDC and paraquat treatment on the cell was assessed 

using ER2566 cultured in nutrient broth.  Cells were treated with 1 mM paraquat, since 

this was the concentration shown to reduce culture growth rate by 50%, and 20 µM DDC 

and cultured in parallel with untreated cells and cells receiving treatment with only 

paraquat or DDC.  As shown in Figure 33, the growth rate of the culture treated with both 

1 mM paraquat and 20 µM DDC was less affected than the growth rate of the cultures 

receiving only one treatment.  However, growth was reduced compared to the untreated 

culture 90 minutes after paraquat addition.  In addition, optical density measurements 

declined at 210 minutes following addition of paraquat, while the growth rate of the two 

cultures receiving only one treatment began to level off near the end of the measurement 

period. 
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Figure 33.  ER2566 treated with both 1 mM paraquat and 20 µM DDC.  Untreated and 
treated cultures were grown in parallel in 4 mL NB.  DDC was added to treated cultures 
following inoculation with overnight culture.  Paraquat was added to treated cultures 120 
minutes following inoculation with overnight culture.  OD measurements were taken at 
30 minute intervals after PQ2+ addition at a wavelength of 600 nm with Spec 20+. 
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5.  XANTHINE/XANTHINE OXIDASE ASSAY 
 
Cell viability following xanthine/xanthine oxidase treatment in PPB, pH 6.5 
 
 Under the same treatment conditions, a reduction in cell viability was only 

observed for ER2566 (Figures 34 and 35).  For ER2566, the biggest decrease in cell 

viability occurred within the first 30 minutes of treatment, with numbers leveling off for 

the remaining treatment period.  In addition, there was a slight decrease in CFUs for 

untreated cells during the 2 hour incubation period.  In contrast, a similar trend was 

observed for CFU counts for both untreated and treated ATCC 4157 cultures.  A decrease 

in the number of CFUs for both strains was observed at 90 minutes. 
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Figure 34.  Effect of xanthine/xanthine oxidase treatment on viability of ER2566 at pH 
6.5.  Cells were harvested in stationary phase and resuspended in PPB adjusted to a pH of 
6.5.  Both untreated and treated cells received 1 mL xanthine solution (0.05 mM).  
Untreated cells received 100 µL H2O while treated cells received 100 µL xanthine 
oxidase (0.02 units).  Cell viability was assessed using the spread-plate method. 
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Figure 35.  Effect of xanthine/xanthine oxidase treatment on viability of ATCC 4157 at 
pH 6.5.  Cells were harvested in stationary phase and resuspended in potassium 
phosphate buffer adjusted to a pH of 6.5.  Both untreated and treated cells received 1 mL 
xanthine solution (0.05 mM).  Untreated cells received 100 µL H2O while treated cells 
received 100 µL xanthine oxidase (0.02 units).  Cell viability was assessed using the 
spread-plate method. 
 
 
Evalulation of methods to assess cell viability following treatment with xanthine/xanthine 
oxidase at pH 7.5 
 
 To determine the best method to assess cell viability following xanthine/xanthine 

oxidase treatment, cell viability was determined using the spread-plate method and the 

BacLight kit for ER2566 treated cells.  To examine the effects of pH on toxicity, the pH 

of the buffer was increased to 7.5.  In contrast to results obtained counting colony-

forming units at a pH 6.5, no difference was observed between untreated cells and treated 

cells for the first hour of treatment (Figure 36).  However, a decrease in CFUs was 

observed after 90 and 120 minutes of treatment.  In contrast to the spread-plate method, 
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the BacLight kit did detect a decrease in cell viability at the beginning of treatment.  

However, at 60 minutes, there was an increase in the percentage of cells reported live 

(Figure 37).  At 90 and 120 minutes of treatment, cell viability decreased as observed 

with the spread-plate method, with percentage of live cells reduced from 90.5% to 73.6% 

at 90 minutes. 
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Figure 36.  Assessment of xanthine/xanthine oxidase treatment on viability of ER2566 
using the spread-plate method.  Cells were harvested in stationary phase and resuspended 
in potassium phosphate buffer adjusted to a pH of 7.5.  Both untreated and treated cells 
received 1 mL xanthine solution (0.05 mM).  Untreated cells received 100 µL H2O while 
treated cells received 100 µL xanthine oxidase (0.02 units).   
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Figure 37.  Assessment of xanthine/xanthine oxidase treatment on viability of ER2566 
using the BacLight kit.  Cells were harvested in stationary phase and resuspended in 
potassium phosphate buffer (pH 7.5) to OD670 0.06.  Both untreated and treated cells 
received 1 mL xanthine solution (0.05 mM).  Untreated cells received 100 µL H2O while 
treated cells received 100 µL xanthine oxidase (0.02 units).   
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DISCUSSION 
 
 
 

Relationship between optical density measurements and cell concentration 

As previously mentioned, different strains of E. coli can scatter light differently 

causing each to have a different relationship between optical density and cell 

concentration.  This difference in light scattering is due in part to the diversity in 

lipopolysaccharides (LPS) present on the outer membrane and extending into the 

surrounding medium (Raetz and Whitfield 2002).  LPS are composed of three parts:  lipid 

a, core oligosaccharide, and O-antigen.  Differences between LPS of bacterial strains are 

primarily due to differences in the composition of the O-antigen.  Although no 

information is available regarding the lipopolysaccharides of ER2566, the O-antigen is 

usually absent from laboratory strains, a condition referred to as a rough LPS (Raetz and 

Whitfield 2002).  Strain ATCC 4157 was specifically chosen due to the presence of the 

full-length O-antigen rendering its LPS smooth.  This selection was necessary for future 

neutrophil assays, as the O-antigen protects against complement-mediated killing by 

serum.  The bacterium may then be opsonized with serum, which enables phagocytosis 

by professional phagocytes (Papp-Szabo et al. 1993).  Thus the finding that each strain 

had a different relationship between optical density measurements and cell counts 

obtained with both CFU counts and total cell counts is not surprising.  However, this 

information is essential when using optical density measurements as an indicator of the 

effectiveness of a particular experimental treatment on a culture.  As the data show, at a 

particular OD670 during log phase, a suspension of ER2566 is much more concentrated 

than ATCC 4157.  In contrast, for stationary phase cells the reverse is true, with a 
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suspension of ATCC 4157 being much more concentrated than ER2566 at a particular 

OD670.  This difference is a factor that needs to be taken into consideration when 

comparing experimental data between the two strains.            

 

Assessing paraquat toxicity with cell density measurements 

The decrease in optical density observed for cultures treated with 0.5 and 0.75 

mM paraquat highlights the drawback of using optical density measurements as an 

indication of cell growth.  As discussed earlier, optical density measurements do not 

allow discrimination between viable cells and non-viable cells since both are able to 

scatter light.  Therefore, a decrease in optical density cannot be interpreted as cell death.  

In addition, previous studies of paraquat toxicity on E. coli have reported that paraquat 

concentrations exceeding 100 µM are required for lethality, with concentrations less than 

10 µM having a bacteriostatic effect (Kitzler and Fridovich 1986).   

The viability of cells was confirmed with CFU counts prepared alongside optical 

density measurements immediately before, during, and after the decline observed at these 

paraquat concentrations (data not shown).  Instead of the number of CFUs decreasing 

during the decline, a plateau occurred.   

The disparity between growth curves and what is actually happening to a culture 

has been previously reported with E. coli cells treated with antibiotics.  In these studies, 

optical density measurements increased immediately following antibiotic treatment 

indicating culture growth; however, CFU counts remained steady during this treatment 

period and the increase in OD was attributed to the formation of cells with damaged walls 

(Yourassowsky et al. 1985).  To date, none of the researchers utilizing paraquat to 
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generate superoxide have reported a decrease in optical density while monitoring the rate 

of growth.  The biological mechanisms behind this phenomenon remain unknown.   

   

Effect of culture medium on paraquat toxicity 

The relationship between growth medium and paraquat toxicity has been 

previously investigated with a variety of medium types including trypticase/soy/yeast 

(TSY), nutrient broth, glucose minimal medium, and Vogel-Bonner (VB) medium 

(Kitzler and Fridovich 1986 a & b, Hassan and Fridovich 1978).  These investigators 

report that yeast extract and salts provide protection against the toxicity of paraquat.  The 

protection afforded to cells by yeast extract has been attributed to the nutritional 

supplementation it provides.  Yeast extract provides carbohydrates, vitamins, 

micronutrients and proteins that enable the cell to synthesize enzymes necessary for the 

production of branched-chain amino acids (valine, leucine, isoleucine) and pyridine 

coenzymes to replace those that have been damaged by superoxide.  The protection 

against paraquat toxicity provided by yeast extract is substantial.  A previous study found 

that cells grown in medium supplemented with yeast extract and treated with a lethal 

concentration of paraquat (100 µM) had a reduction of 31% in growth, while growth of 

cells cultured in yeast extract-free medium was completely eliminated (Kitzler and 

Fridovich 1986a).  In addition to replacement of these enzymes, yeast extract has also 

been shown to enable the cell to increase biosynthesis of manganese superoxide 

dismutase during oxidative stress generated by paraquat (Hassan and Fridovich 1978).  

These investigators reported that the concentration of MnSOD in paraquat treated cells 
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grown in medium supplemented with yeast extract was 7X that of treated cells cultured in 

yeast-extract free medium.   

In contrast to the protection provided by yeast extract, the protection provided by 

salt has been attributed to inhibition of paraquat uptake into the cell.  Paraquat is actively 

taken up by cells against a concentration gradient and is accumulated within the cell (Kao 

and Hassan 1985).  Although the salts of both monovalent cations and divalent cations 

have been shown to inhibit paraquat uptake, the salts of divalent cations provided greater 

protection against paraquat toxicity, most likely because paraquat is also a dication 

(Kitzler and Fridovich 1986b).  However, these investigators found no differences 

between CFU counts of untreated cells and cells treated with 1 mM paraquat in nutrient 

broth supplemented with 100 mM NaCl, indicating that full protection was provided by 

the monocation salt.     

The effect of culture medium on paraquat toxicity was most pronounced in 

ER2566.  The increased susceptibility of these cells to paraquat when cultured in nutrient 

broth compared to Luria-Bertani broth could be due to differences in media ingredients, 

as nutrient broth does not contain yeast extract.  Luria-Bertani broth contains NaCl at a 

concentration of 86 mM, a concentration comparable to that used in the above mentioned 

experiment by Kitzler and Fridovich, while double-strength Luria-Bertani broth contains 

a concentration of 172 mM NaCl.  The possibility of ingredient influence is further 

supported by the failure of paraquat to reduce culture growth rate in double strength 

Luria-Bertani broth even when present at twice the concentration of that tested in LB, 1 

mM compared to 0.5 mM.  While a clear difference was observed between media types 

and paraquat toxicity for ER2566, the same trends were not observed for the clinical 



  69  

isolate, ATCC 4157.  However, the strain was clearly more susceptible to paraquat in 

nutrient broth compared to LB and 2XLB.  At this time, it can only be speculated that the 

greater susceptibility of ATCC 4157 to paraquat in LB and 2XLB compared to ER2566 is 

due to differences in membrane permeability.  With ER2566 being a lab strain and ATCC 

4157 a clinical isolate, it is probable that each has evolved different adaptations to 

survive in their optimal environments, which could greatly impact their ability to tolerate 

oxidative stress. 

 

Effect of SOD inhibition during oxidative stress on growth rate of ER2566 

 The ability of a CuZnSOD inhibitor to decrease log phase growth highlights how 

little is understood about the role of this SOD within the cell.  Although DDC is a 

chelator of both copper and zinc, its ability to inhibit CuZnSODs has been attributed to 

the removal of copper from the active site.   Thus, given the present understanding that 

sodC is not expressed until stationary phase, the mechanism by which DDC affects cell 

growth must be unrelated to its inhibition of CuZnSODs.  Although merely speculative 

given the lack of experimental evidence, it is possible that this reduction in growth 

occurred due to inhibition of metalloproteinases by DDC, preventing recycling of amino 

acids needed in the biosynthesis of proteins.  Metal chelation by DDC was indicated in a 

recent study as the mechanism by which DDC was able to kill drug-resistant 

Mycobacterium tuberculosis (Byrne et al. 2007).  A previous study investigating the 

effect of DDC on the growth rate of E. coli found that at a concentration of 50 µM, DDC 

was able to inhibit aerobic growth of E. coli to an extent comparable to that obtained for 

ER2566 (Benov and Fridovich 1996).  These investigators were unable to explain the 
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mechanism by which DDC exerted it effects, but speculated that CuZnSODs may not be 

isolated completely to the periplasm, with a small amount present in the cytosol.  

However, they failed to address the stationary phase dependent synthesis of the enzyme.   

 In addition to a reduction in growth rate, these investigators also found that DDC 

increased induction of the superoxide response regulon (soxRS regulon) (Benov and 

Fridovich 1996).  This regulon initiates transcription of a variety of genes of enzymes 

that scavenge superoxide and repair the damage it causes such as glucose 6-phosphate 

dehydrogenase, MnSOD, and DNA repair endonuclease IV (Nunoshiba et al. 1992).  This 

may explain why paraquat exerted a greater bacteriostatic effect when used as a single 

treatment than in combination with DDC.  Cells received DDC before paraquat treatment, 

and it is possible that the cell was already armed with these enzymes before superoxide 

production by paraquat began.  The sharp decline in growth rate observed near the end of 

the monitoring period may have been due to the depletion of nutrients in the medium 

resulting in an inability to keep up production of these enzymes and replace damaged 

proteins. 

  

Assessing cell viability with the LIVE/DEAD BacLight Bacterial Viability Kit  

 Although the BacLight kit offers a more rapid assessment of cell viability than 

more traditional methods, it is essential that the kit is calibrated for each bacterial strain.  

It is interesting that the manufacturer uses a different conversion for optical density 

measurements to cell number (0.06 OD670 = 2 x 108 cells/mL) than the standard 

conversion reported elsewhere in the literature (0.2 OD600= 2 x 108 cells/mL).  Although 

the traditional wavelength used for optical density measurements of bacterial cultures is 
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600 nm, there is nothing specific about this wavelength that would affect cell density 

measurements since light scattering is being measured and not absorption.  Previous 

experiments using a microplate reader to assess the relationship between the wavelength 

used for measurement and the resulting growth curve found that a similar curve was 

obtained at 570, 600, 630, 800, and 850 nm (Quigley 2008).  Therefore, it is unlikely that 

the large difference between OD to cell concentration conversions was a result of the 70 

nm difference in wavelength used for measurements.   

 The high concentrations of dye required for ATCC 4157 when the cell suspension 

was adjusted to OD670 0.06 were likely caused by a high disproportionality between cell 

and dye concentrations.  As shown in Figure 38, high fluorophore concentrations can 

prevent light from being transmitted evenly through the sample, with it instead being 

absorbed completely at the side of the sample facing the light source.  By having too few 

cells and a large excess of dye, fluorescent measurements indicated that higher and higher 

dye concentrations were needed to saturate the cell suspension.  As observed with 

SYTO9, ultimately the concentration of dye was so high (16 µM) that quenching 

occurred.   

   

Figure 38.  Effect of high fluorophore concentration on light transmittance (from 
Lakowicz 2006). 
 
  

 However, taking cost and the possibility of the inner filter effect into 

consideration, choosing dye concentrations that are close to optimal concentrations 
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should not compromise live/dead discrimination.  When determining the concentration of 

propidium iodide to use, small improvements in the coefficient of determination, for 

example 0.994 compared to 0.9762 (Figure 28), may not be enough to justify choosing 

the dye with the higher R2 value if it is a much higher concentration than the one with the 

lower R2 value.  Likewise, when evaluating saturation curves for SYTO9, choosing a 

lower dye concentration could prevent these complications.  Often trade-offs must be 

made between sensitivity and reagent cost as well as available filters.   

 While the cell concentration was adjusted to 2 x 108 cells/mL based on CFUs/mL 

vs. OD670 data obtained for log phase ATCC 4157, dye calibration for ER2566 was 

successful using the manufacturer’s recommended OD670 0.06 adjustment.  This provides 

further evidence that it is not the concentration of cells that is the most important factor 

for calibration, but the proportionality between dye and cell concentration.  Even though 

at this OD, calibration data based on both CFU counts and hemacytometer counts 

indicated that the cell concentration is much lower than that recommended by the 

manufacturer, clearly saturation concentrations of the dyes were obtained using low dye 

concentrations.   

 

Generation of extracellular superoxide with the xanthine/xanthine oxidase enzyme 
system  
  

It is likely, although again speculative, that the differences observed between the 

effect of X/XO on ER2566 and ATCC 4157 were due to differences between 

compositions of their outer membranes.  Being a known human pathogen, it is probable 

that ATCC 4157 possesses a greater defense against extracellular oxidative stress than 

does ER2566.  When evaluating the effect of pH on extracellular superoxide-induced cell 
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death of ER2566, a difference was noted between cell viability at the two pH values 

tested with CFU counts.  While lower CFU counts were obtained for treated cells 

compared to untreated cells at a pH of 6.5, at a pH of 7.5 CFU counts of treated cells 

were comparable to those obtained for untreated cells with the exception of the last two 

measurements.  These data support the findings of a previous report that superoxide must 

be protonated before it can enter the cell (Korshunov and Imlay 2002).  However, it is 

also important to point out that even at a pH of 6.5 these researchers were only able to 

detect xanthine oxidase-generated superoxide damage using sodAsodBsodC mutants and 

oxygen starved cells.  The pH requirement highlights a drawback of the X/XO assay.  

Within the phagolysosome, protonation of superoxide (pKa = 4.8) is not a problem as the 

environment is highly acidic (pH 4-5).  However, this pH cannot be tested using xanthine 

oxidase as the enzyme is inactive at low pH.   

 

Comparison between the BacLight kit and spread-plate method for determination of cell 
viability following X/XO treatment 
 
 For ER2566 treated with X/XO-generated superoxide at a pH of 7.5, a greater loss 

of viability was detected with the BacLight kit than with the spread-plate method.  The 

percentage of cells detected live by the BacLight kit decreased by 24.2% for cells treated 

with X/XO-generated superoxide, compared to 8% for untreated cells during the 

treatment period.  In contrast, with the spread-plate method, there was not a clear 

difference between untreated and treated cells until the end of the treatment period.  

Based on these data, it appears that the BacLight kit offers better discrimination for 

assessing cell viability. 
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APPENDIX 
 
 
 

Luria-Bertani Broth (LB) 
Per Liter 
Tryptone 10 g 
Yeast extract 5 g 
NaCl  5 g 
Water to 1 L 
 
Adjust pH to 7.2 with 1 N NaOH 
 

Double Strength Luria-Bertani Broth (2XLB) 
Per Liter 
Tryptone 20 g 
Yeast Extract 10 g 
NaCl  10 g 
Water to  1 L 
 
Adjust pH to 7.2 with 1 N NaOH 

Nutrient Broth (NB) 
Per Liter 
Peptone 5 g 
Beef Extract 3 g 
Water to  1 L 
 
Adjust pH to 7.0 with 1 N NaOH 

Stab Agar 
Per Liter 
Tryptone 10 g 
Yeast Extract 5 g 
NaCl  5 g 
Agar  6 g 
Cysteine 10 mg 
Water to  1 L 
 
Adjust pH to 7.2 with 1 N NaOH 
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Luria-Bertani Plate Media 
Per Liter 
Tryptone 10 g 
Yeast Extract 5 g 
NaCl  5 g 
Agar  15 g 
Water to  1 L 

Adjust pH to 7.2 with 1 N NaOH 

1X Phosphate Buffered Saline (PBS) 
Per Liter 
NaCl  8 g 
KCl  0.2 g 
Na2HPO4 1.44 g 
KH2PO4 0.24 g 
Water to  1 L 
 
Adjust pH to 7.4 with 1 N NaOH 

0.85% NaCl 
Per liter 
NaCl  8.5 g 
Water to  1 L 
 
50 mM Potassium Phosphate Buffer (PPB) 
KH2PO4 3.4 
Water to 500 mL 
 
Adjust pH to 7.5 with 1 N KOH 
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