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Lanthanide-based materials are attractive candidates for the use in light emitting devices, immunoassays, 

and in-vitro cellular imaging technologies.  Their superior luminescent properties include sharp emission 

bands arising from f-f electronic transitions and longer luminescence lifetimes compared to traditional 

organic dyes.  Major problems in biological applications are the toxicity, stability, and the delivery of 

insoluble lanthanide chelators to targeted cells.  Silica encapsulation of the lanthanide chelators provides a 

promising approach to minimize the toxicity and improve the dispersion of the lanthanide chelators in an 

aqueous environment with higher stability.  This research is focused on the synthesis of novel 

lanthanide(III) complexes and their silica-based solgel materials.   Lanthanide complexes have the general 

formula of Ln(btfa)3(dmphen) where btfa = 4, 4, 4-trifluoro-1-phenyl-1,3-butanedione and dmphen = 4,7-

dimethyl,1,10-phenanthroline.  All complexes demonstrate the common formula,  Ln(btfa)3(dmphen) 

where Ln= Eu3+,Er3+, Tb3+, Ho3+, Tm3+, and Yb3+.  Eu3+ and Tb3+ complexes emit red and green light, 

respectively, whereas Er3+, Ho3+, and Yb3+ complexes have near-infrared emission characteristics.  The 

molecular structures of the complexes were characterized using single crystals X-ray diffraction studies.  

The complexes and sol-gel materials were characterized using absorption and fluorescence spectroscopy, 



xi 
 

time-resolved luminescence spectroscopy, and ICP-OES studies.  Structural and the luminescent properties 

of the complexes are discussed. 
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CHAPTER 1:  BACKGROUND AND INTRODUCTION TO RESEARCH 

 

1.1 LANTHANIDES PAST AND PRESENT 
 

The lanthanides, or lanthanoids1, are a series of chemically similar metals comprising the 4f block of the 

periodic table, and include the elements 58 (cerium, Ce) through 71 (lutetium, Lu).1  Though not 

technically a lanthanide due to having no 4f electrons, element 57 lanthanum (La) is typically included in 

discussions of the  lanthanides.1  Along with elements 21 (scandium, Sc) and 39 (yttrium, Y), the 

lanthanides make up a group of metals referred  to as the rare earth elements, though they are by no 

means exceptionally rare.2  The most abundant lanthanide, Ce, has the same relative abundance as copper 

(Cu), and is in much higher abundance than boron (B), cobalt (Co), germanium (Ge), lead (Pb), tin (Sn), 

and uranium (U) on the planet.3  The least abundant naturally occurring lanthanide, element 69 (thulium, 

Tm), is more abundant than cadmium (Cd), iodine (I), mercury (Hg), silver (Ag), gold (Au), and platinum 

(Pt).3  

The history of the lanthanides begins in 1787.  During this time, Swedish artillery officer and geology 

enthusiast, Lt. Carl Axel Arrhenius (1757-1824), was exploring a quarry in the small Swedish town of 

Ytterby.1,3 Arrhenius found a sample of a black mineral that he termed ytterbite.  Speculation at the time 

said that this ytterbite contained the recently discovered element tungsten (W).  With the work of Finnish 

chemist and mineralogist, Johan Gadolin (1760-1852), it was shown that the mineral contained a 

previously unidentified “earth” (a term loosely applied to insoluble metal oxides) which he termed 

“Yttria.”1 Yttria would later be shown to contain six different rare earth/lanthanide oxides.  The rest of the 

lanthanides would be discovered through the 19th and 20th century, with the last naturally occurring 

lanthanide, lutetium (Lu), being discovered in 1907.1 It would be 1947 before the final element, 

promethium (Pm), was synthesized and characterized.1,3 Table 1 shows the discovery dates and origins of 

the lanthanide names.  
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Table 1. Brief History of Lanthanide Series. 
 
Name 

  
Year 

 
Name Origin 

lanthanum 1839 From the Greek lanthanein meaning  “to 

lie hidden” 
 
cerium 

 
1803 

 
Ceres, an asteroid discovered in 1801 

 
praesodymium 

 
1885 

 
Named from Greek prasios meaning 

“green,” and didymos meaning “twin” 
 
neodymium 

 
1885 

 
Named from Greek neo meaning “new,” 

and didymos meaning “twin” 
 
promethium 

 
1947 

 
Named from Greek god Prometheus, who 

stole fire from the gods. 

 
samarium 

 
1879 

 
Named from samarskite, a mineral that 

was named after Russian mining official 

Col. Samarski 
 
europium 

 
1901 

 
 Europe 

 
gadolinium 

 
1886 

 
Named from the mineral gadolinite that 

gets its name from Johan Gadolin 
 
terbium 

 
1843 

 
Ytterby, Sweden 

 
dysprosium 

 
1886 

 
Named from Greek disprositos meaning 

“hard to get at.”  
 
holmium 

 
1878 

 
Holmia, Latin name for Stockholm 

Sweden 

 
erbium 

 
1842 

 
Ytterby, Sweden 

 
thulium 

 
1879 

 
Named from Thule, ancient name of 

Scandinavia 

 
ytterbium 

 
1878 

 
Ytterby, Sweden 
 

lutetium 1907 Lutetia, ancient name for Paris 

 

 

It should be noted that although the lanthanides have been known since the 19th and early 20th centuries, it 

has only been since the 1950's that sufficiently pure samples have been prepared.3  In modern times, 
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lanthanides have seen an explosion in commercial use with the common uses summarized  in Table 2. 

Table 2. Commercial uses for lanthanides.1 

 
 

Application Percentage 

 
catalytic converters 

 
45 

 
petroleum refining catalysts 

 
25 

 
permanent magnets 

 
12 

 
glass polishing and ceramics 

 
7 

 
metallurgical  

 
7 

 
phosphors 

 
3 

 
other 

 
1 

 
The current surge in lanthanide interest is bolstered by the growing need of luminescent materials that 

meet stringent requirements for telecommunications, lighting, sensors electroluminescent materials, and 

bio-imaging devices.4 With the rise in the commercial use of lanthanide materials due to their unique 

electronic and magnetic properties, three major areas of lanthanide research have been developed.  These 

three major developments of lanthanide research are in the areas of light-emitting devices (LED's), bio 

immunoassays, and in vitro cellular imaging technologies.4-28 Though much progress has been made in all 

areas of lanthanide utilization, this work will focus on the use of lanthanides as materials for possible bio-

imaging, biomedical applications, light emitting materials as well as an exploration of the molecular 

structures and coordination chemistry of new lanthanide complexes.  Lanthanide based materials are 

attractive for these applications due to their many advantages as a base for luminescent materials.  Bio-

imaging and biomedical uses of lanthanides will be discussed in section 1.2.  The advantages of 

lanthanide chelators, with particular attention to lanthanide β-diketonates, that make them such appealing 

candidates for bio-imaging technologies as well as the current problems with utilization will be discussed 
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in section 1.3. 

1.2 BIO-IMAGING AND BIOMEDICAL USE OF LANTHANIDES  

Lanthanide emission has been used heavily in biological systems.4-28 One method is the labeling of 

biological molecules with lanthanide probes which are used to detect cell functions.  In order to help with 

diagnosis of medical conditions and early stage detection of diseases like cancer, a way to view (image) 

inside a patient’s body is needed.  This has led to the use of luminescent materials that can be used to tag 

various conditions, and to visualize the areas being examined.  Much progress has been made in the field 

of biological imaging, and lanthanide use as luminescent materials in these applications has been 

increased.  Joseph Leonard and colleagues presents the luminescent lanthanides that quench upon anion 

recognition of a specific substrate in a displacement assay.8 Most of these applications are done in vitro as 

immunoassays of biological samples such as blood.  Given these major problems, the advantages of 

lanthanides and the doping of them into biologically favorable carrier constituents continue to be a 

growing area of study.  The broad luminescent capabilities of trivalent lanthanide ions are intriguing due 

to possible applications in biological and chemical sensors, medical diagnostics, cellular imaging, and 

high sensitivity detection of biomolecules, and biomedical imaging.  Lanthanide materials have become 

an area of interest in varying fields of medical and biological research  due to the unique luminescent 

properties they possess.5  This has led to the development of new lanthanide organometallic complexes 

that have novel applications in immunoassay, DNA hybridization, high-throughput screening assays, and 

imaging.5,6  Fluorescent labels based on lanthanides have been used in highly sensitive time resolved 

immunoassay technologies.6  The remarkable improvement in the assay is due to the time-resolved 

detection technique which eliminates cellular background fluorescence.6,7 

 

1.3 ADVANTAGES AND DISADVANTAGES OF LANTHANIDE CHELATORS 

Ever since Weissman described a highly photoluminescent europium complex in 1942, interest in 

lanthanides has increased due to their high  potential for imaging applications.29  Lanthanides exhibit 
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many characteristics that make them attractive candidates for biological imaging applications, due to their 

superior luminescent  and unique electronic and magnetic properties caused by shielded f electrons, sharp 

emission bands originating from f-f electronic transitions, a unique energy transfer mechanism for 

lanthanide centered luminescence, large Stokes shifts, limited photo bleaching, wavelength tunability 

dictated by the lanthanide ion chosen, high luminescent quantum yields, high signal to noise ratios during 

measurements, ease of synthesis, wide availability of well characterized and studied chelator ligands, and 

luminescence lifetimes that are much longer than traditional organic dyes.  Many lanthanides also exhibit 

emission in the infrared (IR) region, and some lanthanides can be used in the process of  photon up-

conversion.  In addition to these properties, the fluorescence of many lanthanides is outside the range of 

the cell background fluorescence, which reduces possible interference from normal cell fluorescent 

activity.  With these advantages over more traditional phosphors, much progress has been made, but there 

are still several problems with lanthanide materials used for the purpose of biological imaging.  

The problems arising from the use of lanthanide based materials for biological imaging applications vary 

from common concerns of metal toxicity and stability of the synthesized complexes in an aqueous 

environment.  Many of the highly luminescent lanthanide complexes are water insoluble, and of the ones 

that can be dispersed in water, the potential quenching effects of the aqueous environment matching the 

vibrational states of the lanthanide material become problematic and produce diminishing returns on the 

highly luminescent properties of the material.  One way to get around this issue is the use of silica based 

sol gel materials.  These materials will be discussed further in section 1.5.5. 

1.3.1 Lanthanide β-diketonates 

To utilize lanthanide ions and make luminescent complexes, chelating groups are necessary.  This is due 

to trivalent lanthanide cations (Ln3+) being hard Lewis acids with a coordination number of 8 or 9.7  This 

also means that “hard” donors with oxygen or nitrogen in the chelating ligands is necessary.  There are 

many types and combinations of chelators that can be used in conjunction with lanthanides to make 

lanthanide chelator complexes.  The chelators can range from monodentate and up to bidentate and 
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tridentate varieties.  Bidentate ligands are a good choice for making chelator complexes because they can 

be added to the central lanthanide metal ion through simple synthetic methods and still provide an 

enhanced energy transfer between the ligand and the lanthanide metal ion.  Among the various classes of 

lanthanide chelators, β-diketonates are the most widely studied lanthanide complexes3.  Many lanthanide 

β-diketonate complexes use a derivative of the 2, 4-pentanedione (acac) ligand (Figure 1).    

 

 
Figure 1. Molecular structure of acac 

 

Lanthanide β-diketonate complexes are attractive candidates for luminescent applications of lanthanides 

because the ligands are commercially available, well characterized, and inexpensive.  This class of 

ligands provide materials with high luminescent quantum yields with an easy route to the synthesis of 

chelator complexes.  Lanthanide β-diketonates have been used in in vitro luminescent assays including 

Dissociation Enhanced Lanthanide Fluoroimmunoassay [DELFIA] Technology that was suggested 

conceptually more than 30 years ago.7  

The use of Lanthanide β-diketonates could allow for improved bio-imaging and this type of assay can be 

used in early detection of cancer.  Despite the recent progress of utilizing this class of materials in 

biomedical imaging applications, they suffer from several drawbacks.  The disadvantages of lanthanide β-

diketonates for the use in biomedical imaging applications include stability, toxicity, and poor water 

solubility of the complexes.  Another major challenge is the targeted delivery of the chelator agents to a 

desired cell type. 

1.3.2 N-Donor Ligands 

The β-diketonate ligand serves as a charge balance to the central lanthanide cation.  The three bidentate β-

diketonate ligands replace six of the eight coordination sites on a typical lanthanide ion.  This still leaves 
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two water ligands attached from the reaction of the β-diketonate and the lanthanide chloride or nitrate 

hydrate.  The last two coordination sites containing water ligands can be replaced by a neutral bidentate 

ligand such as 1,10-phenanthroline (phen) (Figure 2.)  

 

Figure 2. Molecular structure of phen  

 

The 1 and 10 positions on phen contain nitrogen atoms.  These two nitrogen atoms will coordinate to the 

central lanthanide ion and replace the water ligands.  The new complex now has the bidentate neutral 

ligand with the nitrogen atoms attached.  It can also act as a secondary source for absorbing light energy 

during excitation and is referred to as an N-Donor Ligand. 

1.3.3 Lanthanide-Centered Luminescence 

Luminescence is a process where a substance absorbs light at one wavelength and then emits it at another 

wavelength that is generally higher.5 The absorbed energy excites the molecule from the ground singlet 

state (S0) to an excited higher level such as S1.  From this state, many options can occur.  The energy can 

relax from a singlet state back down to the S0 state (fluorescence).  Other pathways include radiative and 

non-radiative transitions that can return the molecule to any of its rotational or vibrational ground states.  

Transitions from the S1 state to the triplet state (T1) can be followed by phosphorescence or non 

radiatively.  T1 can also transition the excitation energy to another species such as chelated lanthanide 

ions.  It is from this state that luminescence can occur.  The ligand to metal energy transfer is called the 

antenna effect and can lead to intense luminescence of lanthanide ions that would absorb energy poorly 

without the ligand.  The f-f electronic transitions are parity and spin forbidden and are highly inefficient.  

In order to efficiently utilize the f-f electronic transitions of the trivalent lanthanides, it must be sensitized 

by a coordinating ligand capable of light absorption.  This ligand is an organic chromophore and acts as 
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an “antenna” to efficiently sensitize the lanthanide ions (Figure 3).  Figure 4 shows this process for the 

excited states of Eu3+ complexes.  The lanthanide ion luminesces upon relaxation.  This process is known 

as lanthanide-centered luminescence.  Each lanthanide ion has characteristic emission bands.  Eu3+ has 

four electronic transitions arising from a 5D0 to 7Fn energy levels.  The electronic transitions for Eu3+ are 

5D0 to 7F1 (595 nm), 5D0 to 7F2 (615 nm),
 5D0 to 7F3 (655 nm), and 5D0 to 7F4 (688 nm)8.  The 5D0 to 7F2 (615 

nm) is the strongest transition for Eu3+ and is ideal for biological imaging due to being far away from the 

cell background fluorescence usually observed in the blue and green region of the electromagnetic 

spectrum.1 The electronic transitions for Tb3+ are 5D4 to 7F6 (480 nm), 5D4 to 7F5 (535 nm),
 5D4 to 7F4 (580 

nm), 5D4 to 7F3 (615 nm), and 5D4 to 7F2 (640 nm)8.  Er3+ has an emission at 1550 nm (4I13/2 to 4I15/2)12.  

Tm3+ has an emission at 975 nm (3F4 to 3H6) and 1465 nm (3F4 to 3H4)13.  Ho3+ has an emission at 975 nm 

(5F5 to 5I7), ~1187 nm (5I6 to 5I8), and 1479 nm (5F5 to 5I6)13.  Yb3+ has one luminescent transition at 980 

nm (2F5/2 to 2F7/2)12.  These lanthanides were chosen due to their near-infrared emission characteristics, 

which are even farther away from the cell background fluorescence.  Since the f electrons have minimum 

participation in metal-ligand bonding, the emission is characteristic of the lanthanide ion.  For example, 

Eu3+ complexes produce a sharp emission peak at 615 nm upon ligand excitation (Figure 5). 

 
  

Figure 3. Lanthanide-Centered Luminescence. 
 



9 
 

 
Figure 4. Energy transfer diagram for a typical Eu3+-complex.  

 
 

 
Figure 5. Photo-physical properties of a typical Eu3+ complex 

 

 

1.3.4 Comparison with Traditional Organic Dyes  

Detecting particular analytes in an assay is critical to biomedical and imaging applications. Due to 

biological samples having high background fluorescence, it is difficult to get good sensitivity for 

traditional and simple fluorophores.7 Luminescent lifetimes from conventional fluorescent dyes and 

sample interference lifetimes occur at a nanosecond scale.  Scattering of the excitation light by the 

instrument optics, sample vessel, and matrix are additional problems with conventional fluorophores, 
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because of their generally small Stokes shifts.  A final problem with conventional fluorophores is self-

quenching because of substantial overlap between their excitation and emission spectra, meaning that 

multiply-labeled biomolecules fluoresce much less compared to the luminescence expected from the 

degree of labeling.  With their large Stokes shifts, narrow emission bands, and no overlap between 

excitation and emission spectra, lanthanide chelates are not susceptible to this problem and so are ideal 

candidates for highly sensitive protein-detection assays.7 

Lanthanide chelator complexes are of interest due to their differences from organic dyes such as the large 

stokes shift, sharp emission, and long luminescent lifetime in the microsecond to millisecond range.6 In 

order to determine if lanthanide based materials are better for biological imaging type applications, it is 

important to compare the lanthanide materials to traditional organic dyes that are used.  Traditional 

organic dyes have broad excitation and emission spectra as shown in Figure 5.  This is due to the π-π* 

transitions of the organic dyes30.  This allows for a broader range of excitations to be used during studies, 

but these organic dyes have relatively short luminescence lifetimes in the nanosecond range.  This may 

also interfere with the cell background fluorescence during measurements, as part of the emission and 

excitation spectra could fall in the blue to green range of normal cell background fluorescence.  

Lanthanide complexes, on the other hand, have lifetimes that are relatively much longer than the cell 

background fluorescence with reported lifetimes in the millisecond (msec) range.  Thus, time-gated 

measurements can be used to study cells of interest with lanthanide based luminescent tracers (Figure 6).  

Time-resolved luminescence produces sensitive detection with a higher signal-to-noise ratio allowing for 

shorter and more accurate read times. 
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Figure 6. Absorption (left) and emission (right) spectra of a “typical” organic dye. 
 

In this time-resolved luminescence, there is an initial burst of light that may cause not only the lanthanide 

complex, but also the cell components to emit radiation.  Once the short-lived cell background completely 

decays, a delayed window is opened.  This window then only has the luminescence of the lanthanide 

complex used.  This allows for the measurement and observation of cells of interest with high accuracy.  

These advantages make lanthanide complexes ideal candidates for luminescent tracer studies as they have 

a much higher signal to noise ratio compared to those observed for traditional organic dyes.  

1.4 INTRODUCTION TO RESEARCH  

Given the advantages of lanthanide based luminescent materials, the De Silva group is interested in the 

synthesis and characterization of novel lanthanide (III) complexes that can be used for biological 

applications such as imaging and new immunoassay technologies with the ultimate goal of creating 

materials that can be used for in vivo real-time diagnostics.  Many octacoordinated and nonacoordinated 

chelator complexes  of Eu (III)  and Tb (III) have been developed and characterized in the form Ln(β-

diketonate)3L where Ln= Eu (typically),Tb ;β-diketonate= thenoyltrifluoroacetone (tta),4,4,4-trifluoro-1-

phenyl-1,3-butanedione(btfac),1,1,1,5,5,5-hexafluoro-2,4-pentanedionate(hfac),2, 4-pentanedione (acac), 

and dibenzoylmethane (DBM), 1-benzoylacetone (BA);  and L= an N-donor ligand such as  2,4,6-tri(2-

pyridyl)-1,3,5-triazine (tptz),1,10-phenanthroline(phen),and 4,7-dimethyl,1,10-phenanthroline 
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(dmphen).31,32  These complexes have had coordination numbers of 8 or 9, and have had molecular 

geometries in the shape of  capped antiprisms and square antiprisms.  The complexes of europium have 

shown bright luminescent characteristics with impressive lifetimes in the microsecond time scale. 

Fluorinated β-diketonates are commonly used due to the electronegativity of the F- ion.  All previously 

made complexes have been characterized by methods such as single crystal X-ray diffraction, UV-Vis,  

FT-IR, 1H NMR,  steady state and time-resolved fluorescence spectroscopy, elemental analysis, and 

luminescent quantum yield measurements.  Previous high quantum yields have been suggestive of high 

ligand to metal transfer efficiencies, and “antenna” effects have also been suggested.  Due to the intense 

characteristic 615 nm emission peak of Eu3+ luminescence, it has been a main focus of much work with β-

diketonate systems to take advantage of the luminescence being outside the cell background fluorescence, 

while calculations involving Tb3+ systems with β-diketonates have been less promising.  This is due to a 

higher energy gap triplet state needed by the “antenna” ligand to flow to the triplet state of the Tb3+ ion.  

One area less explored by the De Silva group has been the use of IR emitting or magnetic lanthanides 

with the β-diketonate systems to make chelators with other potential applications.  

This research is focused on the development of novel lanthanide β-diketonate complexes and solgel 

materials based on the 4, 4, 4-trifluoro-1-phenyl-1,3-butanedione (btfa) and 4,7-dimethyl,1,10-

phenanthroline (dmphen) ligand system for potential biological imaging applications.  The chelator 

complexes will have the common formula, Ln(β-diketonate)3dmphen where Ln= Eu3+, Er3+, Tb3+, Ho3+, 

Tm3+, and Yb3+. Eu3+ and Tb3+ complexes emit visible light.  Er3+, Ho3+, Tm3+, and Yb3+ complexes have 

near-infrared emission characteristics, and Gd3+, is magnetic.  The new complexes and europium sol gel 

materials are characterized by UV-Vis spectroscopy, steady state, and time-resolved fluorescence 

spectroscopy, elemental analysis, and single crystal X-ray-diffraction technique.  The luminescent 

lifetimes and quantum yields were calculated for the Eu3+ complex.  Luminescence lifetime for the Ho3+ 

was also evaluated.  The luminescence of the dmphen complexes, quantum yield, and lifetime decays 

were compared the aqua complexes, while new non-visible light emitting lanthanide β-diketonate 
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complexes were characterized to find new potential applications in biological imaging and beyond. 

1.5 PROJECT DESIGN  

1.5.1 Lanthanide Metal Targets  

The lanthanide metals used in this work are Eu3+, Er3+, Gd3+, Ho3+,Tb3+, Tm3+, and Yb3+.  The lanthanides 

chosen range from visible to near infrared emitters.  Gd3+ was chosen for its magnetic properties. 

1.5.2 Chelator Ligands 

The chelator ligands chosen to synthesize the new lanthanide β-diketonates are 4,4,4-trifluoro-1-phenyl-

1,3-butanedione and 4,7-dimethyl,1,10-phenanthroline.  Table 3 shows the structures of the ligands 

chosen for this project along with examples of the ligands bound to Eu3+. 
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Table 3. Molecular structures and example lanthanide compounds of the β -diketonate and N-donor 

ligands used in this study. 
 

 

Hbtfa 

 

 

 
 
Dmphen 

 
 

 

 

 

1.5.3 Synthesis of Lanthanide β-diketonates 

The β-diketonate complexes in this research are easily made using the general reaction using 

lanthanide(III) chloride or nitrate salts (Scheme 1).  The coordination of three β-diketonate ligands to the 

lanthanide center is controlled by the stoichiometry between the β-diketonate ligand and the 

lanthanide(III) chloride or nitrate.  
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Scheme 1. General Reaction Scheme for the Synthesis of Eu(btfa)3(H2O)2 

1.5.4 Attachment of N-donor ligands  

Once the Ln(β-diketonate)3(H2O)2 complex has been synthesized, it could be used for luminescent studies 

and for the preparation of sol gel materials.  However, there are some potential pitfalls in that the water 

could cause some quenching effects due to some of the vibrational states matching the states of the 

luminescent lanthanide.  This interference would reduce the effectiveness of the lanthanide chosen and 

provide a luminescence that is much lower than expected.  To avoid these potential quenching effects, 

another neutral ligand is coordinated to the Ln(β-diketonate)3(H2O)2 to replace the water ligand. To 

maintain charge balance, this ligand would have to be neutral.  This ligand would have nitrogen atoms 

with lone pairs of electrons to chelate the lanthanide complex.  Like the H2O ligand, this new ligand 

would be neutral, and is referred to as an N-donor ligand.  A bidentate version of this type of ligand is 

used to replace the coordinated water in the lanthanide complex, and may also contribute to the overall 

luminescent quantum yield.  Coordinated H2O ligands are substituted by this N-donor ligand to form the 

Ln(β-diketonate)3N-donor complex (Scheme 2) 
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Scheme 2. General reaction scheme for the synthesis of a Ln(β-diketonate)3(N-donor Ligand) complex 
 
 
1.5.5 Silica Sol Gel Materials 

Because many of the lanthanide based materials that were synthesized are not water dispersible, a way to 

make this happen is to encapsulate them with a material that is able to go into the aqueous environment.33-

39 This is a major problem of using β-diketonates for biological imaging.  To address this issue, silica sol 

gels can be synthesized by doping the above synthesized chelators in a silica matrix that has been 

prepared using materials like tetraethylorthosilicate (TEOS) and a surfactant to start the process.  A silica 

sol gel is made up of the luminescent chelator encapsulated in a silica matrix, with possible surface 

attachment for the targeting of specific cells (Figure 7). 
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Figure 7. A representative chelator-doped silica solgel 

 

Silica sol gels have a number of advantages over the pure lanthanide β-diketonate chelator complexes.  

The silica matrix is bio-compatible.  This means that there is no inherent harm in using it as a means of 

encasing the chelator complex for use in in vitro or in vivo studies.  Silica is also water dispersible, which 

means that the sol gels can be used for biological assays in an aqueous environment.  They are less prone 

to leakage, and so the toxic materials inside do not escape into the biological environment.  As mentioned 

previously, the surface of these nanoparticles can then be functionalized so that they are able to target 

cells of interest while still providing the benefits of the doped material.  This part of the research focuses 

on the development of these sol gel materials, while characterizing them in comparison to their pure 

chelator counterparts.  
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SUMMARY 

 

Three major areas of lanthanide based material research include applications in optical devices, bio 

immunoassays, and cellular imaging.  Lanthanides are attractive candidates for biological imaging 

technologies due to their superior luminescent properties arising from electronic structure, tunability, 

lanthanide-centered luminescence, and longer luminescent lifetimes compared to traditional dyes.  β-

diketonate adducts of lanthanide materials are simple to synthesize, have lower costs, and provide a high 

enough triplet state to act as an effective antenna in lanthanide-centered luminescence.  While these 

properties make them attractive, concerns about the stability and toxicity of the materials remain a 

challenge in their utilization.  The use of doping and biocompatible sol gel materials has been proposed 

for delivery of chelators to targeted cells in immunoassays.  Despite the challenges and due to the 

properties that make them excellent luminescent materials, the De Silva group has characterized many 

different lanthanide   β-diketonates of the form Ln(β-diketonate)3L where Ln= Eu (typically), Tb ;β-

diketonate=(tta)(btfac),(hfac),(acac), and (DBM),(BA); and L=(tptz),1,10-phenanthroline(phen),and 

(dmphen). Due to the intense characteristic emission peak of Eu3+ luminescence, it has been a main focus 

of much work with β-diketonate systems, while calculations involving Tb3+ systems has been less 

promising.32 

This research is focused on the development of novel lanthanide β-diketonate complexes and sol gel 

materials based primarily on btfa and dmphen ligands.  Most complexes will have the common formula, 

Ln(β-diketonate)3dmphen where Ln= Eu3+, Er3+, Tb3+, Ho3+, Tm3+, and Yb3+. Eu3+ and Tb3+ with some 

lanthanides chosen for non-visible light luminescence properties.  The new complexes and sol gels are 

characterized by UV-Vis, steady state, and time-resolved luminescent spectroscopy, FTIR, elemental 

analysis, and single crystal X-ray-diffraction studies.  The luminescent lifetimes and quantum yields were 

calculated.  The luminescence measurements of dmphen complexes, quantum yield measurements, and 

lifetime decays of the Eu3+ were compared the aqua complexes, while new, non-visible light emitting 

lanthanide β-diketonate complexes were characterized to find new potential applications. 
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CHAPTER 2: METHODS, MATERIALS, AND CALCULATIONS  
 

2.1 MATERIALS  

2.1.1 Lanthanide Materials    

The lanthanide metals used for the project were Eu3+, Er3+, Gd3+, Ho3+, Tb3+, Tm3+, and Yb3+.  The metal 

salts were purchased through Fisher Scientific and were the hydrated form of the lanthanide chloride or 

lanthanide nitrate.  All lanthanide materials were dried and kept in a desiccator until used without further 

purification.  

2.1.2 β-diketonate and N-donor Ligands 

β-diketonate ligands chosen for this project was 4,4,4-trifluoro-1-phenyl-1,3-butanedione (Hbtfa).  These 

ligands act as the primary antenna.  The N-donor ligand used in this project was 4,7-dimethyl,1,10-

phenanthroline (dmphen).  Dmphen is the neutral ligand that will replace the H2O in the Ln(β-

diketonate)3(H2O)2 complexes.  All ligands were purchased from Sigma-Aldrich and kept in a desiccator 

until used without further purification. 

2.1.3 Solvents and Other Materials  

The solvents used in this project were used for various stages of synthesis, analysis and crystallization of 

the complexes.  The solvents chosen were acetone, ethanol, chloroform, cyclohexane, methylene chloride, 

and nanopure H2O with a resistivity of 18.2 MΩ from a Barnstead NANOpure Diamond system with 0.2 

μm hollow fiber filter and argon purged for 1 hr prior to use.  The solvents excluding the nanopure water 

were purchased from Fisher and used without further purification.  Other reagents and materials used for 

this project were tetraethyl orthosilicate (TEOS), triton-x 100, NaOH which were purchased from Fisher 

and used without further purification. 
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2.2 METHODS 

2.2.1 Synthesis   

2.2.1.1 General Reactions and Synthesis 

All of the lanthanide chelator complexes made follow a general two step reaction procedure. In this 

method, a 1:3 stoichiometric ratio of lanthanide (Ln= Eu3+, Er3+, Gd3+, Ho3+, Tb3+, Tm3+, and Yb3+) to β-

diketonate was maintained and then the resulting aqua complex was reacted with the N-donor ligand 

(dmphen)  to form the final complex in a 1:1 stoichiometric ratio.  Scheme 3 and Scheme 4 show the 

general reaction schemes of the Ln(β-diketonate)3(H2O)2 chelators, and the Ln(β-diketonate)3dmphen 

chelators using Eu3+ as the central lanthanide. 

 

Scheme 3. General Reaction Scheme for the Synthesis of Ln(β-diketonate)3(H2O)2 
 
 

 
Scheme 4. General reaction scheme for the synthesis of Ln(β-diketonate)3(N-donor Ligand) complex 
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2.2.1.2 Synthesis of Precursor Ln(β-diketonate)3(H2O)2 Chelators 

Hbtfa (648 mg,3 mmol) and NaOH (120 mg ,3 mmol) were added to Ar purged water (15 mL) and stirred 

until clear.  This solution was added dropwise to a second solution of EuCl3.6H2O (366 mg,1 mmol) in Ar 

purged water (15mL).  The reaction mixture was stirred at 60° C for 30 mins and then stirred at room 

temperature for an additional 2.5 hours. The precipitate was collected by vacuum filtration, washed with 

water (500 mL) and dried on the filter paper.  An identical preparative and purification procedure was 

used for the synthesis of Er3+, Gd3+, Ho3+, Tb3+, Tm3+, and Yb3+ complexes and is summarized in Table 4. 

 

Table 4. Summary of the Synthesis of Ln(btfa)3(H2O)2 Complexes 

 

 Er Ho Gd Tb Tm Yb 

Ln (mg) 

 

274 

(ErCl3.H2O) 

264 

(GdCl3
.H2O)  

351 

(HoNO3
.H2O) 

373  

(TbCl3
.6H2O) 

401  

(TmCl3
.H2O) 

387 

(YbCl3
.6H2O) 

Hbtfa (mg)  648 648 648 648  648 648 

NaHO 

(mg) 

120 120 120 120 120 120 

 

 

2.2.1.3 Synthesis of Ln(β-diketonate)3dmphen  Chelators 

Eu(btfa)3(H2O)2 ((83.3 mg, 0.1 mmol) was dissolved in acetone (15 mL).  To this solution, dmphen 

dissolved ((22.6 mg,0.1 mmol) in acetone (15 mL) was added.  The reaction mixture was heated with 

stirring at 45° C for 30 mins and stirred at room temperature for 24 hrs.  The reaction mixture was then 

recrystallized to obtain the product, Eu(btfa)3dmphen. This procedure was repeated for the synthesis of 

Er3+, Gd3+, Ho3+, Tb3+, Tm3+, and Yb3+ complexes and is summarized in Table 5. 
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Table 5. Summary of Ln(btfa)3(H2O)2 to Ln(btfa)3dmphen Synthesis 

 

 Er  Ho Gd Tb Tm Yb 

Ln (mg) 84.8 84.6 83.9 84 85 85.4 

dmphen (mg) 22.6 22.6 22.6 22.6 22.6 22.6 

 

 

2.2.1.4 Synthesis of Eu(btfa)3dmphen Solgel Materials 

After making the Ln(β-diketonate)3dmphen chelators, the synthesis of silica based sol gel materials was 

attempted using four different processes.  Solgel materials were made using acid catalysis, 

microemulsion, Stöber process, and the synthesis of a mixed lanthanide material sol gel. 

2.2.1.4.1 Synthesis of Eu(btfa)3(H2O)2 and Eu(btfa)3dmphen Silica Sol Gels by Acid Catalysis 

Eu(btfa)3(H2O)2 or Eu(btfa)3dmphen (100 mg) was added to a solution of nanopure H2O (1.6 mL) and 

TEOS (4.5 mL) with stirring.  Glacial acetic acid (9 mL) was added to the reaction mixture and shaken 

for 30s.  The reaction mixture was reacted at room temperature for 30 mins with stirring.  The sol gel 

material was centrifuged and washed with EtOH three times.  The particles were air dried and dispersed 

in nanopure H2O with sonication for 10 mins. 

2.2.1.4.2 Synthesis of Eu(btfa)3(H2O)2  and Eu(btfa)3dmphen Sol Gels by Microemulsion 

Eu(btfa)3(H2O)2 or Eu(btfa)3dmphen (30 mg) were dissolved in hexanol (2.30 mL).  To this mixture, 

nanopure H2O (1.10 mL), cyclohexane (9.31 mL), TEOS (200 μL), and triton x-100 (2.25 mL) were 

added and stirred until clear.  To this mixture, a second solution of cyclohexane (9.31 mL), 30% NH4OH 

(200 μL), and triton x-100 (2.25 mL) were added and the reaction mixture was stirred at room 

temperature for 24 hrs.  The reaction mixture was stirred at room temperature for 24 hours.  The silica 
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particles were precipitated using acetone (70 mL).  The particles were centrifuged at 4750 g for 10 mins 

and then washed with EtOH three times.  The particles were air dried and dispersed in nanopure H2O with 

sonication for 10 mins.  Two other versions followed the same procedure with the Eu chelator being first 

dissolved in MeOH or EtOH (1.5 mL). 

2.2.1.4.3 Synthesis of Eu(btfa)3(H2O)2  and Eu(btfa)3dmphen Silica Sol Gels by Stöber Process40-42 

Sol gel materials were synthesized using a modified Stöber process.  Eu(btfa)3(H2O)2  or Eu(btfa)3dmphen 

(30 mg ) was added to a solution of TEOS (2 mL)  in EtOH (5 mL).  To this solution, EtOH (25 mL) was 

added.  30% NH4OH (1.5 mL) was added with stirring.  The reaction mixture was stirred at room 

temperature for 24hr, and then sonicated for 10mins.  The nanoparticles were centrifuged at 4750 g for 10 

mins and then washed with EtOH with the procedure being repeated three times.  The particles were air 

dried and dispersed in nanopure water with sonication. 

Using procedures similar to the above synthesis, an in-situ reaction to make Eu(btfa)3(H2O)2 or 

Eu(btfa)3dmphen chelator complexes that would then be incorporated into a silica nanomaterial were 

performed.  In place of the Eu(btfa)3(H2O)2 (30 mg), btfa(23.2 mg) and EuCl3.6H2O (13.2 mg) were added 

to the TEOS (2 mL)  in EtOH (5 mL).  In place of Eu(btfa)3dmphen (30 mg), btfa (19 mg), EuCl3.6H2O 

(10.7 mg), and dmphen (6.6 mg) were added to the TEOS (2 mL) in EtOH (5 mL). 

2.2.2 Instrument Methods and Procedures 

Methods used to characterize both chelators and sol gel materials include ICP-OES, UV-vis spectroscopy, 

Fluorescence spectroscopy, and carbon analysis.  Sol gels were also characterized using STEM 

microscopy.  Other characterization methods such as single crystal X-ray diffraction and lifetime studies 

were performed using other collaborators.  

2.2.2.1 Varian VistaPro ICP-OES 

2.2.2.1.1 Preparation of Lanthanide Standards and QC  

A 100 mL stock of 100 ppm Eu3+, Er3+, Gd3+, Ho3+, Tb3+, Tm3+, and Yb3+ was prepared by weighing each 

lanthanide chloride or nitrate (Table 6) and diluting to volume with 10% aqua regia.  
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Table 6. Preparation Table for Mixed Lanthanide 100 ppm Stock Solutions 
 

Element   FW (nitrate or 

chloride) (g) 
Element Weight 

(g) 
Amount added  to 

Flask (g) 

Eu 258.94  151.964  0.01700 g 

Er 273.64  167.259  0.01636 g 

Gd 263.61  157.25  0.016764 g 

Ho 350.95  164.93033  0.0212787 

Tb 344.94  158.92535  0.021705  

Tm 354.95  168.93422  0.021011  

Yb 387.48  173.045  0.022392  

 
 

 

From the 100 ppm stock solution, standards of 2 ppm, 4 ppm, 6 ppm, 8 ppm, and 10 ppm were prepared 

according to Table 6 and diluted to volume with 10% aqua regia.  In addition, a 10% aqua regia blank and 

5 ppm QC were prepared according to Table 7 and diluted to volume with 10% aqua regia. 

 

 

 

Table 7. Preparation Table for Mixed Lanthanide Standards and QC 
 

Solution Type Prepared  ppm solution prepared  mL of 100 ppm Stock mL 10% aqua 

regia 

Blank 0.0  0 100 

Standard 1 2.0  2 98 

Standard 2 4.0 4 96 

Standard 3 6.0 6 94 

Standard 4 8.0 8 92 

Standard 5 10.0 10 90 

QC 5.0 5 95 
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2.2.3 Carbon Analysis 

Carbon analysis of the lanthanide samples was performed using the LECO SC632 carbon/sulfur analyzer. 

30 mg +/- 5 mg of sample was burned for analysis and compared to the calculated values. 

2.2.4. Fluorescence spectroscopy 

Fluorescence Spectroscopy of the Eu(btfa)3dmphen chelator and chelator doped solgel material were 

performed using a Perkin Elmer LS-55 fluorescence spectrometer with a 5 nm slit width using quartz 

cuvettes and a scan speed of 200 nm/min.  The excitation wavelength was 350 nm unless otherwise noted 

in data and results.  Eu(btfa)3dmphen chelator samples were prepared by making a 1 × 10-6 M 

concentration of sample in methylene chloride.  Solgel material samples were prepared by dispersing 2 

mg of solgel in 2 mL water.  The solgels were sonicated at room temperature for 10 minutes prior to the 

spectra being collected. 

2.2.5. UV-Vis Spectroscopy  

UV-vis Spectroscopy of the Ln(btfa)3dmphen chelators and chelator doped solgel materials were 

performed using Agilent 8453 UV-visible spectrometer.  All samples were read from 200 nm to 700 nm 

using quartz cuvettes.  Ln(btfa)3dmphen chelator samples were prepared by making a 1 × 10-6 M 

concentration of sample in methylene chloride.  Solgel material samples were prepared by dispersing 2 

mg of solgel in 2 mL water.  The solgels were sonicated at room temperature for 10 minutes prior to the 

spectra being collected.  UV-visible spectra were recorded on an Agilent 8453 UV-visible spectrometer.  

Samples were prepared by dispersing 2 mg of the nanoparticle samples in 2 mL of solvent (water or 

dichloromethane). Nanoparticle samples were sonicated for 10 minutes at room temperature before 

collecting the spectra.  The absorption spectra were collected from 200 nm to 700 nm using quartz 

cuvettes.  Photoluminescence spectra were collected using a Perkin Elmer LS-55 fluorescence 

spectrometer with a 5 nm slit width using quartz cuvettes.  The excitation wavelength was 350 nm.  The 

emission spectra were collected from 200 nm to 700 nm using a scan speed of 200 nm/minute. 
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2.3. CALCULATIONS  

2.3.1 Luminescent Quantum Yield Measurements 

Luminescent quantum yield is the number of photons emitted vs the photons that are absorbed by a 

fluorescing material and in this case is a representation of efficiency. Luminescent quantum yield 

measurements were performed using a standard dye. 

 

 

where Abs, A and n are the absorbance at λ max, integrated area of the emission band of interest, and the 

refractive index of the solvent, respectively. Subscripts R and S refer to the reference and the sample, 

respectively 
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CHAPTER 3: RESULTS AND DISCUSSION OF Ln(BTFA)3DMPHEN CHELATORS 

 

3.1. SYNTHESIS   

All of the Ln(btfa)3dmphen synthesized are in powder form with color that is darker than the 

corresponding Ln(btfa)3(H2O)2 ranging from the off-yellow Eu(btfa)3dmphen, Gd(btfa)3dmphen, 

Tb(btfa)3dmphen, Tm(btfa)3dmphen, and Yb(btfa)3dmphen, to the pink color of Er(btfa)3dmphen and 

Ho(btfa)3dmphen.  All Ln(btfa)3dmphen chelators are soluble in methylene chloride and chloroform and 

produce an amber solution when dissolved.  When exposed to UV light, Eu(btfa)3dmphen emits vivid red 

light characteristic of Eu3+ (Figure 8).  Ho(btfa)3dmphen produces a slight red emission and 

Tb(btfa)3dmphen dimly glows the characteristic green light of Tb3+. 

 

 
Figure 8.  Eu(btfa)3dmphen under visible and UV light conditions 

 

3.2 X-RAY CRYSTAL STRUCTURES 

3.2.1 General  

Ln(btfa)3dmphen chelators were slowly crystallized from a saturated acetone solution at room 

temperature for two to three weeks to produce pale yellow crystals.  Crystals suitable for single crystal X-

ray diffraction were collected and analyzed.  The resolved crystal properties and parameters are 

summarized in Table 8-11. 
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Table 8.  Resolved Ln(btfa)3dmphen crystal characteristics 

Ln Eu Er Gd 

Empirical 

formula 
C44H30F9N2O6Eu C44H30F9N2O6Er C44 H30 F9 N2 O6 

Gd 

F.W 1005.66 1011.96 1001.95 

Temp ( K) 100(2)  293(2) 293(2) 

Wavelength (A) 1.54178 0.71073 0.71073 

Crystal system, 

space group   
Monoclinic,  C2/c Monoclinic,  C2/c  Monoclinic,C2/c  

Unit cell 

dimensions 
a=36.6051(10)A, alpha 

90° 
b=10.8940(3)A,beta 

111.9080(10)° 
c=22.261(6)A,gamma 

90° 

a=36.422(7)A alpha 

90° 
b=11.045(2)A,beta 

112.61(3)° 
c=22.290(5)Agamm

a 90° 

a=36.950(7)Aalpha 

90° 
b=10.975(2)A,beta 

112.51(3)° 
c=22.469(5)Agamma 

90° 

Volume (A^3) 8236.2(4) 8278(3) 8417(3) 

Z 8 8  8 

Calculated 

density 

(Mg/m^3)  

1.622  1.624  1.581 

Absorption 

coefficient 

(mm^-1)  

11.717   2.113 1.660 
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F(000) 4000 4016 3984 

Crystal size 

(mm) 
0.45 x 0.29 x 0.20  0.24 x 0.12 x 0.12 0.23 x 0.08 x 0.08 

Theta range for 

data collection° 
2.60 to 66.97  2.69 to  25.05   2.92 to 25.05 

 Limiting 

indices 
-43<=h<=43,-

10<=k<=12,-26<=l=26 
-43<=h<=43, -

12<=k<=13, -

26<=l<=26 

-44<=h<=40,-

12<=k<=13,-

26<=l<=26 

Reflections 

collected / 

unique 

44146/ 7190 

[R(int)=0.0590] 
 34703 / 7331 

[R(int)=0.0351] 
24023 /7413 

[R(int)=0.0571] 

Completeness to 

theta =25.05 
98.1 %  99.8 %  99.5 % 

Absorption 

correction  
Numerical  None None  

Max. and min. 

transmission         
0.1985 and 0.0770  0.7856 and 0.6310  0.8787 and0.7014 

Refinement 

method 
Full-matrix least-

squares  on F^2 
Full-matrix least-

squares on F^2 
Full-matrix least-

squares on F^2 

Data / restraints 

/ parameters   
7190 / 0 / 561 7331 / 0 / 559 7413 / 0 / 559 

Goodness-of-fit 

on F^2      
 1.031 1.109  1.096 

Final R indices 

[I>2sigma(I)]  
 R1 = 0.0401, wR2 = 

0.1015 
 R1 = 0.0474, wR2 

=0.1212  
R1 =0.0598, 

wR2=0.1652 
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R indices (all 

data)     
R1 = 0.0432, wR2 = 

0.1039 
R1 = 0.0545, wR2 = 

0.1278  
R1 = 0.0709, 

wR2=0.1804 

Largest diff. 

peak and hole  
 1.255 and  -0.802 

e.A^-3 
 2.183 and -1.001 

e.A^-3  
2.045 and -1.157 

e.A^-3 

 

 

 

 

Table 9.  Resolved Ln(btfa)3dmphen crystal characteristics 

Ln Ho Tb Tm Yb 

Empirical 

formula 
C44H30 F9 N2 O6Ho  C44H30F9N2O6Tb C44H30F9N2O6Tm C44H30F9N2O6Yb 

F.W 1018.63 1003.62  1013.63 1026.74  

Temp ( K) 293(2)  293(2)  293(2) 293(2)   

Wavelength (A)  0.71073  0.71073 0.71073  0.71073 

Crystal system, 

space group 
Monoclinic, C2/c Monoclinic, C2/c Monoclinic, C2/c Monoclinic,C2/c  

Unit cell 

dimensions      
a=36.473(7)A,alpha 

90° 
b=11.029(2)A,beta 

112.55(3)° 
c=22.303(5)A,gamma 

90° 

a =36.814(7)A,alpha 

90° 
b=10.992(2)A,beta 

112.58(3)° 
c=22.438(5)A,gamma 

90° 

a=36.377(7)A, alpha 

90° 
b=11.077(2)A, beta, 

112.81(3)° 
c=22.309(5)A,gamma 

90 ° 

a=36.245(7)A,alpha 

90° 
b=11.091(2)A,beta 

112.86(3)° 

c=22.239(4)A,gamma 

90 ° 

Volume (A^3) 8286(3) 8384(3) 8286(3) 8238(3) 

 Z 8  8   8   8 

Calculated 1.633 1.590 1.625  1.656 
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density 

(Mg/m^3) 

Absorption 

coefficient 

(mm^-1) 

2.001 1.772  2.227 2.362 
 

F(000) 4032 3992 4024 4056 

Crystal size 

(mm) 
0.22 x 0.12 x 0.09  0.33 x 0.08 x 0.05 0.31 x 0.07 x 0.05 0.26 x 0.11 x 0.10 

Theta range for 

data collection° 
2.93 to 25.05 3.33 to 25.05  2.70 to 25.05 2.60 to25.05 

Limiting indices -43<=h<=40,-

13<=k<=11,-

26<=l<=26 

-43<=h<=43,-

11<=k<=13, 
-26<=l<=26 

-43<=h<=43, -

13<=k<=13, -

26<=l<=26 

-41<=h<=43, -

13<=k<=13, -

26<=l<=24 

Reflections 

collected/unique 
31508 / 7328 

[R(int)=0.0347]  
34616 / 7387 

[R(int)=0.0529]  
34657 / 7344 

[R(int)=0.0599]  
31690 / 7294 

[R(int)=0.0499]  

Completeness to 

theta=25.05 
99.7 %   99.6 %   99.9 %  99.7 %  

Absorption 

correction 
None   None  None  None  

Max. and min. 

transmission       
 0.8405 and  0.6673  0.9166 and 0.5925   0.8968 and 0.5452  0.7981 and 0.5787  

Refinement 

method 
Full-matrix least-

squares on F^2  
Full-matrix least-

squares on F^2 
Full-matrix least-

squares on F^2 
Full-matrix least-

squares  on F^2 

Data / restraints 

/parameters   
7328 / 0 /559 7387 / 0 /560 7344 / 0 / 559 7294 / 0 /559 

Goodness-of-fit 1.144 1.014 1.127  1.111 



 

 
 

3
2
 

on F^2      

Final R indices 

[I>2sigma(I)]  
R1 = 0.0396, wR2 = 

0.0975 
 R1 = 0.0536, wR2 = 

0.1408  
 R1 = 0.0576, wR2 

=0.1476  
R1 =0.0423, 

wR2=0.0977 

R indices (all 

data) 
R1 = 0.0493, wR2 = 

0.1072 
 R1 = 0.0637, wR2 = 

0.1508 
R1 = 0.0713, wR2 

=0.1594  
R1 = 0.0555, 

wR2=0.1090 

Largest diff. 

peak and hole  
 2.106 and -0.950 e.A^-

3 
1.704 and -1.145 e.A^-

3 
2.255 and -1.286 e.A^-

3 
2.361 and -0.968 

e.A^-3 
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Table 10. Bond Lengths for Ln(btfa)3dmphen chelators 

Ln Eu Er Gd Ho Tb Tm Yb 

Bond 

Length 

(A) 

Eu-O(1) 

2.384(2) 
 
Eu-O(2) 

2.365(3) 

 
Eu-O(3) 

2.344(3) 

 
Eu-O(4) 
2.388(3) 
 
Eu-O(5) 

2.348(3) 
 
Eu-O(6) 
2.344(3) 
 
Eu-N(1) 

2.560(4) 

 
Eu-N(2) 

2.607(3) 

 Er-O(1)                       

2.335(3)  
 
Er-O(2)                       

2.297(4)  

 
Er-O(3)                       

2.300(4) 

 
 Er-O(4)                       

2.325(4) 
 
Er-O(5)                       

2.281(4)  
 
 Er-O(6)                       

2.300(4)  
            
Er-N(1)                       

2.531(4)  

           
Er-N(2)                       

2.483(5)  

 Gd-O(1)                       

2.371(4)  
 
Gd-O(2)                       

2.356(5) 

 
Gd-O(3)                       

2.337(5)  

             
Gd-O(4)                       

2.373(5) 
 
Gd-O(5)                     

2.326(5)  
 
Gd-O(6)                       

2.347(5)  
             
 Gd-N(1)                       

2.578(5)           

              
Gd-N(2)                       

2.538(6)  

 Ho-O(1)                       

2.340(3)  
  
Ho-O(2)                       

2.300(3)  

 
Ho-O(3)                       

2.306(3)  

 
Ho-O(4)                       

2.333(3)  
 
Ho-O(5)                       

2.294(3)  
             
Ho-O(6)                       

2.307(4)  
            
Ho-N(1)                       

2.544(4) 

           
Ho-N(2)                       

2.501(4)  

 Tb-O(1)                       

2.363(4)  
 
Tb-O(2)                       

2.335(4)  

 
Tb-O(3)                       

2.322(4) 

 
Tb-O(4)                       

2.352(4) 
 
Tb-O(5)                       

2.312(4)  
             
Tb-O(6)                       

2.329(5)  
            
 Tb-N(1)                       

2.574(5)             

  
Tb-N(2)                       

2.519(5)  

Tm-O(1)                       

2.320(5) 
 
Tm-O(2)                       

2.275(5) 

 
Tm-O(3)                       

2.293(5)  

 
Tm-O(4)                       

2.312(5) 
 
Tm-O(5)                       

2.265(5)  
                      

Tm-O(6)                       

2.290(6)  
                         
Tm-N(1)                       

2.517(6)  
           

Tm-N(2)                       

2.475(6)           

Yb-O(1)                       

2.310(3)  
  
Yb-O(2)                       

2.261(4)  

 
Yb-O(3)                       

2.277(4)  

 
Yb-O(4)                       

2.295(4)  
 
Yb-O(5)                       

2.255(4)  
             
Yb-O(6)                       

2.286(4)  
            
Yb-N(1)                       

2.510(4)             
            

Yb-N(2)                       

2.474(5)          
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Table 11. Bond Angles for the Ln(btfa)3dmphen chelators 

Eu Er Gd Ho Tb Tm Yb 

O(3)-Eu-O(6) 
80.64(10) 

O(3)-Er-O(6)                 
78.91(15)   

O(3)-Gd-O(6)                  
80.14(18)  

O(3)-Ho-O(6)                  
79.17(13)      

O(3)-Tb-O(6)                  
79.88(16)    

O(6)-Tm-O(3)                  
78.35(19) 

O(3)-Yb-O(6)                  
78.49(14) 

O(3)-Eu-O(5) 
140.75(10) 

O(5)-Er-O(3)               

142.01(14) 
O(5)-Gd-O(3)                
140.81(18)  

O(5)-Ho-O(3)                 
141.89(12) 

O(5)-Tb-O(3)                 
140.97(15)  

O(5)-Tm-O(3)                 
142.3(2) 

O(5)-Yb-O(3)                 
143.03(13)  

O(6)-Eu-O(5) 
73.40(12) 

O(5)-Er-O(6)                 
 74.59(17)   

O(5)-Gd-O(6)                  
73.53(19)  

O(5)-Ho-O(6)                  
74.45(14)     

O(5)-Tb-O(6)                  
73.84(17)        

O(5)-Tm-O(6)                  
75.2(2)      

O(5)-Yb-O(6)                  
75.23(15)  

O(3)-Eu-O(2) 
78.28(9) 

O(2)-Er-O(3)                  
77.84(14)    

O(3)-Gd-O(2)                  
77.47(18)   

O(2)-Ho-O(3)                  
77.82(12)  

O(3)-Tb-O(2)                  
77.39(15)     

O(2)-Tm-O(3)                  
77.80(19)      

O(2)-Yb-O(3)                 
 77.81(14)  

O(6)-Eu-O(2) 
75.55(10) 

O(2)-Er-O(6)                 
74.23(15)    

O(6)-Gd-O(2)                 
 75.03(19)    

O(2)-Ho-O(6)                  
74.51(13)    

O(6)-Tb-O(2)                 
 75.25(16)     

O(6)-Tm-O(2)                 
 73.8(2)   

O(2)-Yb-O(6)                 
73.63(14)  

O(5)-Eu-O(2) 
121.31(11) 

O(5)-Er-O(2)               
119.20(16)   

O(5)-Gd-O(2)                 
121.31(19) 

O(5)-Ho-O(2)                 
119.64(14)    

O(5)-Tb-O(2)                 
121.46(16)    

O(5)-Tm-O(2)                 
118.9(2)        

O(5)-Yb-O(2)                 
118.03(15)        

O(3)-Eu-O(1) 
141.38(9) 

O(3)-Er-O(1)                 
140.98(13)                

O(3)-Gd-O(1)                 
140.85(16)     

O(3)-Ho-O(1)                 
140.98(11)    

O(3)-Tb-O(1)                 
140.74(14)    

O(3)-Tm-O(1)                 
140.84(17)    

O(3)-Yb-O(1)                 
140.62(12)      

O(6)-Eu-O(1) 
112.89(10) 

O(6)-Er-O(1)                 
115.46(14)    

O(6)-Gd-O(1)                 
113.34(17)      

O(6)-Ho-O(1)                 
115.03(12)     

O(6)-Tb-O(1)                 
113.98(15)      

O(6)-Tm-O(1)                 
116.13(19)   

O(6)-Yb-O(1)                 
116.30(14)   

O(5)-Eu-O(1) 
76.97(10) 

O(5)-Er-O(1)                 
 76.04(14)  

O(5)-Gd-O(1)                  
77.33(17)  

O(5)-Ho-O(1)                  
76.17(12)  

O(5)-Tb-O(1)                 
 77.36(15)  

O(5)-Tm-O(1)                  
75.97(19)     

O(5)-Yb-O(1)                 
 75.36(13)   

O(2)-Eu-O(1) 
71.20(9) 

O(2)-Er-O(1)                  
72.47(13)   

O(2)-Gd-O(1)                  
71.63(16) 

O(3)-Ho-O(4)                  
72.70(12)   

O(2)-Tb-O(1)                  
71.77(14)  

O(2)-Tm-O(1)                  
72.69(17)         

O(2)-Yb-O(1)                  
72.77(13) 

O(3)-Eu-O(4) 
71.62(9) 

O(3)-Er-O(4)                 
 73.05(13)     

O(3)-Gd-O(4)                  
72.12(17)   

O(6)-Ho-O(4)                 

79.60(13)   
O(3)-Tb-O(4)                  
72.08(15) 

O(3)-Tm-O(4)                  
73.29(18) 

O(3)-Yb-O(4)                  
73.63(13)   
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O(6)-Eu-O(4) 
79.25(10) 

O(6)-Er-O(4)                  
79.71(15)    

O(6)-Gd-O(4)                  
80.25(19)  

O(5)-Ho-O(4)                 
 75.83(12)  

O(6)-Tb-O(4)                  
79.63(16)  

O(6)-Tm-O(4)                 
 79.7(2) 

O(6)-Yb-O(4)                  
79.92(15)   

O(5)-Eu-O(4) 
74.95(10) 

O(5)-Er-O(4)                 
 75.81(14)   

O(5)-Gd-O(4)                  
75.18(18)    

O(2)-Ho-O(4)                 
143.76(12)  

O(5)-Tb-O(4)                 
 75.16(15)  

O(5)-Tm-O(4)                 
 75.82(19)   

 O(5)-Yb-O(4)                 
 76.52(14) 

O(2)-Eu-O(4) 
143.32(10) 

O(2)-Er-O(4)                 
143.99(14)     

O(2)-Gd-O(4)                 
143.50(17)    

O(4)-Ho-O(1)                 
143.07(12) 

O(2)-Tb-O(4)                 
143.25(15)  

O(2)-Tm-O(4)                
 144.02(18)  

O(2)-Yb-O(4)                 
144.24(13)  

O(1)-Eu-O(4) 
144.41(9) 

O(4)-Er-O(1)                 
142.58(14)  

O(1)-Gd-O(4)                 
144.09(17)     

O(3)-Ho-N(1)                 
 76.76(12)   

O(4)-Tb-O(1)                 
144.19(16)    

O(4)-Tm-O(1)                 
142.31(18)     

O(4)-Yb-O(1)                 
142.02(13)   

O(3)-Eu-N(1) 
109.49(10) 

O(3)-Er-N(1)                  
76.70(14) 

O(3)-Gd-N(1)                 

77.68(17)  
O(6)-Ho-N(1)                
 147.57(13) 

O(3)-Tb-N(1)                  
77.32(15) 

O(3)-Tm-N(1)                 
 76.07(18)  

O(3)-Yb-N(1)                 
75.63(13)    

O(6)-Eu-N(1) 
145.82(11) 

O(6)-Er-N(1)                 
147.25(14)   

O(6)-Gd-N(1)                

149.04(18) 
O(2)-Ho-O(1)                  
72.23(11)   

O(6)-Tb-N(1)                 
148.52(16)   

O(6)-Tm-N(1)                 
146.19(18)  

O(6)-Yb-N(1)                 
146.06(14) 

O(5)-Eu-N(1) 
79.58(12) 

O(5)-Er-N(1)                
136.67(16)   

O(5)-Gd-N(1)                 
135.95(18)     

O(5)-Ho-N(1)                
 136.52(13) 

O(5)-Tb-N(1)                 
136.22(16) 

O(5)-Tm-N(1)                 
137.2(2)  

O(5)-Yb-N(1)                 
137.21(15) 

O(2)-Eu-N(1) 
137.73(10) 

O(2)-Er-N(1)                  
79.51(14)  

O(2)-Gd-N(1)                 

79.26(17)      
O(2)-Ho-N(1)                  
79.40(12)   

O(2)-Tb-N(1)                  
78.79(15)   

O(2)-Tm-N(1)                 
 79.45(19)      

O(2)-Yb-N(1)                  
79.70(14)   

O(1)-Eu-N(1) 
80.08(9) 

O(1)-Er-N(1)                  
73.51(13)     

O(1)-Gd-N(1)                 

73.49(16)   
O(1)-Ho-N(1)                 
 73.67(12)  

O(1)-Tb-N(1)                  
73.39(15)    

O(1)-Tm-N(1)                  
73.73(18)   

O(1)-Yb-N(1)                  
73.86(13) 

O(4)-Eu-N(1) 
73.75(10) 

O(4)-Er-N(1)                 
113.06(14)  

O(4)-Gd-N(1)                

112.57(17) 
O(4)-Ho-N(1)                 
112.96(12)    

O(4)-Tb-N(1)                 
113.01(15)  

O(4)-Tm-N(1)                 
113.02(19) 

O(4)-Yb-N(1)                
 112.75(14) 

O(3)-Eu-N(2) 
78.48(9) 

O(3)-Er-N(2)                 
110.97(15) 

O(3)-Gd-N(2)                 
110.43(18)      

O(3)-Ho-N(2)                 
110.70(12)  

O(3)-Tb-N(2)                 
110.46(16) 

O(3)-Tm-N(2)                 
111.15(19)   

O(3)-Yb-N(2)                 
111.17(15)    

O(6)-Eu-N(2) 
150.03(10) 

O(6)-Er-N(2)                 
146.55(15)  

O(6)-Gd-N(2)                 
146.28(19)   

O(6)-Ho-N(2)                 
146.50(13)    

O(6)-Tb-N(2)                 
146.45(16)  

O(6)-Tm-N(2)                
 147.0(2)       

O(6)-Yb-N(2)                 
146.91(14)    

O(5)-Eu-N(2) 
134.94(11) 

O(5)-Er-N(2)                  
79.71(17)     

O(5)-Gd-N(2)                  
79.57(19)  

O(5)-Ho-N(2)                 
 79.73(14)  

O(5)-Tb-N(2)                  
79.57(17)  

O(5)-Tm-N(2)                  
79.7(2)         

O(5)-Yb-N(2)                  
79.88(16)   
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6 

O(2)-Eu-N(2) 
79.32(9) 

O(2)-Er-N(2)                 
138.26(14)    

O(2)-Gd-N(2)                 
137.73(17)   

O(2)-Ho-N(2)                 
138.06(12)     

O(2)-Tb-N(2)                 
137.40(15)    

O(2)-Tm-N(2)                 
138.25(19)    

O(2)-Yb-N(2)                 
138.50(13)  

O(1)-Eu-N(2) 
73.15(9) 

O(1)-Er-N(2)                  
77.70(14)   

O(1)-Gd-N(2)                  
79.27(17)     

O(1)-Ho-N(2)                  
78.13(12)      

O(1)-Tb-N(2)                  
78.83(15)   

O(1)-Tm-N(2)                 
 77.20(18)   

O(1)-Yb-N(2)                  
77.07(14) 

O(4)-Eu-N(2) 
113.64(9) 

O(4)-Er-N(2)                  
73.44(15)  

O(4)-Gd-N(2)                 
 73.43(17)     

O(4)-Ho-N(2)                  
73.60(13)        

O(4)-Tb-N(2)                  
74.01(16)     

O(4)-Tm-N(2)                 

73.6(2)           
O(4)-Yb-N(2)                 
73.28(14)       

N(2)-Eu-N(1) 
62.76(10) 

N(2)-Er-N(1)                 
 64.28(14)  

N(2)-Gd-N(1)                 

63.22(17)  
N(2)-Ho-N(1)                  
64.02(12)  

N(2)-Tb-N(1)                 
 63.44(15)  

N(2)-Tm-N(1)                  
64.63(19) 

N(2)-Yb-N(1)                 
 64.82(14)  
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All resolved Ln(btfa)3dmphen crystals have a general empirical formula of C44 H30 F9 N2 O6 Ln and 

belong to the centrosymetric monoclinc space group, C2/c.  The molecular structures reveal an octa-

coordinated central Ln atom with six coordinating oxygens and two nitrogens from the btfa and dmphen 

ligands, respectively.  The coordination polyhedrons can all be described as distorted square anti-prisms 

(Figures 9 &10).  

 

 

Figure 9. Square antiprisim polyhedron 
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Figure 10.  Coordination spheres of Ln(btfa)3dmphen complexes 

 

Calculations show that the atoms of the dmphen ligand are nearly coplanar for each resolved crystal.  Ln-

N bond distances (2.474-2.607 A, average 2.529 A) Ln-O bond distances (2.255-2.388 A, average 2.320 

A) are within the average bond distances observed for similar lanthanide complexes (Table 9 and 10). 

Volumes of the crystals ranged from 8236.2 to 8417 A3 with an average volume of 8303.6 A3.  The 

calculated density of the crystals ranges from 1.581 to 1.656  mg/m3 with an average density of 1.618 

mg/m3.  The crystal sizes range from 0.22 x 0.12 x 0.09 to 0.45 x 0.29 x 0.20 nm with an average size of 

0.29 x 0.12 x 0.099 nm.  Unit cell dimensions ranged from  a= 36.245-36.950  A (average 36.555) alpha = 

90 deg, b = 10.8940- 11.091 (average  11.015) A  beta=111.9080-112.86 (average 112.55) deg. , and c = 

22.239- 22.469 (average 22.330) A   gamma = 90 deg.  All crystal sizes show a length that is roughly 

twice the amount of the width or depth.  The width and depth tend to be equal, though there is a trend of 

the width being bigger than the depth if there is a distortion.  
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The calculated unit cells (Figure 11) have eight Ln(btfa)3 dmphen molecules arranged in a pattern of 2-4-

2.  π-π stacking of the molecules occurs at the dmphen ligand with the 4,7 methyl groups being reflected 

and overlaid from the connecting dmphen while being offset stacked.  The unit cell is also held by the 

hydrogen bonding between from the fluorinated methyl group of one btfa to the benzene ring of another 

btfa ligand.  

 
 

Figure 11. Calculated Unit Cells for  the Ln(btfa)3dmphen complexes 

 
3.2.2 Eu(btfa)3 dmphen 

Eu(btfa)3 dmphen crystalizes in the centrosymetric monoclinc space group C2/c. The molecular structure 

reveals a central europium atom situated with six coordinating oxygens and two nitrogens from the btfa 

and dmphen ligands, respectively.  The coordination polyhedron (Figure 12) can be best described by a 

distorted square antiprism.  
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Figure 12. Coordination polyhedron of Eu(btfa)3dmphen complex 

 

The Eu-N bond distances (2.560-2.607, average 2.584) and Eu-O bond distances (2.344(3)-2.388, average 

2.362) are in agreement with previously reported europium b-diketonate complexes.  N atoms of dmphen 

ligand is nearly co-planar. 

The crystal was 0.45 x 0.29 x 0.20 mm in size with a volume of 8236.2 A3, and density of 1.622 mg/m3 

making it the largest crystal resolved while being the 4th densest with a least volume.  Unit cell 

dimensions are a = 36.6051(10) A   alpha = 90 deg, b = 10.8940(3) A    beta = 111.9080(10) deg., and c = 

22.2613(6) A   gamma = 90 deg.  The crystal had an absorption coefficient of 11.717 which is 5 times 

larger than any of the other resolved crystals suggesting that there is a great amount of absorption from 

the crystal which is then transferred to the central Eu atoms for luminescence.  The crystal exhibits the 

characteristic red luminescence of Eu3+ luminescence when exposed to UV light.  The calculated unit cell 
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(Figure 13) has eight Eu(btfa)3dmphen molecules.  The molecules are arranged in a pattern of 2-4-2.  π-π 

stacking of the molecules occurs at the dmphen ligand with the 4,7 methyl groups being reflected and 

overlaid from the connecting dmphen while being offset stacked.  The unit cell is also held by F-H type 

hydrogen bonding from the fluorinated methyl group of one btfa to the benzene ring of another btfa 

ligand.  

 

 

 
 

 
 

Figure 13. Calculated Unit Cell of Eu(btfa)3dmphen complex 
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3.2.3  Er(btfa)3 dmphen 

Er(btfa)3 dmphen crystalizes in the centroscymetric monoclinc space group C2/c.  The molecular structure 

(Figure 14) reveals a central erbium atom situated with six coordinating oxygens and two nitrogens from 

the btfa and dmphen ligands respectively.  The coordination polyhedron (Figure 15) can be described as a 

distorted square antiprism.  

 
Figure 14. Structure of Er(btfa)3dmphen. 
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Figure 15. Coordination polyhedron of Er(btfa)3dmphen complex 

 

Calculations show that the atoms of the dmphen ligand are nearly coplanar.  

The Er-N bond distances (2.483-2.531(average 2.507) and Er-O bond distances (2.281-2.355, average 

2.306).  The crystal was   0.24 x 0.12 x 0.12 mm in size with a volume of 8278, and density of 1.624 

mg/m3 making it the third smallest crystal resolved while having the third least volume and fourth 

densest.  Unit cell dimensions were a = 36.422(10) A   alpha = 90 deg, b = 11.045(3) A    beta = 112.61 

deg., and c = 22.290 A   gamma = 90 deg.  The crystal had an absorption coefficient of 2.113 which is the 

fourth largest.  The crystal shows no visible luminescence under UV light.  The calculated unit cell 

(Figure 16) has eight Er(btfa)3dmphen molecules.  The molecules are arranged in a pattern of 2-4-2. π-π 

stacking of the molecules occurs at the dmphen ligand with the 4,7 methyl groups being reflected and 

overlaid from the connecting dmphen while being offset stacked.  The unit cell is also held by F-H 

hydrogen bonding from the fluorinated methyl group of one btfa to the benzene ring of another btfa 

ligand.  
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Figure 16. Calculated Unit Cell of Er(btfa)3dmphen 
 

3.2.4 Gd(btfa)3 dmphen 

Gd(btfa)3 dmphen crystalizes in the centroscymetric monoclinc space group C2/c.  The molecular 

structure (Figure 17) reveals a central gadolinium atom situated with six coordinating oxygens and two 

nitrogens from the btfa and dmphen ligands respectively.  The coordination polyhedron (Figure 18) can 

be described as a distorted square antiprism.  
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Figure 17. Structure of Gd(btfa)3dmphen. 
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Figure 18. Coordination polyhedron of Gd(btfa)3dmphen complex 
 

Calculations show that the atoms of the dmphen ligand are nearly coplanar. The Gd-N bond distances 

(2.538-2.578, average 2.558) and Gd-O bond distances (2.326-2.373, average 2.351) The crystal was   

0.23 x 0.08 x 0.08 mm in size with a volume of 8417 A3, and density of 1.581 mg/m3 making it the third 

smallest crystal resolved while having the smallest density and largest volume.  Unit cell dimensions were 

a = 36.950 A   alpha = 90 deg,b = 10.975(3) A    beta = 112.5  deg. , and c = 22.469(6) A   gamma = 90 

deg.  The crystal has the smallest absorption coefficient at 1.660 and displays no visible luminescence 

under UV light.  The calculated unit cell (Figure 19) has eight Gd(btfa)3 dmphen molecules.  The 

molecules arranged in a pattern of 2-4-2. π-π stacking of the molecules occurs at the dmphen ligand with 

the 4,7 methyl groups being reflected and overlaid from the connecting dmphen while being offset 
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stacked.  The unit cell is also held by F-H bonding from the fluorinated methyl group of one btfa to the 

benzene ring of another btfa ligand.  

 

 
 

Figure 19. Calculated Unit Cell of Gd(btfa)3dmphen 
 

3.2.5 Ho(btfa)3 dmphen  

Ho(btfa)3 dmphen crystallizes in the centroscymetric monoclinc space group C2/c.  The molecular 

structure (Figure 20) reveals a central holmium atom situated with six coordinating oxygens and two 

nitrogens from the btfa and dmphen ligands respectively.  The coordination polyhedron (Figure 21) can 

be described as a distorted square antiprism.  
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Figure 20.  Structure of Ho(btfa)3dmphen. 
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Figure 21. Coordination polyhedron of Ho(btfa)3dmphen complexes 

 

 

Calculations show that the atoms of the dmphen ligand are nearly coplanar.  

The Ho-N bond distances (2.501(4)-2.544(3), average 2.523) and Eu-O bond distances (2.294(3)-2.340, 

average 2.313) are within the average bond distances observed for similar complexes.  The crystal was   

0.22 x 0.12 x 0.09 mm in size with a volume of 8286 A3, and density of 1.633 mg/m3 making it the 

smallest crystal resolved while having the second largest density and tied with Tm(btfa)3dmphen for the 

fourth smallest volume.  Unit cell dimensions were a = 36.473(10) A   alpha = 90 deg, b = 11.029 A    

beta = 112.55 deg., and c = 22.303(6) A   gamma = 90 deg.  The crystal has the fourth largest absorption 

coefficient at 2.001 and displays a faint red luminescence under UV light.  

 The calculated unit cell (Figure 22) has eight Ho(btfa)3 dmphen molecules.  The molecules arranged in a 

pattern of 2-4-2. π-π stacking of the molecules occurs at the dmphen ligand with the 4,7 methyl groups 



50 
 

being reflected and overlaid from the connecting dmphen while being offset stacked.  The unit cell is also 

held by F-H bonding from the fluorinated methyl group of one btfa to the benzene ring of another btfa 

ligand.  

 
 

Figure 22. Calculated Unit Cell of Ho(btfa)3dmphen 
 

3.2.6 Tb(btfa)3 dmphen 

Tb(btfa)3 dmphen crystalizes in the centroscymetric monoclinc space group C2/c.  The molecular 

structure (Figure 23) reveals a central terbium atom situated with six coordinating oxygens and two 

nitrogens from the btfa and dmphen ligands respectively.  The coordination polyhedron (Figure 24) can 

be described as a distorted square antiprism.  
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Figure 23. Structure of Tb(btfa)3dmphen. 
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Figure 24. Coordination polyhedron of Tb(btfa)3dmphen complex 

 

 

Calculations show that the atoms of the dmphen ligand are nearly coplanar.  

The Tb-N bond distances (2.519(4)-2.574(3), average 2.547) and Tb-O bond distances (2.312(3)-2.363, 

average 2.336) are within the values observed for similar complexes.  The crystal was   0.33 x 0.08 x 0.05 

mm in size with a volume of 8384 A3, and density of 1.590 mg/m3 making it the second largest crystal 

resolved while being the second least dense and second highest volume.  Unit cell dimensions were a = 

36.814(10) A   alpha = 90 deg, b = 10.992(3) A    beta = 112.58 deg., and c = 22.438 A   gamma = 90 

deg.  The crystal has the second smallest absorption coefficient at 1.772 and just barely glows the 

characteristic green luminescence of Tb3+.  The calculated unit cell (Figure 25) has eight Tb(btfa)3dmphen 

molecules.  The molecules are arranged in a pattern of 2-4-2. π-π stacking of the molecules occurs at the 

dmphen ligand with the 4,7 methyl groups being reflected and overlaid from the connecting dmphen 
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while being offset stacked. The unit cell is also held by F-H bonding from the fluorinated methyl group of 

one btfa to the benzene ring of another btfa ligand.  

 
 

Figure 25. Calculated Unit Cell of Tb(btfa)3dmphen 
 

3.2.7 Tm(btfa)3 dmphen 

Tm(btfa)3 dmphen crystalizes in the centroscymetric monoclinc space group C2/c.  The molecular 

structure (Figure 26) reveals a central thulim atom situated with six coordinating oxygens and two 

nitrogens from the btfa and dmphen ligands, respectively.  The coordination polyhedron (Figure 27) can 

be described as a distorted square antiprism.  
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Figure 26. Structure of Tm(btfa)3dmphen. 

 
Figure 27. Coordination polyhedron of Tm(btfa)3dmphen complex 
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Calculations show that the atoms of the dmphen ligand are nearly coplanar. 

The Tm-N bond distances (2.475(4)-2.517(3), average 2.496) and Tm-O bond distances (2.275(3)-2.320, 

average 2.293) are within the average bond distances observed for similar complexes.  The crystal was   

0.31 x 0.07 x 0.05 mm in size with a volume of 8286 A3, and density of 1.625 mg/m3 making it the third 

largest crystal resolved while being the third densest and tied with Ho(btfa)3dmphen for fourth most 

voluminous.  Unit cell dimensions were a = 36.377 A   alpha = 90 deg, b = 11.077 A    beta = 112.81deg., 

and c = 22.309 A   gamma = 90 deg.  Crystal has the third largest absorption coefficient at 2.227 and 

displays no visible luminescence when exposed to UV light.  The calculated unit cell (Figure 28) has 

eight Tm(btfa)3dmphen molecules.   The molecules arranged in a pattern of 2-4-2. π-π stacking of the 

molecules occurs at the dmphen ligand with the 4,7 methyl groups being reflected and overlaid from the 

connecting dmphen while being offset stacked.  The unit cell is also held by F-H bonding from the 

fluorinated methyl group of one btfa to the benzene ring of another btfa ligand.  

 
Figure 28. Calculated Unit Cell of Tm(btfa)3dmphen 
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3.2.8 Yb(btfa)3 dmphen 

Yb(btfa)3 dmphen crystalizes in the centroscymetric monoclinc space group C2/c.  The molecular 

structure (Figure 29) reveals a central ytterbium atom situated with six coordinating oxygens and two 

nitrogens from the btfa and dmphen ligands, respectively.  The coordination polyhedron (Figure 30) can 

be described as a distorted square antiprism.  

 

 
Figure 29. Structure of Yb(btfa)3dmphen. 
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Figure 30. Coordination polyhedron of Yb(btfa)3dmphen complex 

 

 

Calculations show that the atoms of the dmphen ligand are nearly coplanar.  

The Yb-N bond distances (2.474(4)-2.510(3), average 2.492) and Yb-O bond distances (2.55(3)-2.510, 

average 2.281) are within the average bond distances observed for similar complexes.  The crystal was   

0.26 x 0.09 x 0.10 mm in size with a volume of 8238 A3, and density of  1.656 mg/m3 making it the fourth 

largest crystal resolved while having the greatest density and second smallest volume.  Unit cell 

dimensions were  a = 36.6051(10) A   alpha = 90 deg, b = 10.8940(3) A    beta = 111.9080(10) deg. , and 

c=22.2613(6)A gamma=90deg. The calculated unit cell (Figure 31) has eight Yb(btfa)3 dmphen 

molecules. The molecules are arranged in a pattern of 2-4-2. π-π stacking of the molecules occurs at the 

dmphen ligand with the 4,7 methyl groups being reflected and overlaid from the connecting dmphen 
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while being offset stacked.  The unit cell is also held by F-H bonding from the fluorinated methyl group 

of one btfa to the benzene ring of another btfa ligand.  

 
 

Figure 31. Calculated Unit Cell of Yb(btfa)3dmphen 
 

3.3 ABSORPTION STUDIES 

UV-vis absorbance of the Ln(btfa)3 dmphen complexes (Figure 32) was measured in methylene chloride 

solution for  the λmax values (Table 12) and plotted with a representative water complex, Eu(btfa)3(H2O)2  

for comparison. 
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Figure 32. UV-vis absorption studies of Ln(btfa)3 dmphen complexes 
 

 

Table 12. λmax values for Ln(btfa)3dmphen complexes 
 

Chelator Wavelength (nm) Abs 

Eu(btfa)3 dmphen 231 0.6666 

 273 1.0389 
 326 0.6459 
Er(btfa)3 dmphen 231 0.7667 

 273 0.8768 

 324 0.3961 
Gd(btfa)3 dmphen 232 0.6529 
 273 0.9437 
 325 0.5965 
Ho(btfa)3 dmphen 232 0.7181 

 273 0.9919 
 325 0.5750 
Tb(btfa)3 dmphen 233 0.5510 

 265 0.8269 

 328 0.3825 

Tm(btfa)3 dmphen 233 0.3494 

 273 0.6289 

 327 0.3115 
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Yb(btfa)3 dmphen 232 0.6529 
 273 0.9437 
 323 0.5984 

 

The btfa and dmphen ligand combination in the Ln(btfa)3dmphen complex has three absorption peaks 

with wavelengths ranging from 231-233 nm , 265-273 nm, and 323-326 nm.  All of the Ln(btfa)3dmphen 

chelators have the characteristic pattern of three peaks with the middle peak being the largest peak. 

3.4. LUMINESCENT STUDIES 

The Excitation data was taken for the Eu(btfa)3dmphen at 1×10-6 M concentration in methylene chloride 

solution (Figure 33) and the highest intensities are listed  in Table 13. 

 
Figure 33. Excitation spectrum for Eu(btfa)3dmphen 
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Table 13.  Excitation Wavelengths with highest intensity for Eu(btfa)3dmphen 

  
Wavelength (nm) Intensity (a.u) 

272 15.013048 

332 27.194924 

339 28.282965 

 
 

The Eu(btfa)3 dmphen chelator has a broad peak of excitation with higher peak intensities at 272 nm, 332 

nm, and 339 nm and values of 15.01 a.u, 27.19 a.u, and 28.28 a.u.  The best excitation values for the 

btfa/dmphen ligand combination is between 340 nm and 350 nm though values as low as 325 nm can be 

used to excite the ligand system.  This broad range of excitation may contribute to the tunability of the 

Eu(btfa)3 dmphen complex. 

Luminescent data from 500 nm to 680 nm for the Eu(btfa)3 dmphen chelator was taken at 350 nm 

excitation  and 1×10-6 M concentration (Figure 34)   and 325 excitation  nm and 1×10-6 M concentration 

(Figure 35) in methylene chloride  with the highest peak intensities shown in Table 14. 
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Figure 34. Eu(btfa)3 dmphen  emission from 500 nm to 680 nm at 325 nm excitation 

 

 
Figure 35. Eu(btfa)3 dmphen emission from 500 nm to 680 nm at 350 nm excitation 
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Table 14. Highest peak intensities for Eu(btfa)3dmphen emission from 500 nm to 680 nm at 325 nm and 

350 nm  excitation 
 

Wavelength (nm) 325 nm Excitation (a.u) 350 nm Excitation (a.u) 

538 8.026436 6.48705 

582 8.444747 7.110492 

594 19.00239 15.338398 

614 256.5862 202.766896 

651 38.0157 1.252737 

 
 

The results were compared to the emission spectra of the Eu(btfa)3(H2O)2 complex (Figure 36) . 

 

 
Figure 36. Comparison of Eu(btfa)3 dmphen and Eu(btfa)3(H2O)2 emission 

 

Both complexes have the emission characteristics of  5D0 to 7F1 transition and 5D0 to 7F2 transition of Eu3+. 

The Eu(btfa)3(H2O)2 complex has a relative intensity of 45 A.U at its most intense peak at 614 nm 

compared to the 95 A.U of the Eu(btfa)3dmphen at its most intense peak at 614 nm.  The relationship for 

the peaks at 540 nm, 595 nm, and 614 nm all follow a trend of the Eu(btfa)3(H2O)2 intensities being 

roughly half the value of the Eu(btfa)3dmphen intensities.   This is due to vibrational quenching effects of 
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the H2O ligands of the Eu(btfa)3(H2O)2 complex.  The intense peak of both the Eu(btfa)3(H2O)2 and 

Eu(btfa)3dmphen complexes means that energy is absorbed through the ligand system, with the energy 

transfer going from the excited singlet state of the ligands to the triplet state of the antenna ligands, then a 

transfer from the triplet state of the ligands to the triplet state of the Eu, and finally a transfer to the singlet 

state of the Eu and a relaxation down producing Eu-centered luminescence.  The dmphen contribution is 

more than the water ligands, leading to the higher luminescence intensity. 

Luminescent lifetime decay data for the Eu(btfa)3dmphen complex was taken for dry chelator and 

dissolved in methylene chloride and compared to the water complex under the same conditions.  

Lifetimes were measured at 355 nm excitation (Figure 37) and 465 nm excitation (Figure 38).   355 mm 

can be used to excite the ligand, while 465 nm is good for direct excitation of the Eu3+.  The results of the 

lifetime decays for the Eu(btfa)3dmphen and Eu(btfa)3(H2O)2  are summarized in Table 15. 

 

 

 

 
Figure 37. Luminescent decay curves of Eu(btfa)3dmphen and Eu(btfa)3(H2O)2  at 355 nm excitation 
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Figure 38. Luminescent decay curves of Eu(btfa)3dmphen and Eu(btfa)3(H2O)2 at 465 nm excitation 

 

 

Table 15. Comparison of luminescent lifetimes for Eu(btfa)3dmphen and Eu(btfa)3(H2O)2 at 355 nm and 

465 nm excitation 
 

Material Lifetime at 355 nm 

Excitation (ms) 

Lifetime at 465 nm Excitation 

(ms) 

Eu(btfa)3dmphen (dry)   0.593  0.572  

Eu(btfa)3dmphen  (in CH2Cl2 )   0.813  0.811  

Eu(btfa)3(H2O)2 (dry)   0.384  0.371 

Eu(btfa)3(H2O)2 (CH2Cl2)   0.470  0.474 

 

 
 

The dry Eu(btfa)3dmphen had lifetimes of 0.593 ms at 355 nm excitation and 0.572 ms at 465 nm 

excitation, while the methylene chloride dissolved chelator had a lifetime 0.813 ms at 355 nm excitation 

and 0.811 ms at 465 nm excitation.  This is a 0.22 ms shorter lifetime at 355 nm and 0.239 ms shorter 

lifetime at 465 nm for the dry material compared to the chelator dissolved in methylene chloride.  This 
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equates to a 27.06% shorter lifetime at 355 nm and 29.47% shorter lifetime at 465 nm for the dry 

Eu(btfa)3dmphen compared to the Eu(btfa)3dmphen dissolved in methylene chloride. 

The dry Eu(btfa)3(H2O)2 had lifetimes of 0.384 ms at 355 nm excitation and 0.371 ms at 465 nm 

excitation, while the methylene chloride dissolved version had lifetimes of 0.470 ms at 355 nm and 0.474 

nm at 465 nm.  This is a 0.086 ms shorter lifetime at 355 nm and 0.103 ms shorter lifetime at 465 nm for 

the dry material compared to the methylene chloride dissolved chelator.  This equates to a 18.30% shorter 

lifetime at 355 nm and 21.73% shorter lifetime at 465 nm than the Eu(btfa)3(H2O)2 dissolved in methylene 

chloride 

The dry Eu(btfa)3(H2O)2 also had lifetimes that were 0.209 ms shorter at 355 nm and 0.201 ms shorter at 

465 nm compared to the dry Eu(btfa)3dmphen chelator and 0.429 ms shorter lifetime at 355 nm and 0.440 

ms shorter lifetime at 465 nm compared to the Eu(btfa)3dmphen chelator dissolved in methylene chloride.  

This equates to a 35.52% shorter lifetime at 355 nm and 35.14% shorter lifetime at 465 nm compared to 

the dry Eu(btfa)3dmphen chelator and a 52.77% shorter lifetime at 355 nm and 54.25% shorter lifetime at 

465 nm compared to the Eu(btfa)3dmphen chelator dissolved in methylene chloride. 

The methylene chloride dissolved in Eu(btfa)3(H2O)2   had lifetimes that were 0.123 ms shorter at 355 nm 

and 0.098 ms shorter at 465 nm compared to the dry  Eu(btfa)3dmphen  chelator and 0.343 ms shorter at 

355 nm and 0.337 ms shorter at 465 nm compared to the Eu(btfa)3dmphen  chelator dissolved in 

methylene chloride.  This equates to a 20.74% shorter lifetime at 355 nm and 17.13% shorter lifetime 

compared to the dry Eu(btfa)3dmphen and 42.22% shorter lifetime at 355 nm and 41.55% shorter lifetime 

at 465 nm compared to the Eu(btfa)3dmphen dissolved in methylene chloride.  The Eu(btfa)3dmphen 

complex has limited solubility in water and so suffers from the quenching effects of water instead of the 

longer lifetime in methylene chloride, but still has a significantly longer luminescence lifetime than the 

Eu(btfa)3(H2O)2 complex that could allow for longer relaxation time of background fluorescence before 

taking measurements and is a promising candidate to be incorporated into silica solgel materials.  

Substitution of H2O ligands by dmphen ligand greatly enhances the luminescence intensity of the 
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complex.  This may be attributed to two reasons. (i) H2O ligands may be responsible for vibrational 

quenching of the Eu(III)-centered luminescence; (ii) The dmphen ligand may adjust the triplet level of the 

ligand system to make it more suitable for an efficient ligand-to-metal energy transfer process resulting in 

improved luminescence intensity.  The luminescent lifetime of the dmphen complex is significantly 

higher than the lifetime of the H2O complex.  The measured luminescent lifetimes of 0.59 to 0.61 ms are 

sufficient for the suppression of cell background fluorescence and are useful for imaging applications 

after silica encapsulation.  

Luminescent quantum yield was measured for the Eu(btfa)3dmphen and compared to Rhodamine 6G in 

methylene chloride (0.88) as a standard (Table 16). 

 
Table 16. Luminescent quantum yield of Eu(btfa)3dmphen and Rhodamine 6G43-50 in methylene chloride 

 

Compound  Quantum Yield  

Eu(btfa)3dmphen 0.539 

Rhodamine 6G 0.88 

 
 

The Eu(btfa)3dmphen complex has a quantum yield of 0.593 in methylene chloride. That is 0.341 less 

than the Rhodamine 6G standard for a difference in efficiency of 38.97% in methylene chloride. While 

not as high yield as the standard, the relative cost of Eu(btfa)3dmphen complex is more than sufficient for 

imaging applications due to the high intensity of the emission and long luminescence lifetime.  Er(btfa)3 

dmphen was measured from 350 nm to 1150 nm with a 60 s integration (Figure 39). The highest peak 

intensity is listed in Table 17. 
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Figure 39. Luminescent studies of Er(btfa)3dmphen using 350 nm excitation 
 

 
Table 17. Peak Intensity values for Er(btfa)3 dmphen 

 
Wavelength (nm) Intensity (a.u) 

1063 10114 

 
 

The Er(btfa)3dmphen complex has one strong emission peak at 1063 nm in the infrared region with a peak 

intensity of 10114 a.u.  The Er(btfa)3dmphen complex has a strong emission in the infrared portion of the 

electromagnetic spectrum.  The complex absorbs energy through the ligand system similar to 

Eu(btfa)3dmphen complex.  This emission is shifted significantly down from cell background 

fluorescence that it could be measured directly with minimal background fluorescence.  A strong intensity 

also provides potential applications that would use only a small amount of material as a tracer. 

Luminescence of Ho(btfa)3dmphen was measured from 350 nm to 1150 nm with a 40 s integration 

(Figure 40).  The highest peak intensity is listed in Table 18. 
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Figure 40. Luminescent studies of Ho(btfa)3dmphen upon 350 nm excitation 

 

 

 
Table 18.  Peak Intensity values for Ho(btfa)3 dmphen 

 
Wavelength (nm) Intensity (a.u) 

977 1647 

 

The Ho(btfa)3dmphen complex has one strong emission peak in the near infrared region at 977 nm with a 

peak intensity of 1647 a.u.  This emission in the near infrared is sufficient to provide the 

Ho(btfa)3dmphen complex a slight red glow under UU-light.  The intensity is high enough to be 

potentially useful in a luminescent solgel material, and is far enough from cell background fluorescence to 

be measured without any interferences.  Like Eu(btfa)3dmphen and Er(btfa)3dmphen complexes, energy is 

absorbed through the ligand system in the Ho(btfa)3dmphen complex. 

The lifetime decay for Ho(btfa)3dmphen was measured (Figure 41) with the summary of results in Table 

19. 
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Figure 41. Lifetime Decay of Ho(btfa)3dmphen 
 

 

Table 19. Lifetime Decay of Ho(btfa)3dmphen  
 

Time (ms) Intensity (A.U) 

0.0492 475 

 

The Ho(btfa)3dmphen chelator complex had a lifetime of 0.0492 ms with complete decay by 0.05 ms.  

This is a significantly weaker lifetime luminescence than the < 0.5 ms lifetime of the Eu(btfa)3dmphen 

complex.  This order of magnitude difference does not make the Ho(btfa)3dmphen as good a choice for 

imaging applications as the Eu(btfa)3dmphen, but it could have some use due to be even further removed 

from background fluorescence, and the observed longer luminescent lifetime which is higher than those 

values observed for traditional organic dyes. 
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3.5  ICP-OES AND OTHER CHARACTERIZATION. 

By percentage, the Ln amount in the chelator complex should be within 1% of the 92 atom components of 

the complex.  The Ln(btfa)3dmphen chelator complexes were evaluated for Ln percentages using ICP-

OES (Table 20).  

 

Table 20. Ln percentages (Ln %) for the Ln(btfa)3dmphen chelators

 
Sample Theoretical  Ln% Actual Ln% 

Eu(btfa)3 dmphen 1.51% 1.050 

Er(btfa)3 dmphen 1.64% 0.988 

Gd(btfa)3 dmphen 1.56% 1.004 

Ho(btfa)3 dmphen 1.62% 1.020 

Tb(btfa)3 dmphen 1.57% 0.995 

Tm(btfa)3 dmphen 1.65% 1.060 

Yb(btfa)3 dmphen 1.69% 1.038 

 

The lanthanide percentages are 1.050% (Eu), 0.988% (Er), 1.004% (Gd), 1.020% (Ho), 0.995% (Tb), 

1.060% (Tm), and 1.038% (Yb).  The seven lanthanide targets ranged in percentage of total complex from 

0.995% to 1.06% and are within instrumental errors suggesting the successful synthesis of each of the 

target Ln(btfa)3dmphen complexes. 

The Ln(btfa)3dmphen chelator complex has a chemical formula of C44H30F9N2O6Ln.  It has 92 atom 

components with 44 of them being carbon for approximately 48 percent of the total compound mass. The 

Ln(btfa)3dmphen chelator complexes were analyzed for carbon percentages (Table 21). 
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Table 21. Carbon Percentages for Ln(btfa)3 dmphen complexes 
 

Sample Theoretical  C% Actual C% 

Eu(btfa)3 dmphen 52.55 48.2 

Er(btfa)3 dmphen 51.76 48.3 

Gd(btfa)3 dmphen 52.28 47.8 

Ho(btfa)3 dmphen 51.88 48.1 

Tb(btfa)3 dmphen 52.12 48.1 

Tm(btfa)3 dmphen 51.68 47.9 

Yb(btfa)3 dmphen 51.47 47.9 

 
 

The range of the actual C% ranged from 47.9 to 48.3%.  This range falls within the expected value and 

confirms that the Ln(btfa)3(H2O)2 chelators were reacted successfully to form the Ln(btfa)3dmphen 

chelators.  The 0.1% to 0.3% difference from the expected value for each chelator can be attributed to 

minor impurities and trace amounts of the original materials. 
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CHAPTER 4: SILICA SOLGEL MATERIAL RESULTS 

 

4.1 PHOTOPHYSICAL CHARACTERISTICS AND STEM IMAGING 

Eu(btfa)3(H2O)2 and Eu(btfa)3dmphen chelators were doped into a silica solgel matrix and the materials 

were examined under UV light excitation.  The chelator-doped sol gel materials produced vivid red 

luminescence which is characteristic of the Eu3+ ions.  The bulk silica solgel materials when dried had no 

other distinguishing visible characteristics and were all white powders.  The bulk materials were 

examined by STEM imaging (Figure 42.)   

 
Figure 42. STEM Image of Eu(btfa)3dmphen chelator-doped silica matrix  

 

The Eu(btfa)3dmphen solgel has components of varying shapes and sizes ranging from ~20  nm across to 

portions bigger than 150 nm and confirming the formation of a bulk solgel material.  The presence of 

successful chelator doping can be seen in the white regions (Figure 41).  Chelator doping ranges in 

distribution from spread to clustered. 

4.2 ABSORPTION STUDIES 

Eu(btfa)3dmphen  solgel absorption in water was measured using UV-vis spectroscopy (Figure 42).  
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Figure 43.  Absorption studies of Eu(btfa)3dmphen solgel in water  

The Eu(btfa)3dmphen has absorption peaks at 231 nm, 273 nm, and 326 nm.  The solgel material has 

absorption peaks at 231 nm, 273 nm, and 328 nm with   λmax values of 0.6792, 0.6402, and 0.4989, 

respectively.  The three peaks confirm the doping of the Eu(btfa)3dmphen chelator into the silica based 

material. 

4.3 LUMINESCENT STUDIES  

Excitation data was taken for the solgel material at 1×10-6 M concentration in water from 275 nm to 400 

nm (Figure 44) and the highest intensities are listed in Table 22. 
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Figure 44. Excitation spectrum of Eu(btfa)3dmphen solgel material 

 

 

Table 22.  Excitation Wavelengths with highest intensity for Eu(btfa)3dmphen solgel material

 
Wavelength (nm) Intensity (a.u) 

272 15.013048 

332 27.194924 

339 28.282965 

 

The solgel material has a broad peak of excitation with the highest peak intensities at 272 nm, 332 nm, 

and 339 nm and values of 15.01 a.u, 27.19 a.u, and 28.28 a.u.  This matches the curve of the 

Eu(btfa)3dmphen chelator and confirms doping of Eu(btfa)3dmphen into the silica matrix.  The silica of 

the solgel material does not appear to change the excitation curve in any way.  Like the pure chelator, the 

Eu(btfa)3dmphen solgel material can utilize the broad excitation of the ligand system to channel energy to 

the Eu3+ ion.  Luminescent data from 500 nm to 680 nm for the solgel material was taken at 280 nm, 330 

nm, 340 nm, and 350 nm excitation at 1×10-6 M concentration in water (Figure 45) with the highest peak 

intensities listed Table 23. 
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Figure 45. Luminescent studies of the Eu(btfa)3dmphen chelator-doped solgel material  

 

Table 23.  Excitation Wavelengths with highest intensity for Eu(btfa)3dmphen chelator-doped solgel 

material  
 

Wavelength (nm) Intensity (a.u) 

280 227.78828 

330 263.747254 

340 274.490383 

350 275.008992 

 

The solgel material has a sharp intensity peak at 600 nm and intensities of 227.79 a.u at 280 nm 

excitation, 263.74 a.u at 330 nm, 274.49 a.u at 340 nm, and 275.01 a.u at 350 nm.  The intensity of 

emission is strongest at 350 nm, but is less than 5% more intense than the 20 nm range between 330 nm 

and 350 nm excitation, but 18.78% more intense than the 280 nm excitation.  The best luminescence for 

this system was observed at excitation wavelengths around 350 nm.  The chelator-doped solgel matrix 

luminescence lifetime was measured at 355 nm (Figure 45) and 465 nm (Figure 46) excitation 

wavelengths.  The dry form of the Eu(btfa)3dmphen solgel was measured and compared to the water 

dispersed forms of the Eu(btfa)3dmphen and Eu(btfa)3 (H2O)2 solgels.  
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Figure 46. Luminescent decay curves of Eu(btfa)3dmphen  solgel at 355 nm excitation 

 

 
Figure 47. Luminescent decay curves  of Eu(btfa)3dmphen  solgel at 465 nm excitation 

Both Figures 46 and 47 show a steep lifetime decay curve for the Eu(btfa)3(H2O)2 solgels with full decay 

at just under 3 ms.  The lifetime decay curve for the Eu(btfa)3dmphen solgels is not as steep, and exhibits 

a lifetime decay of nearly two times higher than that of the Eu(btfa)3(H2O)2 solgels at approximately 6-7 
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with full decay for the dry Eu(btfa)3dmphen solgel not reaching complete decay after even 10 ms.   The 

lifetime decay time of the solgels are listed in Table 24. 

 

Table 24. Summary of Eu(btfa)3dmphen and The Eu(btfa)3(H2O)2  solgel lifetime analysis 
 

Material Lifetime at 355 

nm Excitation 

(ms) 

Lifetime at 

465 nm 

Excitation 

(ms) 

% difference in 

lifetime length  

from dry chelator  

%difference in 

lifetime length 

dissolved chelator 

water 

Eu(btfa)3dmphen 

(sol- gel, dry) 

  0.616  0.595 +3.734 (355 nm) 

 

+3.866 (465 nm) 

-31.98 (355 nm) 

 

-36.30 (465 nm) 

Eu(btfa)3dmphen 

(sol- gel in H2O) 

  0.655  0.588 +9.463 (355 nm) 

 

+2.721 (465 nm) 

-24.12 (355 nm) 

 

-37.93 (465 nm) 

Eu(btfa)3 (H2O)2 

(sol- gel, H2O) 

  0.360  0.345  -64.72 (355 nm) 

 

-39.69 (465 nm) 

-125.8 (355 nm) 

 

-135.1 (465 nm) 

 

The Eu(btfa)3dmphen solgel had a lifetime of 0.616 ms at 355 nm and 0.595 ms at 465 nm while dry, and 

a lifetime.of 0.655 ms at 355 nm and 0.588 ms at 465 nm excitation when dispersed.  This is a 0.023 ms 

longer lifetime at 355 nm and 465 nm excitation than the dry Eu(btfa)3dmphen chelator, but 0.197 ms 

shorter lifetime at 355 nm and 0.216 ms shorter lifetime at 465 nm excitation than the Eu(btfa)3dmphen 

dissolved in methylene chloride for the dry Eu(btfa)3dmphen solgel.  This is 3.734% longer lifetime at 

355nm and 3.866% at 465nm excitation for the dry material and 31.98.43% at 355 nm and 36.30% at 465 

nm excitation shorter lifetime compared to the Eu(btfa)3dmphen chelator dissolved in methylene chloride. 

The Eu(btfa)3dmphen water dispersed solgel material had a lifetime 0.062 ms longer lifetime at 355 nm 

and 0.016 ms longer lifetime at 465 nm excitation than the dry Eu(btfa)3dmphen chelator, and   0.158 ms 

shorter lifetime at 355 nm and 0.223 ms shorter lifetime at 465 nm excitation than the Eu(btfa)3dmphen 

chelator dissolved in methylene chloride.  This is 9.463% longer lifetime at 355 nm and 2.721% longer 
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lifetime at 465 nm excitation for the water dispersed material and 24.12% shorter lifetime at 355 nm and 

37.93% at shorter lifetime at 465 nm excitation compared to the Eu(btfa)3dmphen chelator dissolved in 

methylene chloride.   The Eu(btfa)3(H2O)2 water dispersed solgel material had a lifetime 0.233 ms shorter  

lifetime  at 355 nm and 0.227 ms shorter  lifetime at 465 nm excitation than the dry Eu(btfa)3dmphen 

chelator, and   0.453  ms shorter lifetime at 355 nm and 0.466  ms shorter lifetime at 465 nm excitation 

than the Eu(btfa)3dmphen chelator dissolved in methylene chloride.  This is 64..72.% shorter  lifetime  at 

355 nm and 39.69% shorter  lifetime  at 465 nm excitation compared to  the Eu(btfa)3dmphen water 

dispersed solgel  material and 125.8% shorter lifetime at 355 nm and 135.1%  shorter lifetime at 465 nm 

excitation compared to the Eu(btfa)3dmphen chelator dissolved in methylene chloride. 

4.4 ICP-OES ANALYSIS OF THE SOLGEL MATERIALS 

ICP-OES data was taken for the solgel material to determine doping percentage (Table 25). 

 

Table 25.  Eu doping percentage of  Eu(btfa)3dmphen doped solgel

 
Compound  Eu% 

Eu(btfa)3dmphen doped solgel 3.02 

 

The amount of europium metal ions in the solgel material was 3.02%.  
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CHAPTER 5: CONCLUSIONS 

 

 5.1 LANTHANIDE β-DIKETONATE CHELATOR COMPLEXES 

A series of seven octaccoordinated lanthanide β-diketonate chelator complexes based on the btfa/dmphen 

ligand system were synthesized and characterized.  The complexes were characterizedusing single crystal 

X-ray diffraction studies.  Seven chelators of the form Ln(btfa)3dmphen (where Ln= Eu3+, Er3+, Gd3+, 

Ho3+, Tb3+, Tm3+, and Yb3+) produced crystal structures with a square antprism coordination sphere.  The 

complexes have maximum absorption peaks at 270 nm and 325 nm.  Eu complexes exhibit vivid red 

luminescence at 615 nm while Er, Yb, and Ho complexes show infra-red luminescence upon UV 

excitation.  The complexes exhibit ligand-to-metal energy transfer processes.  The best excitation values 

for the btfa/dmphen ligand combination is between 340 nm and 350 nm though values as low as 325 nm 

can be used to excite the ligand system. This broad range of excitation may contribute to the tunability of 

the complex pending on the Ln3+ chosen. 

The luminescent lifetimes of the Eu(btfa)3dmphen complex were 0.593 ms at 355 nm excitation and 0.572 

ms at 465 nm excitation for the dry chelator and 0.813 ms and 0.811 ms in methylene chloride solution.  

This demonstrates that the luminescent lanthanide complexes have much longer lifetimes outside of a 

water environment.  This appears to be related to vibrational quenching effects on the lanthanide centered 

luminescence.  The Eu(btfa)3dmphen chelator complex was doped into a solgel matrix.  The lifetimes of 

the solgel materials were 0.616 ms at 355 nm excitation and 0.595 ms at 465 nm excitation for the dry 

solgel, and 0.655 ms and 0.588 ms in a water dispersion.  The Eu(btfa)3dmphen complex has a 

luminescent lifetime that is nearly twice as the value observed for the Eu(btfa)3(H2O)2 chelator. 

The Eu(btfa)3dmphen complex has limited solubility in water and so suffers from the quenching effects of 

water instead of the longer lifetime in methylene chloride, but still has a significantly longer luminescence 

lifetime than the Eu(btfa)3(H2O)2 complex that could allow for longer relaxation time of background 

fluorescence before taking measurements and is a promising candidate to be incorporated into silica 
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solgel materials.  The luminescence lifetime of the dmphen complex is significantly higher than the 

lifetime of the H2O complex.  The measured luminescence lifetimes of 0.59 to 0.61 ms are sufficient for 

the suppression of cell background fluorescence and are useful for imaging applications after silica 

encapsulation.  

Quantum Yield was measured for the Eu(btfa)3dmphen and compared to Rhodamine 6G in methylene 

chloride (0.88).  The Eu(btfa)3dmphen complex has a quantum yield of 0.593.  That is 0.341 less than the 

Rhodamine 6G standard for a difference in efficiency of 38.97% in methylene chloride.  While not as 

high yield as the standard, the relative cost of Eu(btfa)3dmphen complex is more than sufficient for 

imaging applications due to the high intensity of the emission and long luminescent lifetimes. 

5.2 Eu(BTFA)3DMPHEN SOLGEL MATERIALS. 

The second part of this work attempted to encapsulate the Eu(btfa)3dmphen complex into a silica solgel 

material.  Eu(btfa)3dmphen was chosen for this part due to its high luminescence and quantum yield.  The 

Eu(btfa)3(H2O)2 and Eu(btfa)3dmphen chelators were doped into a silica solgel matrix via methods of 

microemulsion, acid catalysis, and Stöber process.  The methods of Stöber process, microemulsion, and 

acid catalysis produced solgel materials that had no visible defining characteristics among them and their 

ability to disperse into a water environment.  All three methods take the relative same amount of time and 

produce quantities of material that are similar to each other.  This suggests that there may not be a 

preferred method for generating the studied materials.  The STEM image of the sol gel material shows a 

doped bulk material of varying size, shape, and chelator distribution.  This indicates that the materials are 

not uniform.  The other indication is that all three methods tried did not produce a well encapsulated 

material matrix, diminishing use in a biological system due to being able to leak or being exposed on the 

surface rather than encapsulated.  This also suggests possible luminescent interference and inefficiencies 

due to the range of shapes, sizes, and distribution of doped material.  The produced silica solgel materials 

were a white powdery substance.  Upon excitation by the UV light, all dry materials with either 

Eu(btfa)3(H2O)2 or Eu(btfa)3dmphen exhibited vivid red luminescence characteristic of Eu3+ and 
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confirmed the doping of chelators into the silica matrix. Luminescence of the dry chelator doped material 

was less intense for Eu(btfa)3(H2O)2, while the Eu(btfa)3dmphen material was visibly more intense.  Once 

dispersed into water, both wet materials appeared more intense, suggesting effective dispersion of the 

solgel material.  Dry and water dispersed solgels were measured for lifetime decay at 355 nm and 465 nm.  

All life times were higher at 355 nm and water dispersed solgel material suggesting that 355 nm is the 

optimal excitation value, with the 465 nm excitation being comparable to the 355 nm excitation with a 

lifetime reading difference of 0.067 ms or 10.23% faster decay time for Eu(btfa)3dmphen that is not a 

characteristic of the chelator dissolved in methylene chloride. 
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