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ABSTRACT 

 

 

 

HOLOCENE ENVIRONMENTAL HISTORY OF PANTHERTOWN VALLEY IN 

THE BLUE RIDGE MOUNTAINS OF NORTH CAROLINA 

 

Elizabeth Marie Martin, M.S. 

 

Western Carolina University (March 2014) 

 

Advisor: Dr. Beverly Collins 

 

Panthertown is a high-elevation valley in the Nantahala National Forest, and is 

one of few sites in western North Carolina with natural wetlands.  Radiocarbon dating of 

multiple cores at a Panthertown valley wetland shows continuous deposition through the 

Holocene. This is one of the oldest continuous records in the Southern Appalachians; as 

such, this wetland is uniquely suited to provide information on vegetation dynamics and 

climatic regimes of the Holocene in the region.  Using standard palynological techniques, 

pollen was extracted from sediment core samples and identified to genus or family at 

400x; the resulting pollen percentages were used to describe the environmental history of 

Panthertown valley.  Presence of Alnus, Salix, Asteraceae, and ferns throughout indicate a 

consistent open, moist wetland site. The early to mid-Holocene (~8,700-7,000 yr BP) 

forest appears to have been dominated by Castanea and Quercus, with minor 

contributions by Betula, Carya, Acer, and Pinus.  The mid-Holocene (~7,000-3,500 yr 

BP) is characterized by decreases in Castanea and Pinus, with increases in Quercus and 

Poaceae, and, to a lesser extent, ferns, Asteraceae, and Betula; these increases coincide 



 

with increases in δ
13

C and organic C/N at the site. Increased δ
13

C values are likely the 

result of contribution of organic matter derived from C4 plants to the sediment pool.  

Greater variability in C/N values during that period indicate increased fluctuations in 

deposition of terrestrial organic matter.  The late Holocene (~3,500 yr BP –present) 

assemblage shows a more diverse forest, with significant contributions from Castanea, 

Quercus, Betula, Pinus, and Tsuga.  Taken together, these data support the idea of a 

warm, possibly dry, mid-Holocene “Hypsithermal” (~6,500-3,500 yr BP), and indicate 

the presence of temperate deciduous forests dominated by oak in the Blue Ridge 

Mountains from the early Holocene to the present.      
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INTRODUCTION 

 

Wetlands and lakes can provide useful information about the geologic, climatic, 

and ecological history of a region.  Layers of sediment accumulate in anoxic conditions, 

which promotes anaerobiosis and slows or prevents the decomposition of organic matter.  

These stratified sediments may hold plant, animal, and mineral matter that can contribute 

to our understanding of the history of the surrounding landscape.  Plant material such as 

pollen, spores, phytoliths and macrofossils can be extracted from the sediments and 

identified to reveal the plant communities present through time (von Post 1916). The 

plant communities represented in the record can then be used to reconstruct the 

paleoenvironment, based on our current understanding of modern vegetation patterns and 

their associated environmental factors (e.g. Davidson 1983, Delcourt 1979, Goman and 

Leigh 2004, Shafer 1986, Viau et al. 2006, Watts 1980).   

In the southern Appalachian region, there is a dearth of sediment records with 

which to describe the extent and duration of the climatic events of the Holocene (~11,700 

yr BP to the present) for the region (Driese et al. 2008).  This is mainly because the 

topography is not conducive to the natural development of wetlands or lakes, but also 

partly due to conversion of bottomlands to agriculture.  Panthertown Valley in Jackson 

County, North Carolina, is one of few sites in the southern Appalachian Mountains with 

high-elevation wetlands (Pittillo 1994).  One of these wetlands contains a sediment 

record that dates back approximately 8,000 years before present (yr BP; Table 2).   

Because there is limited information available on the climate of the southern 

Appalachian region during the Holocene, it is not known how long, or to what degree, 
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cold temperatures persisted following the last glacial period.  If cooler temperatures 

persisted through the early Holocene at Panthertown, boreal taxa typically found in 

northern regions may be present in the sediment record.  Alternately, if the climate 

warmed considerably by 8,000 yr BP, the record could indicate the presence of temperate 

deciduous forest taxa similar to those found at Panthertown today (e.g. Delcourt 1979, 

LaMoreaux 2009, Watts 1980).   

 My research provides an analysis of the vegetation history of the Panthertown 

Valley, which will increase our understanding of Holocene environmental conditions in 

the Blue Ridge Mountains.  Additionally, this study provides data on the successional 

dynamics of the bog itself, addressing a need specified by Weakley and Schafale (1994), 

who stated that there are no existing studies of the vegetation dynamics and successional 

patterns of Blue Ridge Mountain wetlands.  Specific objectives of my research are to 1) 

study the pollen record of the Holocene from a Panthertown valley core in order to 

narrow the gaps in the ecological history of the region, and to identify and discuss short 

termed vegetation changes; 2) reconstruct the paleoenvironment and climatic changes 

qualitatively from the plant taxa present in the pollen record; and 3) provide a record of 

the history of the Panthertown wetland. 
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SITE DESCRIPTION 

 

Panthertown Valley is an unusual high-elevation valley located in the Nantahala 

National Forest of North Carolina (Figure 1; Smith 1992).  It lies in the southeastern part 

of Jackson County, approximately 8 km northeast of the town of Cashiers, within the 

Blue Ridge Mountains physiographic province of the Appalachian Mountains.  The 

valley occupies approximately 2,550 ha and is distinctive amongst other high elevation 

valleys in the region because of its broad, sandy valley floor with slowly meandering 

streams surrounded by dramatic rock outcroppings (Smith 1992).  Some of these granitic 

domes rise up hundreds of feet from the valley floor (Pittillo 1994).   

Elevations in Panthertown Valley range from 1,036 m at the valley floor to 1,456 

m at the top of Toxaway Mountain (Smith 1992).  The mean winter (December – 

February) temperature at the nearest weather station (COOP:314788, Lake Toxaway, NC, 

elevation 939 m) is 2.8°C and the mean summer (June – August) temperature is 20°C 

(climate data from 1996 to 2012, NCDC).  Mean annual precipitation at Lake Toxaway is 

233 cm (climate data from 1961 to 2011 excluding 1995 and 1996, NCDC).  

The varied terrain surrounding the valley supports many forest community types 

(Table 1; Pittillo and Smith 1994).  Additionally, the valley and its surrounding rock 

outcrops and ridges have many ecologically unique areas, some of which have a high 

abundance of rare species (Smith 1992).  Rock outcrop communities on the mountains 

surrounding the valley have populations of the rare plant species Carex biltmoreana (W), 

Rhododendron vaseyi (SR), Trichophorum cespitosum (Scirpus cespitosus, SR), Packera 

millefolium (Senecio millefolium, T, FSC), and Chelone cuthbertii (SC, FSC; SR- 
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significantly rare, SC- special concern, W- watch list; NC Natural Heritage Program 

2012; T- threatened, E- Endangered, FSC- Federal Species of Concern).  Spray cliff 

communities host the rare liverwort, moss, lichen and plant species Plagiochila 

caduciloba (SR), Drepanolejeunea appalachiana (SC), Gymnoderma lineare (E), Carex 

biltmoreana (W), and Rhabdoweisia crenulata (SR).  The swamp forest – bog complex 

on the valley floor is a rare type of wetland community with Sphagnum-sedge mats, and 

Southern Appalachian bogs (as defined by Schafale and Weakley 1990 and Schafale 

2012) are also present (discussed in detail further on).   

 

 

 

 

 

 

Figure 1.  Location of Panthertown Valley (orange star) in Jackson County, North 

Carolina (state map by Rudersdorf 2010).   
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Table 1.  Forest communities found at Panthertown and their associated key species 

(from Schafale 2012 except where noted).   

Forest type Key species 

Northern Hardwoods Forest Quercus rubra, Acer rubrum, Amelanchier laevis, Betula 

lenta, Magnolia acuminata, Magnolia fraseri. (Pittillo 

and Smith 1994)  

Acidic Cove Forest Liriodendron tulipifera, Betula lenta, Tsuga canadensis,  

Acer rubrum, Betula alleghaniensis Rhododendron 

maximum Leucothoe fontanesiana 

Rich Cove Forest Aesculus flava, Fraxinus americana, Tilia americana 

var. heterophylla, Magnolia acuminata, Liriodendron 

tulipifera, Acer rubrum, Tsuga canadensis, Betula 

alleghaniensis 

Montane White Oak Forest Quercus alba, Kalmia latifolia 

Montane Oak-Hickory Pinus strobus, Quercus alba, Carya alba 

Pine-Oak/Heath Pinus pungens, Pinus rigida, Quercus Montana, Kalmia 

latifolia, Vaccinium pallidum 

Swamp Forest Bog 

Complex 

Tsuga Canadensis, Acer rubrum, Liriodendron tulipifera, 

Nyssa sylvatica, Rhododendron maximum, Sphagnum 

 

 

 

A distinguishing feature of Panthertown Valley is its extensive complex of 

wetlands. The wetlands occupy approximately 12 ha of the valley floor, making it one of 

the largest wetland sites in the mountains of North Carolina (Smith 1992).  There are 

three distinguishable wetland sites in the valley: Greenland Creek bog and Boardcamp 

Ridge bog, two small wetlands on the north side of the mouth of Greenland Creek, and 

the Panthertown Creek bog adjacent to Panthertown Creek near the middle of the valley 

(Smith 1992).  Frolictown Creek and Panthertown Creek drain the watershed to the 

southwest of the valley and feed the Panthertown Creek bog (Figure 2).  Total watershed 

area above the Panthertown Creek bog is 715 ha, and the elevation range within the 

watershed is 1115 to 1381 m. 
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Figure 2.  Watershed of the Panthertown Creek wetland.  Frolictown Creek watershed 

shown in purple and Panthertown Creek watershed shown in light green.  Entire 

watershed for the wetland (green dot) consists of teal, purple and light green areas.   

.   

 

 

The history of the wetlands is unclear.  In 1994, Weakley and Schafale 

speculated, “the Panthertown bog (Jackson County) may have formed as a result of 

logging and catastrophic fire, followed by beaver activity in the flat valley bottom of 

Panthertown and Frolictown creeks” (p. 378).  This hypothesis was supported in part by a 

lack of northern disjunct species in the wetland; although northern species at the southern 

limit of their ranges are found at the site, there are no recorded northern species that are 



14 
 
 

disjunct from their northern range, whereas northern disjunct species can be found at 

other wetland sites in the southern Blue Ridge mountains and have been interpreted as a 

sign of the antiquity of those sites (Weakley and Schafale 1994).  Logging of the valley 

occurred in the 1920s and ’30s and beaver activity has been noted in the area (Pittillo 

1974, Pittillo and Smith 1994), but radiocarbon dates indicate that the wetland has existed 

in some form since the early Holocene (Table 2).  It is possible, however, that the 

persistence of the bog is partly due to beaver activity (Pittillo and Smith 1994, Schafale 

and Weakley 1990), similar to Whiteoak Bottoms (Macon County, NC), a peatland 

recently described and dated to 14,000 yr BP, which is now maintained by groundwater 

and beaver activity (McDonald and Leigh 2011).   

The Panthertown bogs have been listed as examples of the Southern Appalachian 

bog, southern subtype community, based on their vegetation assemblage and site 

characteristics (as defined by Schafale and Weakley in the Classification of the Natural 

Communities of North Carolina 1990), but Pittillo and Smith (1994) mentioned that they 

may be closer to the northern subtype based on the presence of button sedge (Carex 

bullata).  In the more recent Guide to the Natural Communities of North Carolina 

(Schafale 2012), the wetlands would be classified as Southern Appalachian Bog, typic 

subtype, defined as open, acidic, permanently saturated wetlands occurring at mid-

elevations with extensive Sphagnum and abundant northern disjunct species, although no 

northern disjunct species have been noted at the Panthertown wetlands.  Despite the 

name, these wetlands are hydrologically and chemically similar to a poor fen because of 

inputs from groundwater sources (Tanner, pers. comm, Weakley and Schafale 1994).   
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The bogs of Panthertown valley are ecologically significant because of the rarity 

of wetlands in the region as well as the presence of rare species (Smith 1992, Warren II et 

al. 2004).  Six state listed plant species are found within this bog: marsh bellflower 

(Campanula aparinoides, SR), Cuthbert’s turtlehead (Chelone cuthbertii, SC), spinulose 

woodfern (Dryopteris carthusiana, W7), narrowleaf willowherb (Epilobium 

leptophyllum, W1), narrowleaf peatmoss (Sphagnum angustifolium, SR), and pretty 

peatmoss (Sphagnum fallax, SR; SR- significantly rare, SC- special concern, W- watch 

list; NC Natural Heritage Program 2012).   
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LITERATURE REVIEW 

 

 

 

Climate History 

 

The Quaternary Period is earth’s most recent geologic period, spanning the last 

2.58 million years (Gibbard et al 2010).  Much of it is characterized by cool temperatures 

and cyclic glaciation during what is known as the Pleistocene Epoch, with the last glacial 

event extending from approximately 110,000 to 11,500 years before present (yr BP; 

Clayton et al. 2006, Mayewski 2004).  This event saw multiple freeze-thaw cycles of the 

Laurentide ice sheet, which covered most of Canada, the Upper Midwest, and New 

England at its greatest extent in North America.  As a result of the most recent global 

cooling and corresponding glacial growth approximately 26,000 to 19,000 yr BP (Clark 

et al. 2009), northern species of plants and animals migrated further south.  The climate 

subsequently warmed, the glacier receded, and northern species often became restricted 

to high elevations in the Southern Appalachian Mountains because of their adaptations to 

cooler climates (Delcourt & Delcourt 1988).   

The warming trend is known as the Holocene Epoch, the current inter-glacial, 

extending from approximately 11,700 yr BP to the present (Walker et al. 2009).  The 

Holocene has been a period of relatively stable temperatures compared to the variability 

of the previous glacial period, and this climatic stability has allowed the development of 

modern civilization and the present distribution of plants and animals.  There have been 

some notable fluctuations, however, including the Hypsithermal period (a warming trend 

in the eastern United States from 9,000 to 5,000 yr BP) and the Medieval Climate 

Anomaly (a warm period from 1,050 to 750 yr BP), which was followed by the Little Ice 
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Age (600 to 300 yr BP; Driese et al. 2008, Mann et al. 2009).  Current research indicates 

that there have been many other climate fluctuations throughout the Holocene as well, 

some to the degree that they could have affected humans and ecosystems (Mayewski 

2004, Wurster and Patterson 2001, Viau et al. 2006).   

There are multiple lines of evidence supporting the hypothesized Hypsithermal in 

the continental United States, but it is not certain how wet it may have been.  There is 

evidence in the western United States that the Hypsithermal was much more arid than the 

early or late Holocene.  For example, in central Texas, conditions were drier from ~5,000 

to 2,500 yr BP than before that time or at present (Toomey et al. 1993), and conditions 

were also warm and dry during that time in the Great Plains (Meltzer 1999).  This arid 

period is also noted further east.  In northern Michigan, a warm, dry climate prevailed 

from 8,000 to 5,300 cal. yr BP (Delcourt et al. 2002), and on the coastal plain along the 

Gulf of Mexico, records indicate that the climate was more arid prior to the late Holocene 

(Otvos and Price 2001).   More locally, warmer and drier conditions are evident during 

the mid-Holocene from a site in southeastern West Virginia (Driese et al. 2005).  

Conversely, an increase in mixed mesophytic forest taxa during that time at Cliff Palace 

Pond in Kentucky suggests a warm-temperate climate with increased humidity (Delcourt 

et al. 1998).     

From the coastal plain in the southeast there is conflicting evidence of both aridity 

and increased moisture during the Hypsithermal (Goman and Leigh 2004, Leigh 2008, 

LaMoreaux 2009, Zayac et al. 2001).  In the sediment and fossil pollen record from a 

peat deposit on the coastal plain of Georgia, wetter conditions were recorded in the early 

to mid-Holocene (11,000 to 4,500 yr BP) followed by cooler, drier conditions 
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(LaMoreaux et al. 2009).  Similarly, a peat deposit from the upper coastal plain of North 

Carolina showed an increase in moisture and a higher frequency of flooding from ~9,000 

to 6,000 yr BP (Goman and Leigh 2004). In contrast, another study from coastal Georgia 

showed increases in prairie taxa up to ~4,000 yr BP, indicating increased aridity (Zayac 

et al. 2001).            

 In the ridge and valley province of southeastern Tennessee, a soil profile studied 

by Driese et al. (2008) suggests that the Hypsithermal was not simply a static warm 

period, but had multiple warming/drying episodes of ~300 years spanning the period 

~6,500 to ~5,000 yr BP.  In northeastern Tennessee, also in the ridge and valley province, 

carbonate samples from freshwater drum (Aplodinotus grunniens) sagittal otoliths were 

used to evaluate climate change from 5,500 yr BP to the present, and results suggest a 

gradual decrease in maximum summer temperatures from 5,500 to ~1,000 yr BP with 

variation on the scale of one or two hundred years (Wurster and Patterson 2001).   

 Brief climate anomalies of 100 to 300 years may or may not be reflected as a 

change in forest composition because of the time it takes for forest composition to shift in 

response to a change in climate (Wurster and Patterson 2001, Delcourt and Delcourt 

1987).  Duration and magnitude of changes in temperature, precipitation and other 

atmospheric influences determine the degree to which regional vegetation may change, 

and therefore the degree to which pollen records indicate the change (Webb 1986).  

Webb (1986) describes two types of vegetation response to climate shifts:  Type A is an 

immediate response, "...in which range extensions and soil development are not necessary 

for the vegetation to reach its new composition;" type B is a "full" response, "...in which 

range extensions and soil development are key factors.”  A type A response is considered 
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to be on the scale of 100-300 years (Webb 1986, Delcourt and Delcourt 1987).  The 

Southern Appalachian landscape is more likely to have had a type A response to any 

major climate shifts during the Holocene both because of the antiquity of the mountains 

and because the southern limits of glaciation throughout the Pleistocene were far north of 

the Southern Appalachians and therefore disturbance to the soil or seed bank would not 

have been minimal.   

Vegetation History 

The southern Appalachian spruce-fir forest is thought to be a legacy of the last 

glacial period (Delcourt and Delcourt 1988).  At the greatest extent of the Laurentide ice 

sheet (~19,000 yr BP), a forest of spruce, pine and fir dominated at low elevations at least 

as far south as 34°N latitude, while at higher elevations, tundra species and conditions 

were dominant (Delcourt and Delcourt 1985).  Following the retreat of the glacier, the 

low elevation spruce and fir forest migrated north and up in elevation as temperatures 

warmed, establishing the current spruce-fir forest at the highest elevations in the Southern 

Appalachian mountains by 6,000 yr BP (Delcourt 1985).  During the late Holocene (after 

4,000 yr BP), spruce and fir appear to have increased in range, indicating a shift to cooler 

temperatures (Delcourt 1985).  

The presence of Picea (spruce) or Abies (fir) indicates moist to wet conditions, 

with high rainfall, low temperatures, dense cloud cover and an increase in soil water-

holding capacity (Schafale and Weakley 1990).  Other major species of the region, such 

as Quercus and Pinus, tolerate a wider range of environmental conditions and are found 

in cool or warm and mesic or xeric sites (Schafale and Weakley 1990).   As such, they are 

not as diagnostic for reconstructing climate history as Picea or Abies.  Further, although 
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individual species of Quercus and Pinus have particular environmental niches, 

identifying pollen to species is not within the scope of this thesis, given the constraints of 

time and expertise. 

Picea rubens (red spruce) and Abies fraseri (Fraser fir) are the dominant species 

of the Southern Appalachian spruce-fir forest, typically found at elevations above 

approximately 1,350 m (Schafale and Weakley 1990, White et al. 1993).  Picea can be 

present in pollen records when Abies is not because they have different elevation ranges.  

In the Southern Appalachians, Picea occurs as low as 1,100 m in elevation and becomes 

dominant at 1,700 m, while Abies does not occur until 1,700 m and becomes dominant at 

1,850 m (White et al. 1993).  This indicates that Picea can tolerate warmer and/or drier 

conditions than Abies due to greater rates of evapotranspiration at lower elevations, and 

therefore is useful as an indicator of the transition from deciduous hardwoods forest to 

spruce-fir forest (or the reverse).   

Other examples of extant forest types in the southern Appalachians that are 

dependent on cool temperatures are northern hardwoods forest and high-elevation oak 

forest (Schafale and Weakley 1990).  The northern hardwoods forest is a mix of 

mesophytic trees, dominated by Fagus grandifolia (American beech), Betula 

alleghaniensis (yellow birch), and Aesculus flava (yellow buckeye, Schafale and 

Weakley 1990).  High elevation oak forests are typically dominated by either Quercus 

rubra (red oak) or Quercus alba (white oak).   
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Figure 3.  Location of Panthertown Valley in western North Carolina (denoted by 

triangle) and surrounding regional peatland sites with Holocene pollen records (A. Cliff 

Palace Pond, KY, B. Anderson Pond, TN, C. Lake in the Woods, TN, D. Horse Cove 

Bog, NC, E. Flat Laurel Gap, NC, F. Nodoroc site, GA, G. White Pond, SC).  Numbers 

for each site show the appearance and duration of Picea pollen in thousands of years 

before present.  For example, Picea pollen was present at site B before 5,000 yr BP, 

while at site C there was no trace of Picea in the record, which spans the last 6,600 years.  

 

 

 

A high-elevation bog at Flat Laurel Gap, North Carolina (1,500 m elevation; 

Figure 3, Site E) contains a pollen record of the last 3,340 years that describes the history 

of surrounding heath balds (Shafer 1986).  The record shows an oak-chestnut forest with 

low percentages of Abies and Picea pollen present throughout the history of the bog.  

Although the bog is situated in the northern hardwood forest near its ecotone with the 

spruce-fir forest, there is currently no Abies in the immediate vicinity.  The persistence of 

Abies and Picea led Shafer (1986) to conclude “the Hypsithermal may have been a 

relatively minor event in the Southern Appalachians.”   
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At Horse Cove Bog, North Carolina (887 m elevation; Figure 3, Site D), which 

describes the last 3,900 years, Quercus and Castanea were the dominant canopy species 

throughout the record until the chestnut blight in the early 1900s significantly diminished 

the Castanea population (Delcourt and Delcourt 1997, Hepting 1974).  Abies and Picea 

are not present in the record, indicating that temperatures had warmed and/or moisture 

had decreased by 3,900 yr BP.  

Although the Nodoroc site in northeastern Georgia (Figure 3, Site F) lies in the 

Piedmont physiographic province at a much lower elevation (280 m) than Flat Laurel 

Gap or Horse Cove bog, there is evidence that Picea was present there until relatively 

recently (Jackson and Whitehead 1993).  The Nodoroc site contains a record that 

describes 26,000 to 22,000 yr BP as well as the last 3,600 years (dates approximate and 

uncertain from 22,000 to the present, Jackson and Whitehead 1993).  The arboreal pollen 

assemblage from 3,600 yr BP to the present shows dominance by Pinus and Quercus and 

is similar in assemblage to records from Alabama and north Georgia, although it differs 

in that Picea is occasionally present (Jackson and Whitehead 1993).   

Interestingly, Picea and Abies pollen are absent throughout the fossil pollen 

record from Lake in the Woods (elevation 530 m), on the western side of the Great 

Smoky Mountain National Park in Tennessee, which spans the last 6,600 years (Davidson 

1983; Figure 3, Site C).  Quercus, Liquidambar, Salix, Castanea and Pinus were the 

major species present at Lake in the Woods from 6,600 yr BP to the present.   

Other southeastern fossil pollen sites show Picea pollen persisting to different 

points in time during the Holocene.  At Anderson Pond, Tennessee (Figure 3, Site B), 

Picea disappears at 5,000 yr BP (Delcourt 1979), althought the Holocene dates at this site 



23 
 
 

are in question and therefore the pollen record is unreliable (Liu et al. 2013).  At Cliff 

Palace Pond in Kentucky (Figure 3, Site A), it drops out of the record between 7,300 and 

4,800 yr BP (Delcourt et al. 1998), and at White Pond, South Carolina (Figure 3, Site G), 

it disappears at 12,000 yr BP (Watts 1980).  Thus, presence of Picea is highly variable 

among the sites surrounding Panthertown.   

Human Influence 

 At sites near Panthertown, evidence of human influence on the environment 

began in the Late Archaic period (roughly 6,000 to 3,000 yr BP; Delcourt et al. 1986, 

Delcourt and Delcourt 1997).  Horse Cove Bog near Highlands, North Carolina, is the 

nearest site with long term evidence of human impact.  Charcoal and pollen records 

indicate that selective use of fire had an influence on the forest assemblage (Delcourt and 

Delcourt 1997).  The Horse Cove Bog pollen profile revealed that “…during most of the 

last 4,000 years Native Americans played an important role in determining the 

composition of southern Appalachian vegetation through selective use of fire” (Delcourt 

& Delcourt 1997).  The paleoecological record in the Little Tennessee River Valley in 

eastern Tennessee provides evidence of human impact over the last 10,000 yr BP, with a 

marked increase in impact at 4,000 yr BP with the introduction of agricultural crop 

species (Delcourt et al. 1986).     

 There may be evidence of anthropogenic disturbance at Panthertown, beginning 

in the late Archaic cultural period (5,000 to 3,000 yr BP).  An overall increase in non-

arboreal pollen along with an increase in “weedy” species from a wetland pollen record 

may indicate anthropogenic disturbance (Behre 1981).  Taxa that would indicate the 

presence of humans include weedy herbaceous species such as Ambrosia (ragweed), 



24 
 
 

Chenopodium (goosefoot), Portulaca (purslane), Poaceae (grasses), Cyperaceae (sedges) 

or agricultural crop species such as Zea mays (maize) or Cucurbita species (squash) 

along with increased abundances of disturbance-favoring woody taxa such as Pinus and 

Liriodendron tulipifera. 
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METHODS 

 

 I extracted one soil core using a Dutch auger from the Panthertown Valley fen at 

approximately 35° 9' 59.824" N, 83° 1' 30.385" W in November, 2011.  The core reached 

alluvial basal sediments at 173 cm depth.  After extraction, the core was wrapped in 

plastic wrap to prevent contamination by modern pollen and placed in PVC tubes for 

transport to WCU.  In the lab, I unwrapped the core and, using a clean knife, cut a layer 

approximately one cm deep off the length of the core to expose the uncontaminated 

interior.  I took samples of approximately 2 cm
3
 at 5 cm intervals for a total of 32 

samples.  Two samples of approximately 4 cm
3
 were taken at depths of 77.5 cm and 

147.5 cm, dried, and sent to Beta Analytic for radiocarbon dating.  The remaining 

samples were dried at room temperature in open polyethylene centrifuge tubes under a 

fume hood and stored in the Geosciences Department.   

 Samples were processed according to standard techniques modified from Faegri 

and Iversen (1989; see Appendix A).  Seventeen of the 32 samples were analyzed for 

pollen using a Bausch & Lomb compound microscope.  Transects across each slide were 

spaced to account for the possibility of grains migrating by size toward the perimeter of 

the cover slip.  Pollen was identified at 400x to the lowest taxonomic level possible, 

using modern pollen reference collections and published pollen guides and keys (Bassett 

et al. 1978, Hesse et al. 2009, Kapp et al. 2000, McAndrews et al. 1973, Moore et al. 

1991).  Reference pollen was provided by Dr. Sally Horn at the University of Tennessee, 

Knoxville, and Dr. Chad Lane at University of North Carolina, Wilmington; additional 



26 
 
 

reference pollen was produced at WCU for this research.  For each sample, counting of 

grains and spores proceeded until 300 arboreal pollen grains were counted.   

 Calculating pollen influx rates can be helpful because the comparison of absolute 

pollen numbers between samples gives an indication of pollen concentrations resulting 

from differential deposition and deterioration of pollen (Hall 1981).  Pollen influx rates 

were calculated using the following equation, with indeterminate and unknown grains 

included in the fossil pollen sum:  

 

                    
  
    

  (
                     
                     

)                      

                
  

 

Samples from the Panthertown core were analyzed for carbon and nitrogen 

content and isotopes.  These analyses were run on a Costech Elemental Analyzer coupled 

to a Thermo Delta V Plus Mass Spectrometer at the University of North Carolina 

Wilmington. 

Data Analysis 

Stratigraphic pollen diagrams were produced with the C2 program (version 1.7.4, 

Juggins 2013).  An NMDS (Non-metric Multidimensional Scaling) ordination was used 

to evaluate the relationships in vegetation among samples using the Sorenson (Bray-

Curtis) distance measure.  From these relationships I delineated pollen assemblage zones.  

An Indicator Species Analysis (ISA) was used to show the influence of each taxon on the 

pollen assemblage zones.  NMDS and ISA were performed using PC-ORD 5.0 (McCune 

and Mefford 1999).   
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RESULTS 

 

 

 

Chronology 

 

At 77.5 cm depth, the 2σ calibrated radiocarbon age of the core was 5312 - 5466 

yr BP; at 147.5 cm depth, the calibrated age was 7983 - 8167 yr BP (Core 4, Table 2, 

Figure 4).   These results corroborate those of three previously dated cores from the 

Panthertown wetland, all of which indicate continuous deposition throughout the last 

8,000 yr BP (Table 2, Figure 4; Tanner, unpublished).  From 8,067 to 5,405 cal yr BP 

(147.5 to 77.5 cm, median calibrated ages), the sedimentation rate was 0.026 cm/yr.  

From 5,405 cal yr BP to the present (77.5 to 0 cm), the sedimentation rate was 0.014 

cm/yr.  Sedimentation rates were calculated for Core 4 using the median calibrated ages 

and the depth; sedimentation rates were not calculated for Cores 1, 2 and 3.   
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Table 2.  Radiocarbon dates for Panthertown cores 1-4.  Ages were calibrated using 

OxCal v.4.2 (IntCal13).  

Depth 

(cm) 

Conventional 

Radiocarbon 

Age (yr BP) δ13C 

Calibrated 2σ 

range 

 (cal. yr BP) 

Calibrated 2σ 

range median  

(cal. yr BP) 

Dated  

material 

Laboratory 

 number 

       Core 1 

      152 7150±50 -25.3 8149 to 8144 7973 peat β-242155 

   

8106 to 8095 

   

   

8053 to 7916 

   

   

7905 to 7854 

   Core 2 

      

25 1740±40 -26.1 1777 to 1758 1651 

charred 

material β-250456 

   

1739 to 1551 

   

50 4030±40 -21.9 4784 to 4766 4497 

organic 

sediment β -250457 

   

4615 to 4416 

   

95.5 4950±70 -23.4 5892 to 5804 5693 

organic 

sediment β -250458 

   

5796 to 5779 

   

   

5773 to 5587 

   142.5 5850±50 -26.6 6784 to 6529 6666 wood β -250459 

   

6519 to 6507 

   

158.5 4840±50 -26.7 5697 to 5694 5584 

charred 

material β -250460 

   

5662 to 5467 

   158.5 3910±40 -26.3 4499 to 4187 4343 peat β -251927 

   

4440 to 4232 

   

   

4197 to 4183 

   Core 3 

      

71 4550±40 -21.4 5434 to 5423 5165 

organic 

sediment β -295385 

   

5320 to 5211 

   

   

5196 to 5049 

   136.5 6870±40 -26.5 7790 to 7619 7701 peat β -295386 

 

Core 4 

      

77.5 4650±30 -23.2 5466 to 5345 5405 

organic 

sediment β -317062 

   

5335 to 5312 

   

147.5 7250±40 -26.5 8167 to 7983 8076 

charred 

material β -317063 
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 Figure 4. Age-depth model for Panthertown Valley, North Carolina.   

 

Core Description 

 The following core description is from a core pulled within a meter of the site of 

Core 4 and is used here to illustrate the stratigraphic characteristics of the Panthertown 

bog sediments (Table 3).  The core was almost all highly decomposed organic-rich 

sediment, with a loose layer of peat and roots near the surface and gravelly alluvium at 

the bottom.  In Core 4, alluvium was reached at 170 cm.  
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 Table 3.  Panthertown bog sediment description.  Depths correspond to those in Core 4      

within 5 cm.  

Depth in cm below 

sediment surface Sediment description Munsell color 

0 - 19 High water content.  Peat with roots 

and identifiable fibers. 

10 YR 2/2 

19 - 63.5 Organic-rich muck with infrequent 

identifiable fibers. 

10 YR 2/1 

63.5 - 75.5 Higher mineral content.  Mucky 

mineral.  Silty clay loam. 

10 YR 2/1 

75.5 – 145 Silty clay loam.  Mucky mineral.  

More micaceous with depth.  

Mineral rich throughout. 

Gley 1 2.5/5G 

145 - 160 Loam.  Micaceous mucky mineral. Gley 1 2.5/5G 

160 - 169 Alluvium with high water content. 
 

 

 

Palynology   

 

 Pollen grains were mostly identified to the genus or family level. Identifications to 

the species level were rare because species within a family can be nearly identical, 

making their identification problematic.  The rates of pollen influx throughout the 

sequence ranged from 1,508 to 41,797 pollen grains/cm
-2 /

yr
-1

 (Appendix B).  Thirty 

pollen taxa were positively identified (Figure 3). Only two taxa, Quercus and Alnus, were 

present throughout all core samples.  

 Arboreal pollen constituted over 50% of the total counts of pollen and spore taxa in 

all samples but one (see Appendix C for pollen counts).  From 165 to 125 cm (~8,744 to 

~7,217 cal. yr BP), herb and shrub pollen accounted for approximately 20 to 30% of the 

total identified pollen while arboreal pollen accounted for the rest.  At 115 cm (~6,836 
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cal. yr BP), herbs increased, making up just over 50% of the total pollen.  At that depth, 

there was also a sharp increase in both the total unidentified grains (393; this category 

includes both unknown and unidentifiable grains) and the Lycopodium tracer spores 

(287), indicating extensive degradation of the sediment.  At 105 cm (~6,454 cal. yr BP), 

very few Lycopodium spores were counted (7), and the total unidentified grains also 

dropped (96), which indicates excellent preservation of pollen in the sediment at that 

depth.  From 105 to 65 cm (~6,454 to ~4,523 cal. yr BP), herb and shrub pollen 

accounted for 30 to 40% of the total pollen sum.  At 55 cm (~3,818 cal. yr BP) there was 

an increase in herb and shrub pollen, bringing the percentage to about 45%, with a slight 

increase in total unidentified grains but no change in the number of Lycopodium grains 

counted, indicating good preservation of pollen in the sediment.  The increase in 

herbaceous pollen is due to increases of both Poaceae and Asteraceae pollen.  From 45 to 

5 cm (~3,112 to ~ 291 cal. yr BP), herb and shrub pollen comprised about 25% of the 

total identified pollen.  Pollen degradation during that period appears moderate, as both 

unidentified grains and Lycopodium grains counts were moderate.   

 NMDS (non-metric multidimensional scaling) ordination revealed three clusters of 

samples, which were used to delineate stratigraphic pollen zones (Figures 5,6,7).  In the 

ordination graph, the samples are plotted so that distances between them in the graph 

reflect the differences between them in taxonomic richness and abundance. 

 Organic carbon, C/N, and δ
13

C values all show increases between ~7,000 to 

~3,500 cal. yr BP (Figure 7).  The organic carbon content ranges from 0.07 to 33.7%, 

C/N ratio values range from 17.1 to 34.3, and δ
13

C values range from -27.8 to -22.8‰.   
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Figure 5.  NMDS ordination plot illustrating the differences in vegetation assemblages 

between samples.  Three groups of data points (05-45 cm, 55-115 cm, and 125-165 cm) 

were delineated to assist in interpretation of pollen results.   
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Figure 6.  Arboreal pollen abundances as percentages of total arboreal pollen. 



 
 
 

 

3
4
 

 

              

 

 

Figure 7.  Non-arboreal pollen abundances, pollen influx rates, percent total organic carbon, carbon to nitrogen ratios, and organic 

carbon isotope composition (δ
13

C).  Non-arboreal pollen abundances as percentages of total identified pollen and spores, not including 

Lycopodium clavatum marker spores.  Unidentified pollen and indeterminable grains are percentages of total pollen and spores.  

Pollen influx rates are as grains/cm
2
/year.  Total organic carbon and carbon to nitrogen ratios were determined from elemental analysis 

of organic material in bulk sediment samples.  Organic carbon isotope composition is relative to the Vienna Pee Dee Belemnite 

standard. 
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Pollen percentages for arboreal taxa were calculated from the arboreal pollen sum, 

while pollen percentages for shrub and herbaceous taxa were calculated from the total 

identified pollen sum (arboreal, shrub and herbaceous pollen) to illustrate the changes in 

community composition over time.  An indicator species analysis (ISA) based on the 

zones delineated by NMDS showed how much each taxon in a zone contributed to the 

zone designation (Table 4).  

 

Table 4.  Taxa identified by ISA as significantly contributing to the zone designations 1, 

2 and 3 as indicated by the ordination.   

 

 

 

 

 

Pollen Zone 3: 120 cm to 165 cm, 7,027- 8,744 cal yr BP 

 The zone 3 pollen assemblage is co-dominated by Castanea (45.3%) and Quercus 

(37.9%), with moderate contributions from Alnus (5.5%), Pinus (3.5%), Betula (2.5%), 

Acer (2.1%), Carya (1.3%).  Nyssa, Tsuga, Juglans, and Salix are all present but each 

Zone Taxon p-value 

1 Sphagnum 0.0002 

 Salix 0.0004 

 Ilex 0.0006 

 Ericaceae 0.0008 

 Betula 0.001 

 Tsuga 0.0012 

2 Quercus 0.0002 

 Thalictrum 0.0002 

 Poaceae 0.0004 

 Ferns 0.0056 

 Asteraceae 0.0064 

3 Castanea 0.001 
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comprises less than 1% of the arboreal pollen sum.  The herb and shrub assemblage 

shows moderate inputs from Ericaceae (2.5%), ferns (5.2%), Poaceae (3.1%), and 

Asteraceae (4.1%).  ISA showed that Castanea was the determining factor in the zone 

designation (p< 0.01). 

Pollen Zone 2: 50 cm to 120 cm, 3,465- 7,027 cal yr BP 

 Zone 2 shows a shift to a pollen assemblage dominated by Quercus (78.0%), with 

much less influence from Castanea (1.3%).  Arboreal taxa present in moderate to low 

amounts are Alnus (8.0%), Betula (4.8%), Acer (2.0%), Salix (1.9%), Carya (1.1%), 

Pinus (1.0%), and Nyssa (1.0%).  Tsuga, Liquidambar, Juglans, Ostrya/Carpinus 

(counted in one category because their pollen is morphologically indistinguishable), and 

Ilex each comprise less than 1% of the arboreal pollen sum.  The herb and shrub pollen 

assemblage accounted for over 30% of the total pollen sum.  The major contributions 

were from the following taxa: Poaceae (10.6%), ferns (7.8%), and Asteraceae (7.0%), 

Ericaceae (2.1%), and Thalictrum (1.8%).  ISA determined that Quercus, Thalictrum, 

Poaceae, Asteraceae, and Ferns all strongly influenced this zone designation (for each 

taxa, p<0.01). 

Pollen Zone 1: 0 cm to 50 cm, 0 - 3,465 cal yr BP 

  Quercus is the dominant pollen species in Zone 1 (44.0%), but many other taxa 

contributed in moderate amounts to the arboreal pollen sum, such as Betula (18.0%), 

Castanea (8.7%), Salix (7.8%), Alnus (5.0%), Tsuga (3.8%), Pinus (3.8%), Acer (3.6%), 

Ilex (2.2%), and Nyssa (1.0%).  The following taxa were present in this zone but each 

was less than 1% of the arboreal pollen sum:  Ostrya/Carpinus, Carya, Liquidambar, 

Ulmus, Tilia, Juglans, and Fagus.  Herb and shrub taxa account for more than 30% of the 
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total pollen sum.  Moderate contributions were found from ferns (12.4%), Ericaceae 

(8.4%), Corylus (4.0%), Asteraceae (3.6%), Sphagnum (1.9%) and Poaceae (1.9%).  ISA 

determined that Sphagnum, Ericaceae, Salix, Ilex, Betula, and Tsuga strongly influenced 

this zone designation (p< 0.01 for all taxa).   
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DISCUSSION 

 

 The Panthertown Valley bog provides a continuous record of sedimentation from 

~8,935 cal. yr BP to the present. Relatively homogeneous organic-rich sediment and 

sedimentation rates indicate the persistence of the wetland and a geologically stable 

landscape in the valley throughout its history.   As natural hydrologic variation has been 

shown to have a greater influence on sediment yield than large climate events or forest 

succession in small mountain streams (Royall 2000), greater sedimentation rates in the 

older part of the core (0.026 cm/yr until 5,405 cal. yr BP) compared to the younger part 

(0.014 cm/yr after 5,405 cal. yr BP) may mean there was a shift from higher precipitation 

rates to lower precipitation rates.  On the other hand, the shift toward decreased 

deposition may be a function of the infilling of the wetland site over time. 

A shift toward more positive values of the Carbon/Nitrogen (C/N) ratio and δ
13

C 

between ~7,000 to ~3,500 cal. yr BP support decreased precipitation during the mid-

Holocene at Panthertown.  The C/N ratio measures relative abundances of organic matter 

from algae and terrestrial plants, and therefore is used to assist in determining the extent 

of moisture/precipitation (Meyers and Teranes 2001, Meyers 1997).  Vascular land plants 

have C/N ratios of 20 or more, while algae typically have C/N values between 4 and 10; 

this is due to the abundance of cellulose in terrestrial plants but not in algae, as well as 

the abundance of protein in algae but not in terrestrial plants (Meyers and Teranes 2001, 

Meyers 1997).  In the Panthertown core, high, but variable, C/N values (mostly above 25) 

are evident from the oldest sediment until ~3,500 cal. yr BP.  In general, this indicates 

higher influxes of organic material from vascular land plants during that time.  The 
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greatest variability is seen during the mid-Holocene, ~7,000 to ~3,500 cal. yr BP, 

indicating increased fluctuations in moisture during that period, possibly on the scale of a 

few hundred years.  There is then a steady decline in the C/N ratio until ~1,000 yr BP, 

indicating an increasingly wet period, after which there is a slight increase leading up to 

the present.   

δ
13

C values reflect the proportion of C3 to C4 plants in the landscape.  C3 plants 

include most trees, shrubs, and herbaceous plants, as well as cool-season grasses, while 

C4 plants are mostly monocots (warm-season grasses and some sedges) and some dicots 

(Ehleringer et al. 1997).  The proportion of C3 to C4 plants present at a particular site is 

determined by climatic or environmental factors; for example, to a certain degree, 

increased aridity, temperature, or salinity, as well as decreased atmospheric CO2 are 

known to increase the presence of C4 plants in the landscape (Clark et al. 2002, 

Ehleringer et al. 1997, Nelson et al. 2004).  Increases in C4 monocots are associated 

primarily with increased temperature, while increases in C4 dicots are primarily 

associated with increased aridity (Ehleringer et al. 1997).  Overall, increases in C4 plant 

abundance causes δ
13

C values to become more positive, because C3 plants have a mean 

δ
13

C value of -27‰, while C4 plants have a mean δ
13

C value of -13‰ (Ehleringer et al. 

1997, O’Leary 1988).  The δ
13

C values for Panthertown ranged from -27.8 to -22.8‰, 

and were likely due to organic inputs from the surrounding deciduous forest. An overall 

increase mid-Holocene suggests a shift toward greater inputs of organic matter from C4 

plants during that time.  Two large increases in δ
13

C values during the mid-Holocene 

correspond with similar increases in the pollen influx of Poaceae, which is expected if the 
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Poaceae increase is dominated by C4 plants.  This result provides support for a warm 

and/or dry mid-Holocene Hypsithermal in the Blue Ridge Mountains. 

As total organic carbon is a measure of the abundance of organic matter in 

sediments (Meyers and Teranes 2001), a gradual increase in total organic carbon from 

0.07% at a depth of 170 cm to 33.7% at a depth of 0 cm indicates the gradual decay of 

organic matter in the wetland over time.  Increased variability in the percentage of 

organic carbon during the mid-Holocene indicates greater variability in either 

sedimentation of organic matter, e.g. because of increased production of biomass, or in 

the rate of decomposition of that matter as a result of changes in climatic factors (Meyers 

1997).   

 The size of the basin surrounding a site determines the contributions of pollen 

from different sources to the basin (e.g. directly from the plant, local wind effects from 

the surrounding vegetation, flowing water from the watershed, or wind influx from a 

larger regional area; Jacobson and Bradshaw 1981):  the larger the area, the greater the 

ratio of regional and upland pollen to local pollen (Jacobson and Bradshaw 1981).  

Regional pollen is defined as derived from plants at several hundred meters or greater 

distance from the basin; extra-local pollen is defined as 20 to several hundred meters 

from the basin, and local pollen is defined as within 20 m of the basin (Jacobson and 

Bradshaw 1981).  Because of the large area of the basin surrounding the Panthertown 

wetland (715 ha), the pollen profile is likely composed of regional taxa, with local and 

extralocal influences making up less than 15% of the total pollen counts. 

 The presence of Alnus pollen throughout the core indicates that the wetland was 

present in the valley for the last ~9000 yr BP.  Alnus serrulata is a large shrub/small tree 
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that prefers wet or moist sites and is listed as a facultative to obligate wetland species 

(Lichvar 2013); it is currently found at Panthertown valley and throughout North 

Carolina (Smith 1992, Weakley 2012).  It is the only species of alder commonly found 

today in the region, but it is possible that other alders were present in the past.  For 

example, Alnus viridis, a typically northern species of alder, is now found at a few sites in 

western North Carolina and northeastern Tennessee above 1600 m, in mesic to xeric 

situations (Weakley 2012).  Although the presence of alder in the core is likely due to 

Alnus serrulata in and around the wetland, it is possible that Alnus viridis was present at 

Panthertown at some point.   

 Picea (spruce) and Abies (fir) were not found in the pollen record, which suggests 

that either the boreal forest had moved from the area around Panthertown Valley to 

higher elevations before ~9,000 yr BP, or it was never present in the Panthertown area.      

Pollen throughout the core indicates the presence of hardwood mesic to somewhat drier 

forests surrounding Panthertown Valley through most of the Holocene, as described 

below.   

Pollen Zone 3:  8,744-7,027 cal yr BP 

 The zone 3 pollen diagram is co-dominated by Quercus and Castanea pollen with 

minimal inputs from Alnus, Pinus, Betula, Acer, Carya, Nyssa, Tsuga, Juglans, and Salix. 

The understory has moderate inputs from ferns, Asteraceae, Poaceae, and Ericaceae.  

This suggests a chestnut-oak dominated forest with low diversity.  Chestnut most often 

grows on well-drained, subxeric to mesic soils and is historically known as an upland 

ridgetop dominant although it can tolerate a wide range of soils (Paillet 2002).  Oak has a 

similar range of moisture tolerance, and is primarily associated with xeric to mesic sites 
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in the Southern Appalachian mountains (Weakley 2012).  The fern presence is likely due 

to the wetland area and moist seeps surrounding the valley.  Poaceae and Asteraceae both 

have hydrophytic, mesophytic and xerophytic species, making them less diagnostic of a 

particular moisture regime than other taxa, but both families tend to prefer an open 

habitat.  The presence of these taxa is most likely from the forest edge at the valley floor 

or around the wetland, or possibly also from rock outcrop communities such as those 

surrounding Panthertown today.  Overall, the vegetation assemblage indicates a 

moderately dry situation from 8,744 to 7,027 cal yr BP. 

 At the end of this period there was a rapid decrease in the presence of chestnut, 

which remained a minor influence in the canopy for ~3,500 years.  No evidence exists of 

corresponding rapid declines in chestnut at other mid-Holocene dated sites.  There are 

many possible explanations for the decline of chestnut at the Panthertown site, such as 

climate change, a pathogen or insect blight, or a combination of the two, and ascribing 

this decline to a particular cause is beyond the scope of this thesis.   

Pollen Zone 2: 7,027- 3,487 cal yr BP 

 In zone two, decreases in pine and chestnut, along with increases in maple, birch, 

ferns, willow and alder, suggest a wetter climate, although the increase in bottomland 

taxa could be due to increased openness in and around the valley, possibly as a result of 

increased warmth and/or aridity.  The decrease in pine pollen supports the idea of a 

wetter climate because extant pines in the mountains typically prefer xeric sites, although 

some will tolerate moist sites (Pinus rigida, P. pungens, P. strobus, P. virginiana and P. 

echinata; Weakley 2012).  Additionally, the two common species of willow now found at 

Panthertown and throughout North Carolina are both obligate wetland species (Salix 
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nigra and S. sericea; Lichvar 2013, Smith 1992, Weakley 2012).  Salix humilis, an 

uncommon species in North Carolina, is also present in the valley today and is a 

facultative species, able to grow in both moist sites and dry upland areas (Lichvar 2013, 

Weakley 2012).  The birch, maple, and hickory pollen present in zone two may all be 

floodplain species, as all three genera are typically bottomland, riverbank or moist cove 

plants (Weakley 2012).   

 The increases in oak, asters and grasses in zone two may indicate an expansion of 

warm or dry conditions.  These three taxa tolerate a wide range of moisture conditions 

and have many extant species in the mountains, making it difficult to pinpoint a moisture 

regime based on their presence or absence; however, all have a greater abundance of 

species in warmer climates, and their expansion during this time may be due to warmer 

temperatures.  As noted earlier, asters may also indicate an open situation at the forest 

edge or around the wetland.  Moderate presence of pine, chestnut, and blackgum (Nyssa) 

along with dominance by oak suggests well-drained slopes and ridges, which agrees with 

the steep slopes surrounding the valley.     

Pollen Zone 1: 3,487- 0 cal yr BP 

 The most recent forest is much more diverse than previous vegetation.  Presence 

of basswood and beech, and the overall diversification of the forest, suggest a shift 

toward cooler temperatures and increased precipitation.  High percentages of ferns and 

willow as well as increases in alder and Sphagnum indicate the valley floor was 

consistently wet.  The extant hemlock, maple and holly species in the mountains are all 

facultative wetland species, making them less diagnostic of a particular climate regime 

than other taxa (Lichvar 2013, Weakley 2012).  The pine, chestnut and blackgum 
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(Nyssa), along with the dominance by oak, are probably from the drier upland slopes and 

ridges.  

Disturbance  

 Approximately 15 km from Panthertown Valley at Horse Cove Bog, increases in 

the abundance of chestnut and oak during the late Archaic and Woodland cultural periods 

indicate higher rates of sprouting due to frequent fire (Delcourt and Delcourt 1997).  An 

overall increase in vegetation richness between 3,000 and 4,000 yr BP led the authors to 

“infer that this regime of wildfire use was an intermediate-scale disturbance regime that 

promoted a heterogeneous mosaic of different vegetation types” (Delcourt and Delcourt 

1997).   

Similarly, the intermediate disturbance hypothesis might also explain the 

diversification of taxa in the late Holocene at Panthertown. Increases in birch and maple 

in zone 1 may indicate increased wind disturbance at Panthertown, as both taxa favor 

open disturbed sites (Frelich 2002).  The Panthertown core was not analyzed for charcoal 

and the pollen assemblage is at too coarse a resolution to allow inferences about possible 

agricultural disturbance.  Key taxa that indicate crop cultivation are in the Asteraceae and 

Poaceae, and I was not able to differentiate genera within those families. 
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CONCLUSION 

 

Panthertown Valley during the Holocene appears to have been surrounded by a 

temperate mixed mesophytic forest, and data presented suggest the continuous presence 

of the wetland in the valley throughout this period.  Corresponding increases in Poaceae 

pollen and δ
13

C values, increased deposition of terrestrial organic matter evidenced by the 

C/N values, and the pollen record from ~7,000 and ~3,500 yr BP all support a warm and 

possibly drier Hypsithermal in the Southern Appalachian mountains.  From ~3,500 yr BP 

to the present, diversification of the forest and an increase in northern hardwoods taxa, 

along with lower C/N values, indicates increased moisture and cooling in the late 

Holocene. 
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APPENDIX A 

 

 

Pollen Processing Methods 

 

 Samples were ground with a mortar and pestle, and 0.5 cm
3
 of material was 

placed in a clean 15 ml centrifuge tube and weighed.  One tablet of exotic pollen marker 

grains (Lycopodium clavatum, batch #177745, x = 18584 ± 829) was added to samples in 

order to determine pollen concentrations.  A three minute treatment of 10% hydrochloric 

acid in a warm bath was used to remove the carbonates and break up the Lycopodium 

tablets, followed by two washes with hot distilled water.  Potassium hydroxide (5%) was 

added to the sample and placed in a boiling water bath for 10 minutes to dissolve the 

humic acids.  Four washes with hot distilled water followed, and then the sample was 

sieved through a 125 µm screen to remove particles larger than pollen.  A 20 minute 

treatment of 49-52% hydrofluoric acid in boiling water dissolved silicates in the sample.  

Following that, hot Alconox solution was added to the sample and let sit for 5 minutes to 

deflocculate the material.  The sample was washed three times with hot distilled water, 

then dehydrated with glacial acetic acid in preparation for acetolysis.  An acetolysis 

solution of sulfuric acid and acetic acid was mixed and added to the sample for the 

purpose of removing cellulose and other polysaccharides, and the sample was placed in a 

boiling bath for 5 minutes.  Glacial acetic acid was then added to the sample to quench 

the reaction, followed by one hot water wash.  The sample was then treated with 5% 

KOH for 5 minutes in a boiling bath and then washed with hot water three times.  One 

drop of Safranin stain was added to the sample and vortexed to mix, with up to three 

drops of stain added depending on the amount of residual organic matter present.  The 
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sample was washed once with water and then again with TBA (tert-butyl alcohol) to 

dehydrate it.  TBA was added again, mixed and decanted, and the pollen residue was 

transferred to the appropriately labeled glass vial.  Silicone oil was added and the vial 

was placed under a fume hood to allow the remaining TBA to evaporate.   

 All treatments and washes throughout the process were centrifuged for 2 minutes 

at 400 RPM and decanted into appropriate waste containers.   

      Modified from Faegri and Iverson (1989). 
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APPENDIX B 

 

Total identified grain count, number of Lycopodium spores, weight, pollen concentration 

(grains/g), and pollen influx rates (grains/cm
2
/yr) by sample depth. 

 

 

Depth 

(cm)  

 Weight 

(g)  

 Lycopodium 

marker 

spores  

 Total 

pollen and 

spore count   

Concentration 

(grains/g) 

Rate of Influx 

(grains/cm
2
/yr) 

                           

5  

                     

0.18  

                   

32.00  

                      

407.00  1,313,140.28 9,060 

                         

15  

                     

0.28  

                   

23.00  

                      

395.00  1,139,857.14 11,331 

                         

25  

                     

0.26  

                   

20.00  

                      

429.00  1,533,180.00 16,228 

                         

35  

                     

0.25  

                   

17.00  

                      

431.00  1,884,636.24 19,499 

                         

45  

                     

0.29  

                   

42.00  

                      

410.00  625,569.79 6,700 

                         

55  

                     

0.29  

                   

64.00  

                      

535.00  535,691.81 5,496 

                         

65  

                     

0.24  

                   

67.00  

                      

443.00  511,984.58 4,065 

                         

75  

                     

0.26  

                     

7.00  

                      

434.00  4,431,569.23 39,437 

                         

85  

                     

0.30  

                   

66.00  

                      

478.00  448,644.04 5,103 

                         

95  

                     

0.26  

                   

77.00  

                      

465.00  431,646.35 4,769 

                      

105  

                     

0.28  

                     

7.00  

                      

496.00  4,702,889.80 41,797 

                      

115  

                     

0.29  

                

287.00  

                      

624.00  139,329.76 1,508 

                      

125  

                     

0.26  

                   

63.00  

                      

426.00  483,320.15 4,441 

                      

135  

                     

0.23  

                   

52.00  

                      

399.00  619,984.62 4,653 

                      

145  

                     

0.35  

                   

95.00  

                      

361.00  201,769.14 2,440 

                      

155  

                     

0.56  

                

174.00  

                      

384.00  73,237.44 1,553 

                      

165  

                     

0.57  

                

147.00  

                      

369.00  81,841.46 1,809 
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APPENDIX C 

 

Arboreal pollen counts by sample depth for all identified arboreal taxa. 

Depth (cm) 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 

Castanea 7 40 26 28 29 1 3 6 0 1 5 11 129 137 136 136 142 

Quercus 93 103 160 147 157 262 203 225 264 238 215 230 128 101 109 109 121 

Betula 47 82 46 51 44 4 39 19 0 11 13 14 6 11 8 8 5 

Carya 2 1 1 1 0 1 3 2 1 1 10 4 1 5 3 5 5 

Ostrya/Carpinus 0 0 4 0 1 0 0 1 0 0 0 0 0 0 0 0 0 

Tilia 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ulmus 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Acer 5 5 5 17 22 2 19 5 2 0 6 8 4 6 8 7 6 

Juglans 1 0 0 0 0 0 2 0 0 2 0 1 0 0 0 2 0 

Fagus 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nyssa 8 0 1 3 3 3 4 6 1 1 4 1 2 3 1 4 0 

Ilex 5 4 7 8 9 0 0 0 0 0 1 0 0 0 1 0 0 

Liquidambar 3 0 0 0 2 0 0 0 0 5 0 0 0 0 1 0 0 

Pinaceae 

undifferentiated 0 4 6 1 0 0 0 0 1 0 4 0 3 0 3 0 3 

Pinus 31 8 4 8 6 1 3 6 1 0 6 4 10 18 9 8 7 

Tsuga 4 11 13 16 13 0 1 2 0 0 2 2 3 0 0 2 0 

Salix 43 29 19 14 12 4 7 12 3 2 11 0 0 1 1 0 0 

Alnus 49 12 7 5 2 22 16 16 27 39 23 25 14 18 20 19 11 
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APPENDIX C, CONTINUED 

 

Non-arboreal pollen counts, total unidentifiable, and unknown counts by sample depth 

Depth (cm) 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 

Corylus 3 0 41 39 10 3 9 3 3 2 8 3 2 0 1 4 2 

Sphagnum 3 23 5 5 4 0 0 2 1 0 0 0 0 0 0 0 0 

total fern spores 18 24 14 18 34 79 74 64 80 37 85 233 65 59 35 42 35 

Lycopodium 

inundatum 1 0 0 0 2 8 0 1 1 0 1 0 0 0 0 0 0 

Poaceae 5 0 7 7 22 80 21 23 46 69 59 34 27 7 5 10 7 

Ericaceae 59 29 44 37 23 1 21 9 7 5 13 5 7 12 5 8 13 

Asteraceae  15 19 15 20 11 48 14 24 29 39 22 42 21 15 14 12 12 

Umbelliferae 0 0 1 0 1 0 0 1 0 0 1 3 4 1 0 2 0 

Thalictrum  2 0 1 1 3 16 4 5 10 13 6 4 0 3 0 0 0 

Brassicaceae 0 0 1 4 0 0 0 2 1 0 1 0 0 2 1 6 0 

Cyperaceae 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lycopodium marker 32 23 20 17 42 64 67 7 66 77 7 287 63 52 95 174 147 

unidentifiable 50 77 127 125 128 156 84 86 173 209 83 218 122 59 61 90 118 

unknown 10 0 0 26 0 19 26 31 28 9 13 175 26 36 26 52 34 

 


