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ABSTRACT 

 

ABRASIVE WATERJET PROCESS PARAMETERS OPTIMIZATION 

Abrasive waterjet machining has gained significant importance in the manufacturing sector for 

its efficiency and versatility in cutting various materials without generating heat, making it 

suitable for temperature-sensitive materials. It presents a significant challenge in achieving high-

quality surface finishes, especially with varying metal thicknesses. The study aimed to use the 

Taguchi Design of Experiment (DOE) coupled with Grey Relational Analysis (GRA) to optimize 

the single and multi-responses for Aluminum 6061-T6 and 1020 carbon steel. The experiments 

were conducted using the A-0612 WARD Jet machine, and data analysis was performed using 

Minitab and Microsoft Excel. The Taguchi orthogonal array was used to design the experimental 

runs(L27). This experimental research explored the effects of influential input factors such as 

water pressure, abrasive mass flow rate, traverse speed, standoff distance, and material thickness, 

where each input factor was tested at three levels. The GRA methodology was used to optimize 

the output responses, such as surface roughness (Ra), Kerf angle, and material removal rate 

(MRR), simultaneously to achieve high surface quality, and the results were compared to those 

of the single response optimization. The study highlights the significant impact of material 

thickness on the variation in machined metal surface quality. The main effect plots and analysis 

of variance (ANOVA) reveal that aluminum thicknesses of 1.016 and 4.825mm and carbon steel 

thicknesses of 6.35 and 9.525 mm consistently result in the desirable output response. These 

high-quality results were achieved using optimal settings derived from the findings of the 

optimization model.  

Keywords: Grey Relational Analysis (GRA), Non-traditional machining, Optimization, 

Taguchi DOE, Waterjet, Analysis of Variance (ANOVA) 
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CHAPTER 1: INTRODUCTION 
Abrasive Waterjet Machining (AWJM) has emerged as a cutting-edge method for 

precision cutting across diverse industries, including aerospace, automotive, and mining 

(Chandravadhana et al., 2021). It offers distinct advantages over traditional cutting techniques 

by employing highly pressurized water mixed with abrasive particles (garnet) to cut various 

materials efficiently (Ozcan et al., 2021). However, despite its widespread adoption, AWJM 

encounters a significant challenge in achieving high-quality surface finishes, mainly when there 

are variations in machining metal thickness. In applications where joint integrity and stress 

concentration reduction are critical for component performance, optimizing AWJM parameters 

becomes paramount to ensure the desired surface finish quality. 

The general research problem centers on achieving high-quality surface finishes in 

Abrasive Waterjet Machining, especially when presented with varying metal thicknesses. Within 

this problem, the specific research question arises: How does material thickness affect the output 

responses in AWJM, and what are the optimal settings to simultaneously achieve the highest 

quality response? This research has three primary objectives:  

1. To conduct experiments to assess the impact of material thickness on output 

responses. 

2. To analyze the main effects and interactions of input factors on each response, 

mainly focusing on Surface Roughness (Ra), Material Removal Rate (MRR), and 

Kerf angle (α) 

3. To optimize input factors concurrently to achieve the highest quality response. 
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Abrasive Water Jet Machining (AWJM) is a well-established, non-traditional method in 

machining processes. Its distinction lies in the absence of tool contact, which effectively reduces 

the Heat-Affected Zone, making it ideal for temperature-sensitive materials (Spadło et al., 2021). 

Using a high-velocity stream of water combined with abrasive material, AWJM can effectively 

remove material from various workpieces. However, the effectiveness of AWJM heavily relies 

on the control of multiple factors inherent in the process. Optimizing these process parameters is 

crucial for enhancing AWJM's output responses. The AWJM process consists of diverse 

machining parameters where each input factor is essential in determining the final output quality 

(Çetin, 2021). Previous research has primarily focused on optimizing these input factors to 

achieve desired outcomes. Material thickness emerges as a significant factor influencing the 

quality of the cut. Therefore, fine-tuning the machining parameters becomes imperative for 

achieving precision in AWJM. Recognizing the complex relationship among these input factors 

is key as it directly impacts the overall efficacy of the Abrasive Waterjet Machining (AWJM) 

process (Llanto et al., 2021b). Given the process input factors' nonlinear impact on the output 

response, precise optimization of process parameters in AWJM becomes imperative for 

consistently achieving desired outcomes (Manoj et al., 2018). 
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CHAPTER 2: LITERATURE REVIEW 
This chapter provides an in-depth review of the existing literature on Abrasive Waterjet 

Machining (AWJM) process parameters optimization, with a specific focus on material thickness 

alongside other influential input parameters influence on surface roughness (Ra), kerf angle and 

material removal rate (MRR). The review covers the various optimization methodologies, 

including Taguchi design of experiment and Grey Relational Analysis (GRA), and their 

applications in improving machining quality. The following literature highlights the current gaps 

and limitations in the existing literature, which this study aims to address through the proposed 

study. 

2.1 Abrasive Waterjet Machining Process 

Abrasive waterjet cutting (AWJM) is a flexible and widely used process for cutting and 

shaping materials, including metals, ceramics, and composites(Vigneshwaran et al., 2018). It has 

been found efficient in machining hard metals. In contrast, traditional cutting methods often 

prove challenging due to the inherent challenges posed by their high tensile strength and 

resistance to deformation(A. Arun et al., 2023). Among non-traditional machining techniques, the 

water jet machine stands out for its vast potential in manufacturing applications. It is 

exceptionally well suited for machine materials that are challenging to handle with conventional 

techniques because of its capacity to generate minimum heat-affected zones(Gangadharan et al., 

2022a). This characteristic is essential, especially when dealing with materials sensitive to 

thermal alterations.  

The AWJ process is widely used in many industrial production sectors because it offers a 

comprehensive solution to companies looking for accurate and effective cutting procedures with 

less thermal impact. According to Jiao et al. (2023), integrating specialized process technologies, 
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particularly waterjet cutting and other non-traditional machining methods, is essential in 

machining carbon fiber-reinforced composites. Many industries use these materials extensively, 

including automotive, aerospace, and military applications. 

2.2 Fundamental principles of abrasive waterjet cutting. 

During the abrasive waterjet (AWJ) machining, a high-pressure water jet is directed 

through a smaller nozzle and mixed with abrasive grit particles. This high-velocity jet is aimed at 

a specific material zone to erode and remove the desired material (A. Arun et al., 2023). The 

impact of the abrasive particles on the workpiece surface causes material erosion (Shastri et al., 

2021). The main components of an abrasive waterjet cutting system include a high-pressure 

pump, an abrasive hooper, a nozzle, and a cutting head. The cutting parameters, such as abrasive 

size, pressure, and other process parameters, can be adjusted to achieve the desired surface finish 

and cutting speed (Gangadharan et al., 2022a). However, these parameters must be optimized 

for different metal thicknesses to achieve the best results. Several control parameters influence 

the performance of AWJM, and optimizing these parameters has been researched and applied to 

find the optimal combinations for the process (Chakraborty & Mitra, 2018). 

2.3 Overview of Key Process Parameters 

Gangadharan et al. categorizes the process parameters that affect the output response of 

abrasive water jet-cutting processes. These parameters are categorized into four types: hydraulic, 

mixing and acceleration, cutting, and abrasive. The hydraulic parameters involve controlling 

water pressure, water orifice diameter, and water flow rate. The mixing and acceleration 

parameters involve the focus diameter and focus length. The cutting parameters include traverse 

speed, number of passes, standoff distance, and impact angle. Finally, the abrasive parameters 

involve the control of abrasive mass flow rate, particle diameter, particle size distribution, 
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particle shape, and particle (Kuttan et al., 2021). The study provides valuable insights into the 

interplay between these variables and cutting performance.  

The AWJM cutting process depends on the parameters that affect the machining output 

response, such as the Kerf angle, surface roughness, and material removal rate. Most of the 

process input parameters are correlated with each other, where the change in one factor can 

influence the desired output. Therefore, it is necessary to determine the relations among the 

various process input parameters and how they affect the objective function depending on the 

required output response (Çetin, 2021). The AWJM process utilizes pressurized water through a 

cutting head equipped with an orifice, mixing chamber, and nozzle. Abrasive particles are 

introduced, creating an abrasive mixture directed toward the workpiece for material 

removal(Radovanović, 2020). As shown in Figure 1, various process parameters can be 

controlled to achieve the desired output response.  

 

Figure 1. Schematic of the AWJ  Cutting Head (Radovanović, 2020) 
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2.4 Previous Research on AWJM Process Parameters 

Most study findings revealed that the variation of process parameters strongly influences 

the performance of AWJ machining. However, the extent of this influence depends on the 

magnitude of the parameter changes and the material's machinability (Hascalik et al., 2007). 

Singh and Vishvakarma (2015) state that various process factors impact the surface finish 

characteristics produced by touching base on jet pressure and standoff distance of the nozzle 

from the target: abrasive flow rate, Traverse rate, and work materials. During the cutting 

operation, the process parameters are critical in determining the outcome (Shukla & Singh, 

2017). According to Shukla and Singh, achieving the desired quality in the AWJM process 

requires careful attention to the optimum setting of process parameters.  

Few researchers have explored the impact of these parameters on the performance of the 

process; their findings suggest that even small changes can significantly affect the output 

response (Pal et al., 2017a). Process parameters are crucial for achieving optimal results in 

Abrasive water jet machining (AWJM).  The most commonly used parameters in AWJM 

experiments, as most researchers employ, include water pressure, traverse speed, abrasive flow 

rate, and standoff distance (Pon Selvan et al., 2018). In a study conducted by Pon Selvan et al., 

these parameters' effects on cut depth were examined, and the findings concluded that high water 

pressure is preferred to achieve optimal cutting performance. However, in a study conducted by 

Tiwari et al., the effects of water pressure, abrasive flow rate, and traverse speed on the 

machining of Alumina ceramic (Al2O3) with a thickness of 18mm and a length, width, and 

height of 96mm, 55mm, and 38mm, respectively, were investigated. The results revealed that all 

the input parameters, including pressure, traverse speed, and abrasive flow rate, significantly 

affected the output responses, such as material removal rate (MRR), surface roughness (SR), and 

kerf angle.  
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Gangadharan et al.(2022b) highlight the significance of carefully selecting and 

optimizing specific process parameters and their corresponding levels to achieve desired 

outcomes in various manufacturing processes. The slight adjustments to these parameters can 

have an observable impact on the resulting output response, highlighting the importance of 

precise control and optimization to ensure consistent and high-quality results (S. Alsoufi, 2017). 

In optimizing process parameters and improving manufacturing efficiency in abrasive waterjet 

machining, it is essential to understand the relationship between input factors and finishing 

quality. 

2.5 Factors influencing surface roughness in machining processes. 

Surface roughness (Ra) is a measure of the finish of the machined component, indicating 

the degree of smoothness or roughness on the surface (Shastri et al., 2021). Surface roughness is 

the top priority in machining, with a priority level of 73.38%. This highlights the importance of 

achieving high-quality surface finishes in the machining process. Material removal rate (MRR) is 

also crucial, and the researchers dedicated significant effort to optimizing surface roughness 

(Chakraborty et al., 2019). Surface roughness quantifies the smoothness or irregularity of a 

machined surface. In abrasive waterjet machining (AWJM), achieving smooth surfaces is 

paramount for meeting quality standards and functional requirements across various industries 

(Saravanan et al., 2020).  

Saravanan et al. identified surface roughness as one of the output responses determined 

by the performance of AWJM. However, other process input factors, including process 

parameters, material properties, nozzle characteristics, and ambient conditions, affect surface 

roughness in AWJM. This study focuses on the effects of these process parameters: water 

pressure, abrasive flow rate, federate, standoff distance, and material thickness on surface 
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roughness, kerf angle, and material removal rate and provides optimal settings for optimizing the 

machining process. By examining the relationships between input parameters and surface finish 

quality, this study investigates AWJM technology and facilitates the development of more 

efficient and reliable machining processes.  

2.5.1 Effect of Pressure on Surface Roughness 

Kumaran et al. (2017) investigated the surface roughness in abrasive waterjet machining 

of carbon fiber-reinforced plastics (CFRP) and found that increasing the jet pressure (JP) led to a 

smoother finish. Specifically, higher JP values resulted in better separation of the carbon fibers 

from the matrix, creating a more uniform top and bottom kerf width. Increasing water pressure 

can improve the surface finish of the material by allowing the cutting jet to remove more 

material. Increasing jet pressure reduces surface roughness due to the smooth erosion on the 

surface or through the workpiece material, which smooths out the surface and results in a more 

even finish (Ravi Kumar et al., 2018). However, there is a limit to how much pressure is 

beneficial, and too much pressure can cause problems.  

Finding the optimal pressure level is essential to balance the surface finish and these 

potential drawbacks. The finish of the material will be rougher and more uneven if the force 

applied by the cutting jet is higher. Higher forces can cause the material to be cut more 

aggressively, resulting in a rougher finish (Khalid et al., 2019). Manivannan et al. (2019) 

highlight in their study that the pressure of the cutting process is a significant factor that plays a 

significant role in affecting the kerf angle of the machined surface. Water pressure is a substantial 

process parameter in abrasive waterjet (AWJ) machining.  

Increasing water jet pressure correlates with greater penetration depth into the material 

and higher material removal rates. It also affects the distribution of water and abrasive particles 
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within the jet stream (Tiwari et al., 2018). The water pressure directly determines the energy 

possessed by the jet. With increased water pressure, the cut depth and the surface become 

smoother (Saravanan et al., 2020). Cetin (2021) implies that high pressure can improve surface 

quality. However, it is essential to acknowledge that even slight variations in feed rate and 

abrasive flow can significantly affect the process, highlighting the sensitivity of these 

parameters. 

2.5.2 Effect of Abrasive flowrate on Surface roughness 

According to the study by Tiwari et al. (2018), the workpiece's surface roughness 

decreases as the abrasive flow rate increases. The increased abrasive flow rate leads to more 

significant impacts from abrasive particles on the workpiece surface, potentially resulting in a 

smoother surface. In other words, more abrasive particles are striking the surface at higher 

speeds, reducing SR. While increasing the abrasive flow rate can lead to a smoother workpiece 

surface, it can also decrease cutting efficiency due to increased interactions between the abrasive 

particles and the material being cut (Chakraborty & Mitra, 2018). The mass rate of abrasive 

particles and other factors can significantly impact a process's machining efficiency and surface 

quality. It is crucial to control this parameter to achieve optimal results carefully (Xiaochu et al., 

2019).  

In abrasive water jet (AWJ) machining, two primary material removal modes occur due 

to micro-cutting: cutting and deformation/plowing. The deformation/plowing mode involves the 

abrasive particles deforming and pushing the workpiece material aside, while the cutting mode 

involves the particles cutting into the material. Both mechanisms contribute to the material 

removal process in AWJ machining. Natural abrasives like garnet and synthetic abrasives, like 

silicon carbide and aluminum oxide, are employed in the AWJ machining process (Natarajan et 
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al., 2020). Natarajan et al. conducted an in-depth review of the significance of an optimum 

supply of abrasives in AWJ machining processes. They found that the right amount and type of 

abrasives can significantly improve cutting performance and surface finish. As the flow rate 

increases, more abrasive particles strike the material, increasing wear and tear and reducing the 

machined part's smoothness.  

As the abrasive flow rate exceeds a certain threshold, the process can become saturated, 

leading to challenges in effectively transferring momentum to the abrasive particles. Reduced 

surface roughness suggests that the abrasive particles may no longer effectively remove material. 

In other words, there may be an optimal flow rate for the process, beyond which further increases 

in flow rate do not result in improved surface finish (Saravanan et al., 2020). When the abrasive 

flow rate was at its highest, the surface roughness was observed to be lower. The relationship 

between the feed rate and surface roughness indicates that higher feed rates result in smoother 

surfaces (Çetin, 2021). 

2.5.3 Effect of Transverse speed on Surface roughness 

Traverse speed was the most influential factor affecting surface roughness, while standoff 

distance was the least significant factor (Pal et al., 2017b). The speed of the cutting nozzle across 

the workpiece surface significantly impacts the roughness of the surface. In other words, faster 

traverse speeds produce rougher surfaces, while slower traverse speeds produce smoother 

surfaces. Sharma et al. (2018) found that jet transverse speed significantly impacts surface 

roughness, accounting for approximately 54.53% of the total variation. In contrast, stand-off 

distance had a relatively minor influence on surface roughness. Ravi et al. (2018) found that 

surface roughness was highly influenced by Transverse speed and Standoff distance on Tungsten 

Carbide.  
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Kusnurkar and Singh (2019) optimized AWJM input parameters using three abrasive 

garnets (Brown Fused Alumina, White Aluminum Oxide) on MS2062 and compared their 

performance. They found that traverse speed significantly affects surface finish. Edriys et al. 

(2020) conducted a study to investigate the effect of process parameters on some responses using 

the Taguchi method optimization at the end of the study. They found that the surface roughness 

of the workpiece increased with an increase in traverse speed and other process parameters such 

as feed rate and depth of cut. The traverse speed significantly impacts the workpiece's surface 

finish, indicating that optimizing this parameter can improve surface quality. The findings from 

the study indicated that the traverse speed is the most influential parameter for achieving 

improved output responses.  

The primary determinant affecting the surface roughness of the workpiece was identified 

as the traverse speed of the nozzle or jet travel speed, with jet pressure ranking as the subsequent 

influential factor (Khan & Gupta, 2020). The findings from the study by Joel and Jeyapoovan 

(2021)  indicate that the traverse speed is the most influential parameter for achieving improved 

output responses. When the traverse speed surpasses the ideal threshold, the water abrasive 

particles cannot sufficiently cut the material, resulting in unsatisfactory erosion outcomes. The 

interconnectedness of AWJM process variables emphasizes how they collectively influence 

surface roughness Ra, illustrating their interrelated nature (Shastri et al., 2021). 

2.5.4 Effect of standoff distance on Surface roughness 

The distance (standoff) between the nozzle and the workpiece affects the depth of the cut 

(Viswanath et al., 2018). Ahmed et al. (2018) found that standoff distance is not a significant 

factor in surface quality but becomes substantial when interacting with other control factors. As 

the standoff distance increases, it leads to a rougher surface finish, while reducing this distance 
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results in a smoother finish (Bui, 2020). Increasing the standoff distance enlarges the opening, 

generating a more comprehensive jet stream with a broader coverage area. Conversely, reducing 

the standoff distance forms a narrower opening, resulting in a more focused, concentrated jet 

stream with a smaller coverage area. When the standoff distance is longer, the water jet has more 

room to extend before initiating the cutting process.  

The ideal standoff distance for optimal results is 2 mm (Çetin, 2021). Figure 2 shows the 

effects of different height differences on the standoff of machined parts. At high standoff 

distances, the jet becomes divergent, resulting in a low density of abrasive particles and an 

expansion of the jet. This expansion decreases material removal from the machining zone, 

resulting in a rough surface. Therefore, it is desirable to maintain a low standoff distance  to 

ensure the kinetic energy of the jet is maintained, resulting in smoother surfaces (Fuse et al., 

2021) 

 

Figure 2. Schematic impacts of standoff distance on Workpiece (μMachining) 

Adjusting the standoff distance reduces abrasive particles' velocity, decreasing the 

pressure of impinged water on the workpiece. As the cutting tool moves along the workpiece, 
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there is a gradual decrease in the depth of the cut, resulting in a tapered cut. Therefore, 

optimizing the standoff distance is paramount for achieving the desired cut quality (Shastri et al., 

2021). 

2.5.5 Effect of Material Thickness on Surface Roughness 

Most existing research on abrasive water jet machining (AWJM) primarily focuses on 

optimizing parameters such as water pressure, abrasive flow rate, traverse speed, and standoff 

distance to minimize surface roughness. Numerous studies have demonstrated the significant 

impact of these parameters on surface roughness, highlighting their importance in achieving 

desired machining outcomes. However, despite the extensive investigation into these parameters, 

more exploration of the influence of material thickness on surface roughness in AWJM needs to 

be conducted. The machined material's thickness directly influences the machined part's surface 

roughness.  

The thickness of the material affects the jet energy and the amount of material being 

removed. When the material thickness increases, the jet energy is dissipated over a larger area, 

decreasing jet impact and erosion rate. As a result, the material removal rate decreases while 

surface roughness increases. On the other hand, when the material thickness decreases, the jet 

energy is concentrated over a smaller area, resulting in a higher jet impact and erosion rate, 

leading to an increase in material removal rate and a decrease in surface roughness. According to 

a study by Khan and Gupta (2020), the roughness of machined surfaces can be a significant 

challenge when working with thick sections.  

The intensity of the jet penetration, which travels from one level to another, decreases as 

the thickness of the workpiece increases, leading to a rougher finish and reduced surface quality. 

Such alterations could potentially have implications for the overall performance of the 
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component. In their study, Adam and Khan incrementally examined the surface roughness of 

machined surfaces regarding the bulk thickness. They found that the surface roughness increased 

as the thickness of the workpiece increased due to the decreased intensity of the jet penetration, 

therefore highlighting the importance of considering the thickness of the workpiece when 

machining thick sections to maintain a smooth finish and optimal surface quality. Figure 3 

illustrates the lag observed at various thickness sections as the water jet travels through the 

material. 

 

Figure 3. Deviation in Jet Cutting Intensity through Different Layers of Thickness(Khan & 

Gupta, 2020) 

Adam and Khan's study found that as the material's thickness increases, the surface 

finish's quality decreases, resulting in less desirable finishes for thicker materials than thinner 

ones. Edriys et al. (2020) discovered that as the thickness of the material increases, the surface 

roughness also increases. This rise in surface roughness is due to the larger area of the cut 

surface and the presence of more layers and flaws in thicker materials. As a result, the difference 
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between the peaks and valleys of the surface becomes more pronounced, leading to a poor finish 

with significant waviness. 

2.5.6 Influence of process input factors on Kerf angle and Material removal rate  

In addition to surface roughness, the kerf angle is another relevant output response that 

affects the quality of the cut. The deviation between the top and bottom cuts is caused by the loss 

of kinetic energy as the pressurized water jet travels through the metal at a high standoff 

distance, leading to a kerf angle (Llanto et al., 2021a). According to Llanto et al., reducing the 

traverse speed can lower the kerf angle while increasing the traverse speed maximizes the 

material removal rate.  

The MRR is directly proportional to the machining speed, so higher MRR values 

correspond to faster machining rates, which serves as a performance metric that provides 

valuable insight into the efficiency of the process (Karkalos et al., 2024). Dekster et al. (2023) 

study found that high water pressure with considerable traverse speed maximizes the MRR and 

reduces the kerf angle, which is confirmed by another study by Karmiris-Obratański et al. 

(2021), which indicates that increasing traverse speed leads to a low MRR. 

2.6 Optimization Techniques and Approaches 

2.6.1 Taguchi Optimization 

The optimization of machine parameters is an essential aspect of manufacturing 

processes, as it can significantly affect the quality, productivity, and cost-effectiveness of the 

production process. In recent years, various optimization techniques have been widely used in 

machining processes to improve their performance. The study aims to provide an overview of 

machining processes' most commonly used optimization techniques, including Taguchi design of 

experiment and other optimization methods (M. Arun et al., 2021). The design of an experiment 
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is a structured and systematic approach used to investigate and understand the relationship 

between input variables and their effect on the output of a process. It is widely used in 

manufacturing, engineering, and research and development industries to optimize and improve 

product and process design. In this thesis, DOE will be used to investigate the factors influencing 

a specific process and their corresponding effects. This methodical approach enables a detailed 

analysis of the interplay between multiple variables and their impact on the outcome.  

By systematically running experiments for the input factors and observing the resulting 

responses, DOE reveals underlying patterns, relationships, and optimal conditions. DOE 

technique helps to streamline the experimentation process by minimizing the number and 

frequency of experiments needed to achieve meaningful results. Gowthama et al. (2022) state 

that by strategically designing experiments, researchers can maximize the information gathered 

while reducing the number of trials, thereby saving time, resources, and effort (Joel et al., 2022). 

The Taguchi Method is an analytical and robust optimization approach in AWJM, emphasizing 

robust parameter design and noise reduction. Taguchi designs, such as orthogonal arrays, 

efficiently explore parameter spaces while requiring fewer experimental runs (Deb, 2024). The 

Taguchi Method ensures stable and reliable process performance in AWJM applications by 

identifying parameter settings that are less sensitive to variations and disturbances. 

A comparison of optimization techniques in Abrasive Water Jet Machining (AWJM) 

studies reveals a variety of methodologies aimed at improving process efficiency and 

effectiveness. While the Genetic Algorithm (Çetin, 2021) excels in tackling complex, nonlinear 

optimization problems, Response Surface Methodology (Nabavi et al., 2022) provides insights 

into parameter interactions. However, the Taguchi Method is particularly well-suited for AWJM 

because it emphasizes robust parameter design and noise reduction. Taguchi designs, such as 
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orthogonal arrays, efficiently explore parameter spaces with fewer experimental runs, making it a 

more efficient approach. ANOVA analysis helps identify the primary independent process 

parameters significantly impacting the responses (Gangadharan et al., 2022a). Also, the Taguchi 

Method's focus on stability and reliability ensures the identification of parameter settings that are 

less sensitive to process variations, which is relevant in AWJM's dynamic environment.  

The simplicity and statistical analysis capabilities of the Taguchi Method also make it 

accessible and reliable, providing researchers with quantifiable optimization results. Therefore, 

leveraging the Taguchi Method in AWJM studies offers an efficient, robust, and statistically 

sound approach to process optimization. However, one limitation of employing the Taguchi 

methodology is its focus on single-response optimization. This study's three significant output 

responses—kerf angle, surface roughness, and material removal rate—must be simultaneously 

optimized, challenging traditional Taguchi optimization approaches. 

2.6.2 Taguchi Grey Relational Analysis Optimization 

Recent literature has increasingly recognized the potential of combining Taguchi 

methodology with Grey Relational Analysis (GRA) for optimization in various fields. Unlike 

traditional Taguchi optimization, which primarily focuses on single-response optimization, the 

integration of GRA allows for the simultaneous optimization of multiple responses. This 

approach offers several advantages, including enhanced robustness in handling complex 

machining processes with multiple interrelated variables and the ability to consider interactions 

between different responses (Kehinde, 2021). When optimizing process parameters for multi-

response characteristics, GRA is the most reliable and consistent method, outperforming other 

techniques like regression, fuzzy logic, and Artificial Neural Network models (Senthilkumar et 

al., 2020). GRA's ability to efficiently explore the vast output responses makes it ideal for 
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optimizing process parameters involving multiple conflicting objectives. This study investigates 

three response variables: surface roughness, kerf angle, and material removal rate. The goal is to 

minimize surface roughness (Ra) and kerf angle while maximizing material removal rate (MRR). 

Studies have shown that Taguchi GRA optimization outperforms traditional Taguchi optimization 

in scenarios with multiple response variables, offering improved settings to optimize surface 

quality (Canbolat et al., 2019). 

The review of existing literature discovered that no research had been conducted on 

aluminum 6061-T6 and 1020 carbon steel with three varied thicknesses for each. This study 

focused on investigating the impact of different material thicknesses on the quality of the 

responses. Individual responses were optimized using the Taguchi experiment design, and the 

findings were compared with Grey Relational Analysis (GRA), which simultaneously optimized 

response variables. Main effect plots and ANOVA were utilized to explore the impact of these 

parameters on the responses. Also, a validation test was carried out to confirm the accuracy of 

the optimization model generated using Taguchi-Grey Relational Analysis. 
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CHAPTER 3: METHODOLOGY 
 

The research methodology employed in this study is experimental and utilizes two 

prominent optimization techniques: Taguchi design of experiment and Grey Relational Analysis 

(GRA). Taguchi orthogonal array was generated to systematically explore the effects of process 

parameters on machining outcomes, encompassing a total of 27 experimental runs. These 

experimental runs were conducted specifically for the two metals under investigation, namely 

aluminum and carbon steel. Through this experimental setup, the study aimed to 

comprehensively evaluate the influence of various process parameters on machining 

performance and quality for aluminum and carbon steel materials. 

3.1 Material Selection 

  The two materials used in this study are aluminum 6061-T6 and 1020 carbon steel, which 

were chosen for the experiment due to their widespread use in various industries. These materials 

represent common choices for manufacturing components and structures, making them relevant 

for studying abrasive water jet machining (AWJM) parameters (Tisza & Czinege, 2018). 

Aluminum 6061-T6 and 1020 carbon steel were selected with varying thicknesses to investigate 

their response to different machining conditions.  

Aluminum 6061-T6 is known for its lightweight properties, corrosion resistance, and ease 

of machining, making it a popular choice in the aerospace, automotive, and train industries 

(Gómora et al., 2017). 1020 Carbon steel, on the other hand, is valued for its strength, durability, 

and versatility, making it widely used in machinery, infrastructure, and manufacturing 

applications (Silva et al., 2019). The selection of materials with different thicknesses allows for a 

comprehensive analysis of how surface roughness is affected by varying material properties and 
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machining parameters. By studying the response of aluminum and carbon steel to different input 

parameters, such as water pressure, abrasive flow rate, and standoff distance, insights can be 

gained into optimizing AWJM processes for these materials across a range of thicknesses.  

3.2 Machine (WARD Jet -A-0612) 

The experiments were performed using the WARDJet A-0612 AWJM machine, known 

for its high-pressure capabilities, as shown in Figure. Table 1 presents some of the fixed variables 

of the AWJ machine used for the experiment:  

Table 1. WARDJet Machine Specification 

Parameters Specification 

Diameter of nozzle  0.040 inches 

Diameter of the orifice  0.014 inches 

Abrasive  

Jet impact angle 

Garnet 

90 degrees 

Size of the abrasive  80 mesh 

Maximum pressure 413.17 MPa 

Traverse speed 1270 mm/min 

         

         Figure 4. WARDJet A-0612 

3.2.1 System Software 

Two software programs are relevant when operating the WARDJet machine, namely 

WARDCAM, proprietary software by WARDJet for the cutting application. This study used it to 

vary the three traverse speed levels and the cutting paths. MOVE controls the cutting head 

(Nozzle) and the pump based on the specific water pressure. Figure 5 illustrates the post-

processing of the experimental design, which helped to vary the traverse speed based on the 
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selected three levels and includes the material types and their thicknesses. Based on the 

experiments, the tool path was manually created to ensure consistency in the machining process. 

 

Figure 5. WARDCAM Interface - WARDDJet 

The MOVE software was utilized to import Computer-Aided Design (CAD) for all 

experimental procedures. The software controls the input factors such as pressure and standoff 

distance. Meanwhile, the abrasive flow rate was manually determined using the scale on the 

abrasive hopper. Figure 6 depicts the MOVE interface with the imported design ready for 

machining. 

 

Figure 6. MOVE Interface - WARDJet 
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3.3 Identification of Key Process Parameters 

The selection of the five parameters for this study was informed by a comprehensive 

review of previous research and the AWJM configuration, which identified four commonly used 

process parameters in abrasive water jet machining (AWJM): water pressure, abrasive flow rate, 

traverse speed, and standoff distance. These parameters have been widely acknowledged as 

pivotal in AWJM, as they significantly influence the machining process and the resulting surface 

finish (Llanto et al., 2021b). However, an additional input parameter that has received 

comparatively less attention is the material thickness. Including material thickness in this study 

expands the scope of investigated factors likely to influence the output response, specifically 

surface roughness. While the established parameters play crucial roles in AWJM, exploring the 

impact of material thickness aims to contribute to a more thorough understanding of the 

machining process and enhance the overall optimization strategies.  

Material thickness was considered a fifth parameter, and this study can provide insights 

into how the thickness of the material being machined affects the surface roughness, which is a 

critical aspect of AWJM. This information can be used to optimize the machining process for 

specific materials and thicknesses, leading to improved surface finishes and reduced material 

waste. Moreover, the investigation of material thickness as a process parameter can help to 

identify the optimal thickness range for a given application, which can help minimize stress 

concentration in manufacturing and improve the overall efficiency of the machining process. In 

applications where the machined material is subjected to high levels of stress and strain, such as 

in the aerospace and automotive industries, this consideration holds particular importance. 

3.3.1 Selection of Factor Levels 

This study systematically examined the effects of critical parameters on abrasive water jet 

machining (AWJM) by carefully selecting three distinct levels for each parameter. The levels 



 

23 

 

were chosen based on material thickness and previous project machining experience. Each factor 

was categorized into low, medium, and high levels for both metals to ensure a thorough 

investigation of their properties. 

Table 2. Input Factors and Their Levels for Aluminum 6061 T6 

  Levels 

Factors(x) Unit   1            2              3 

Pressure MPa 344 361 379 

Abrasive flowrate g/min 45 101 127 

Traverse speed mm/min 76.2 101.6 127 

Standoff Distance mm 2 2.5 3 

Material Thickness mm 1.016 3.175 4.826 

 

Table 3. Input Factors and Their Levels for 1020 Carbon Steel 

  Levels 

Factors(x) Unit   1               2           3 

Pressure MPa 372 386 399 

Abrasive flowrate g/min 218 227 250 

Traverse speed mm/min 25.40 50.80 76.20 

Standoff Distance mm 2 2.5 3 

Material Thickness mm 6.350 9.525 12.700 

 

Tables 2 and 3 show the various levels for each aluminum and carbon steel input factor. 

3.3.2 Determination of Response Variables 

In determining response variables, the focus was on key metrics such as surface 

roughness (Ra), material removal rate (MRR), and kerf angle. The Ra value is a commonly 

employed metric for evaluating surface roughness, as it represents the average distance between 

the peaks and valleys of the profile (Hidalgo et al., 2018). Surface roughness (Ra) explicitly 

represents the arithmetic mean deviation of the surface profile from the mean line, providing 

crucial insights into the quality of the machined surface (Edriys et al., 2020). The material 

removal rate measures the amount of material removed per unit of time during the machining 
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process, reflecting the efficiency and effectiveness of the AWJM operation (Kant & Dhami, 

2021). kerf angle represents the angle formed by the sides of the cut made by the abrasive water 

jet. It indicates the deviation of the cut from a perpendicular orientation to the workpiece surface. 

The kerf angle is a critical parameter as it directly influences the machined part's dimensional 

accuracy, surface finish, and quality (Shastri et al., 2021). A smaller kerf angle typically results 

in a more precise cut with finer details. In comparison, a larger kerf angle may lead to tapering or 

widening of the cut, affecting the part's geometry and overall quality. These three responses are 

calculated using the following relations: 

 

Figure 7. Representation of the kerf Geometry(Fuse et al., 2021) 

𝑀𝑅𝑅 =  (
𝑊𝑡+𝑊𝑏

2
) 𝑥 𝑇 𝑥 𝑇𝑠 (1)                                            

𝐾𝑒𝑟𝑓 𝑎𝑛𝑔𝑙𝑒 (Ꝋ) = 𝑡𝑎𝑛−1 (𝑊𝑡−𝑊𝑏)

2 𝑥 𝑇
(2) 

Where 𝑊𝑡 , 𝑊𝑏 , T,  𝑇𝑠 represents upper kerf width (𝑚𝑚), bottom kerf width (𝑚𝑚), 

thickness (𝑚𝑚) and the traverse speed (𝑚𝑚/𝑚𝑖𝑛) (Edriys et al., 2020), (Kant & Dhami, 2021). 

The measurement of these output responses is paramount for several reasons. Surface roughness 

directly impacts machined components' functional performance and aesthetics in various 

industries, especially welding. Understanding and optimizing surface roughness can enhance 
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product quality, reduce post-processing requirements, and ensure compliance with design 

specifications.  

The Ra was measured using the SPI surface roughness tester II and a 3D printed fixture 

to hold the metals in place, while the measurements were taken in Figure 8 and Figure 9, 

respectively. MRR is an indicator of machining efficiency and productivity. Manufacturers can 

optimize production processes, minimize costs, and maximize throughput by accurately 

measuring material removal rates where the calculation was performed using equation 1. Lastly, 

kerf width directly affects dimensional accuracy and part tolerances. Controlling kerf width is 

essential for achieving precise cuts, minimizing material wastage, and ensuring the machined 

part's dimensional integrity(tolerance). Equation 2 was used to attain the Kerf angle for each run. 

 

Figure 8. SPI Tester II Surface Roughness 

3.4 Experimental Design 

The Taguchi orthogonal array is a particular type of experimental design that uses a 

limited number of experiments to identify the optimal settings for a process or product. It is a set 

of experimental runs carefully chosen to provide maximum information about the factors being 

studied(Kusnurkar & Singh, 2019).  The Taguchi orthogonal array was generated for the setup 
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L27 in Tables 4 and 5, which creates a 27 experimental matrix of all the factors and levels to 

evaluate the impact of the input factors on the output responses for aluminum and carbon steel. 

The OA for all 27 experiments was run to measure the output responses for the two metal types. 

Table 4. Taguchi OA for 1020 Carbon Steel 

Exp. No. Water 

pressure 

(MPa) 

Abrasive 

Flowrate 

(g/min) 

Traverse 

Speed 

(mm/min) 

Standoff  

Distance 

(mm) 

Material 

Thickness 

(mm) 

1 372 218 25.4 2 6.35 

2 372 218 25.4 2 9.525 

3 372 218 25.4 2 12.7 

4 372 227 50.8 2.5 6.35 

5 372 227 50.8 2.5 9.525 

6 372 227 50.8 2.5 12.7 

7 372 250 76.2 3 6.35 

8 372 250 76.2 3 9.525 

9 372 250 76.2 3 12.7 

10 386 218 50.8 3 6.35 

11 386 218 50.8 3 9.525 

12 386 218 50.8 3 12.7 

13 386 227 76.2 2 6.35 

14 386 227 76.2 2 9.525 

15 386 227 76.2 2 12.7 

16 386 250 25.4 2.5 6.35 

17 386 250 25.4 2.5 9.525 

18 386 250 25.4 2.5 12.7 

19 399 218 76.2 2.5 6.35 

20 399 218 76.2 2.5 9.525 

21 399 218 76.2 2.5 12.7 

22 399 227 25.4 3 6.35 

23 399 227 25.4 3 9.525 

24 399 227 25.4 3 12.7 

25 399 250 50.8 2 6.35 

26 399 250 50.8 2 9.525 

27 399 250 50.8 2 12.7 
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Table 5. Taguchi OA for Aluminum 6061-T6 

Exp. No. Water 

pressure 

(MPa) 

Abrasive 

Flowrate 

(g/min) 

Traverse 

Speed 

(mm/min) 

Standoff  

Distance 

(mm) 

Material 

Thickness 

(mm) 

1 344 45 76.2 2 1.016 

2 344 45 76.2 2 3.175 

3 344 45 76.2 2 4.826 

4 344 101 101.6 2.5 1.016 

5 344 101 101.6 2.5 3.175 

6 344 101 101.6 2.5 4.826 

7 344 127 127 3 1.016 

8 344 127 127 3 3.175 

9 344 127 127 3 4.826 

10 361 45 101.6 3 1.016 

11 361 45 101.6 3 3.175 

12 361 45 101.6 3 4.826 

13 361 101 127 2 1.016 

14 361 101 127 2 3.175 

15 361 101 127 2 4.826 

16 361 127 76.2 2.5 1.016 

17 361 127 76.2 2.5 3.175 

18 361 127 76.2 2.5 4.826 

19 379 45 127 2.5 1.016 

20 379 45 127 2.5 3.175 

21 379 45 127 2.5 4.826 

22 379 101 76.2 3 1.016 

23 379 101 76.2 3 3.175 

24 379 101 76.2 3 4.826 

25 379 127 101.6 2 1.016 

26 379 127 101.6 2 3.175 

27 379 127 101.6 2 4.826 

 

3.4.1 Specimen Design  

The specimen dimensions illustrated in Figure 9 were created using CREO Parametric, 

with a length of 2 inches (50.8 mm) and a width of 3 inches (76.2 mm). These dimensions 

remained consistent across all 27 experiments conducted for three different thicknesses. Each 



 

28 

 

specimen's design was saved as a DXF extension file and 

processed in WARDCAM. The file naming convention, such as 

"Exp x-thickness-traverse speed" (e.g., Exp 1_0.04_76.2), 

facilitated easy identification of individual files corresponding 

to each unique combination of experimental parameters. 

         

3.5 Experimental Setup 

Each thickness underwent separate machining to minimize potential sources of error, 

ensuring accurate results. By machining each thickness individually, the effects of any variations 

or influences specific to that thickness could be accurately assessed and accounted for in the 

analysis. This approach enabled meaningful comparisons between different runs and thicknesses, 

further enhancing the validity of the findings. The standoff distance was consistently maintained 

for each consecutive run of the same thickness. This consistency in standoff distance ensured that 

cutting parameters remained constant without having to vary the standoff distance for each 

thickness. Figure 10 depicts the setup for the experiment. 

 

 

 

 

 

 

 

  

 

Figure 10. Setup for the Experimental Runs 

4.826 mm 3.175 mm 1.016 mm 9.525 mm 6.35 mm 12.7 mm 

Figure 9. Specimen Dimension 
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3.5.1 Measured Result for the Output Responses 

The Ra responses were measured using the surface roughness texter II Figure 8. The 

other two output responses, material removal rate and kerf angle, were calculated using 

equations 1 and 2, respectively. Tables 6 and 7 presented all the results for the 27 experimental 

runs for each output response. 

 Table 6. Measured Responses for Aluminum 6061-T6 

 No. MRR (𝑚𝑚3/𝑚𝑖𝑛) Kerf Angle(degrees) Surface Roughness Ra(um) 

1 5.85 0.20 3.65 

2 16.45 0.18 3.68 

3 22.80 0.13 4.17 

4 8.10 0.03 3.40 

5 23.71 0.12 3.70 

6 34.57 0.12 3.79 

7 9.87 0.08 3.71 

8 29.44 0.14 3.75 

9 42.90 0.12 3.93 

10 7.69 0.14 4.29 

11 21.45 0.23 4.56 

12 31.87 0.13 4.69 

13 9.81 0.17 3.15 

14 27.02 0.14 3.75 

15 40.76 0.10 4.37 

16 6.00 0.03 3.35 

17 18.27 0.05 3.51 

18 27.58 0.08 3.76 

19 9.48 0.14 3.89 

20 26.81 0.21 4.01 

21 37.39 0.13 4.16 

22 6.15 0.20 3.90 

23 18.27 0.10 3.92 

24 27.03 0.08 4.03 

25 8.15 0.06 3.18 

26 22.90 0.05 3.32 

27 35.55 0.07 4.76 
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Table 7. Measured Responses for 1020 Carbon Steel 

No. MRR (mm3/min) Kerf Angle(degrees) Surface Roughness Ra(um) 

1 10.00 0.04 3.56 

2 15.73 0.04 4.03 

3 20.97 0.05 4.75 

4 20.65 0.09 3.67 

5 30.00 0.08 3.92 

6 39.35 0.07 4.88 

7 30.97 0.10 3.97 

8 42.10 0.10 4.01 

9 56.13 0.08 4.81 

10 21.13 0.08 3.66 

11 31.45 0.07 4.10 

12 39.35 0.08 4.56 

13 28.79 0.09 3.34 

14 43.19 0.09 4.00 

15 55.65 0.07 4.66 

16 11.05 0.08 3.50 

17 16.33 0.05 4.15 

18 22.10 0.04 4.44 

19 30.00 0.11 3.82 

20 42.82 0.10 4.11 

21 56.13 0.08 4.89 

22 11.13 0.06 3.40 

23 16.57 0.07 4.59 

24 20.97 0.05 4.78 

25 20.48 0.09 3.26 

26 30.73 0.07 4.07 

27 38.39 0.06 4.39 

 

3.6 Taguchi Design of Experiment 

3.6.1 Taguchi Single Response Optimization 

This method was adopted to thoroughly assess the significance of each input factor on the 

output responses. The Signal to Noise (S/N) ratio is a metric used to evaluate the quality of a 

process input parameters on the response characteristics by converting the data into S/N ratios 

(Patel G C et al., 2020). It identifies the optimal combination of input factors that maximizes the 

signal (desired output) while minimizing the noise (undesired variation). A higher value of the 
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S/N ratio indicates substantial parameter stability (Kant & Dhami, 2021). Three types of S/N 

ratios are commonly employed in Taguchi optimization (Gangadharan et al., 2022a).  

In this study, the focus was narrowed down to just two types of signal-to-noise (S/N) 

ratios: "smaller is better" and "larger is better,” as seen in equations 3 and 4, respectively. This 

decision was made because it was observed that two of the responses were expected to improve 

with lower numbers, while the third response was expected to improve with higher numbers. 

This approach simplified the analysis by concentrating on these specific S/N ratio categories.  

Smaller-is-Better (SiB): This S/N ratio is used when the goal is to minimize the response 

variable (Kerf angle and surface roughness). In this case, a higher S/N ratio indicates better 

performance (Minimize S/N ratio). 

𝑆/𝑁𝑆𝑖𝐵 =  −10 𝑥 log (∑ (
𝑦2

𝑛
)) (3) 

Where 𝑦 is the response for the given factor level combination, and 𝑛 is the number of 

the responses in the factor level combination. 

Larger-is-Better (LiB): This S/N ratio is used when the goal is to maximize the response 

variable (material removal rate). In this case, a higher SN ratio indicates better performance 

(Maximize S/N ratio). 

𝑆/𝑁𝐿𝑖𝐵 =  −10 𝑥 log (∑
(

1
𝑦2)

𝑛
) (4) 

 

Where 𝑦 is the response for the given factor level combination, and 𝑛 is the number of 

responses in the factor level combination. 
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3.6.2 Analysis of Variance (ANOVA) 

The subsequent phase of the analysis is the ANOVA, which explains the significance of 

the process input factors on the various responses such as the surface roughness, kerf angle, and 

the material removal rate (Kant & Dhami, 2021). The study analyzed the impact of various input 

factors on output responses using a significance level of 5% and a confidence level of 95%. The 

analysis involved calculating statistical measures such as the Sum of Squares, Square Means, P-

values, and F-values, which provided insights into the influence of different input factors on the 

output parameters. Specifically, the P-value was used to assess the significance of each input 

factor on the output responses. In most research, a significant level of 5%, denoted by the alpha 

value of 0.05, is considered the threshold for determining a direct influence. If the P-value for a 

particular input factor is less than this threshold, it indicates a direct and statistically significant 

impact of that factor on the output responses (Gangadharan et al., 2022a). 

The main effect plots of the S/N ratio illustrate the optimal factor-level combinations for 

a given response. By displaying the mean S/N ratio at each level of the input factors, these plots 

assist in selecting the most suitable settings to achieve optimal results (Fuse et al., 2021). 

3.7 Multi-Response Optimization 

3.7.1 Taguchi – Grey Relational Analysis 

Traditional optimization methods, such as the Taguchi method, focus on improving a 

single response, neglecting the interdependencies between other responses (Senthil Kumar et al., 

2020). This limitation can lead to suboptimal solutions and hinder the system's performance. The 

Grey-Taguchi method overcomes this limitation by incorporating the concept of grey relational 

analysis, which considers the interconnectedness between multiple responses (Joel & 

Jeyapoovan, 2021). Real-world engineering applications commonly involve multiple dependent 

variables, making direct optimization using the Taguchi method impractical. To overcome this 
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challenge, integrating Grey Relational Analysis (GRA) with the Taguchi method introduces a 

novel methodology for multi-parameter optimization called the Grey-Taguchi method. 

3.7.2 Taguchi-Grey Relational Analysis Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Flow chart for the Taguchi Grey Relational Optimization (Qazi et al., 2020) 

After the Taguchi single response is achieved, the GRA is implemented after calculating 

the signal-to-noise ratio. In the initial phase of Grey Relational Analysis, the process begins with 

grey relational formation, where experimental outcomes are standardized to a scale ranging from 

0 to 1 to accommodate differences in measurement units (Bangphan & Bangphan, 2014). The 

various equations 5 and 6 were used to normalize the S/N ratio based on the criteria: larger is 

better and smaller is better, respectively (Nayakappa, 2015). 

           For larger is better the quality characteristics for MRR, the normalization values are given 

by: 

Define parameters and output response. 

Taguchi Orthogonal Array (OA) 

Measure the response. 

Calculate S/N ratios for each 

response. 

Calculate the Grey Relational 

Coefficients 

Normalization of the S/N ratios 

Calculation of Grey Relational 

Grade 

Select the optimal levels for 

individual response optimization. 

Select the optimized input factors for 

simultaneous optimization for the 

response. 
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𝑌𝑖(𝑟) =  (
𝑦max(𝑟) − 𝑦𝑖(𝑟)

𝑦max(𝑟) − 𝑦min(𝑟)
) (5) 

 For smaller is better the quality characteristics for surface roughness and kerf angle, the 

normalization values are given by: 

𝑌𝑖(𝑟) =  (
𝑦𝑖(𝑟) − 𝑦𝑚𝑖𝑛

𝑦max(𝑟) − 𝑦min(𝑟)
) (6) 

Where 𝑌𝑖(𝑟) represent the normalized S/N ratios for each response variable, whereas 

𝑦max (𝑟) and 𝑦min (𝑟) are the largest and smallest values of 𝑌𝑖(𝑟) for the 𝑖𝑡ℎ number of 

experimental runs respectively. There are three output responses to be optimized: Ra, Ꝋ and 

MRR: therefore r = 3. The following computation is the deviation sequence, which is calculated 

using equation 7. 

∆𝑖 (𝑟)= | 𝑌0 (𝑟) −  𝑦𝑖 (𝑟)| (7)  

The deviation sequence is determined by calculating the absolute difference between the 

reference sequence 𝑌0 (𝑟) and the comparative sequences 𝑦𝑖 (𝑟). The distinguishing coefficient (ζ) 

is assigned a value between 0 and 1, typically set at 0.5, as commonly observed to yield optimal 

results in research. Grey Relational Grade (GRG) offers insights into the correlation strength 

among experimental runs, calculated through the weighted average of their respective Grey 

Relational Coefficients (GRCs) using equation 8 across all experiments (Qazi et al., 2020). 

𝐺𝑅𝐶 =  
∆min(𝑟) +  ζ ∆max(𝑟)

∆0(𝑟) + ζ ∆max(𝑟)
(8) 

Where ∆min  and ∆max  are the respective the minimum and maximum vales of the 

deviation sequence for each response. The grey relational grade is calculated using the equation 

below. 
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𝐺𝑅𝐺 =  
1

𝑛
 ∑ 𝑤𝑟𝜉 (𝑟)

𝑛

𝑟=1

(9) 

Where ξ(r) is the GRC for each response for the entire run, n is the number of quality 

responses, and 𝑤𝑟 is the weight of 𝑟𝑡ℎ. The total weight for each response sums up to 1. 

However, the same weight of 0.333 was used for all three responses. 

𝛾𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝛾𝑚 + ∑ 𝛾0

𝑛

𝑟=1

− 𝛾𝑚 (10) 

𝛾0 indicates the highest average Grey Relational Grade (GRG) achieved when factors are 

at their optimal levels, while 𝛾𝑚 represents the mean GRG across all levels of factors (Obinna 

Anayo et al., 2022). 

The highest Grey Relational Grade signifies the most robust relationship or correlation 

among response variables in Grey Relational Analysis. It is represented by a single numeric 

value, reflecting the overall performance of the optimal input settings in the analysis. The GRG 

value is further fine-tuned in response to the other input factors through Minitab. Generating a 

response table and conducting ANOVA are involved in identifying the optimal settings and 

significant factors that collectively influence all the responses (Girish et al., 2019). 
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CHAPTER 4: RESULTS 

4.1 Single Response Optimization- Taguchi 

The analysis for each output response shows the significance of each input factor on the 

response variable using analysis of variance and the main effect plot. The statistical tool used for 

the study is Minitab, and the analysis was performed at a 95 % confidence level. Notably, a p-

value less than 0.005 shows the significance of the input factors (Ogbonna et al., 2023). The 

results include the response table, analysis of variance (ANOVA), main effect plot, and the 

predicted plots for each output response (surface roughness, kerf angle, and material removal 

rate). 

4.2 Optimization Analysis for Aluminum 6061-T6 

Taguchi utilizes signal-to-noise (S/N) ratio, as a performance parameter to gauge 

deviation from desired outcomes. Higher S/N ratios are preferred for minimizing the impact of 

uncontrolled factors, aiming to reduce noise, and identifying the optimal settings (Padhy & 

Singh, 2020). The S/N ratio reflects the sensitivity of the response to variation, where the main 

effect for the S/N ratio with a higher S/N ratio indicates that a slight change in the input factor 

can lead to a more significant change in the output response. 

4.2.1 Surface Roughness (Ra) 

 The response in Table 8 shows the critical factor that highly influences the surface 

roughness response based on the signal-to-noise ratio. Material thickness was ranked as the input 

factor that significantly impacts Ra, followed by abrasive flow rate and standoff distance, which 

intuitively confirms their impact on surface quality after machining. Since a smaller Ra value 

indicates a good surface quality, the signal-to-noise ratio criteria for Ra is smaller is better. The 

delta value is the difference between the largest and the smallest S/N ratio. The ranking gives a 

general picture of the factors that impact the response variable, which is the surface roughness; 
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however, ANOVA gives detailed information about how each input factor contributes to the 

output response based on the p values. 

Table 8. Response Table for S/N Ratios – Surface Roughness (Ra) 

Level 

Water 

pressure (MPa) 

Abrasive 

Flowrate(g/min) 

Traverse 

Speed(mm/min) 

Standoff 

Distance(mm) 

Material 

Thickness(mm) 

1 -11.48 -12.27 -11.52 -11.43 -11.08 

2 -11.82 -11.51 -11.83 -11.41 -11.56 

3 -11.75 -11.26 -11.70 -12.20 -12.40 

Delta 0.35 1.01 0.32 0.79 1.33 

Rank 4 2 5 3 1 

 

Note. Smaller is better (S/N ratios). 

From the main effect plot for S/N ratios from Figure 12, the optimal setting comes from 

the high signal-to-noise ratio. Wp1-Af3-Ts1-Sd2-Mt1 is the setting code representing water 

pressure at level 1, abrasive flow at level 3, traverse speed at level 1, standoff distance at level 2, 

and Material thickness at level 1. Representing 344 MPa,127 g/min,76.20 mm/min,2.50 mm and 

1.016 mm respectively. 

 

Figure 12. Main Effect Plot for the S/N Ratios – Surface Roughness (Ra) 
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Analysis of variance (ANOVA) gave much insight into the input factors and their 

significance to the output response. The confidence level for this study is 95%, with a 

significance level of 0.05. Therefore, any p-value less than 0.05 is significant to the response 

where the response here is Ra. The input factors that highly influence the Ra are abrasive flow 

rate, standoff distance, and material thickness, which have p values less than 0.05. 

Table 9. Analysis of Variance for Surface Roughness (Ra) 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Water pressure (MPa) 2 0.1659 3.40% 0.1659 0.08296 1.00 0.390 

Abrasive Flowrate(g/min) 2 0.9589 19.67% 0.9589 0.47945 5.77 0.013 

Traverse Speed(mm/min) 2 0.1424 2.92% 0.1424 0.07120 0.86 0.443 

Standoff Distance(mm) 2 0.6910 14.17% 0.6910 0.34549 4.16 0.035 

Material Thickness(mm) 2 1.5881 32.57% 1.5881 0.79406 9.56 0.002 

Error 16 1.3296 27.27% 1.3296 0.08310   

Total 26 4.8759 100.00%     

  

Note. Confidence level of 95% 

The graph in Figure 13 shows the actual response value for Ra and the predicted result 

for all five input factors and three input factors. The three predicted regression models were 

established after eliminating the non-significant factors from the model. Evidently, there is a 

trend pattern for the results, and the actual results follow this trend closely. The three and five 

predicted models show that having more factors gives better output response results than having 

fewer factors. 
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Figure 13. Actual vs. Predicted data for 5 and 3 Factors Respectively 

4.2.2 Kerf Angle 

The abrasive flow rate was ranked as the significant control factor to the kerf angle, 

which is the angular deviation between the top and bottom kerf widths. The top cut is wider than 

the bottom based on the waterjet force cutting through the metal, whereas the top cut tends to 

experience the total water jet energy. However, the water's energy is dissipated at the bottom, 

resulting in minor cuts. The amount of abrasive present in the water determines how much shear 

through the metal happens, leading to the kerf angle. Other factors are also influential to the kerf 

angle, Like the standoff distance, which affects the shape of the water stream before 

encountering the metal. However, ANOVA Table 10 further analyzes this factor and presents 

their contribution to kerf angle. 

Table 10. Response Table for S/N Ratios – Kerf Angle 

Level 

Water 

pressure (MPa) 

Abrasive 

Flowrate(g/min) 

Traverse 

Speed(mm/min) 

Standoff 

Distance(mm) 

Material 

Thickness(mm) 

1 19.01 15.85 20.29 19.20 20.68 

2 19.92 19.59 21.04 21.73 18.45 

3 19.86 23.37 17.48 17.87 19.68 

Delta 0.91 7.52 3.56 3.86 2.23 

Rank 5 1 3 2 4 

 

Note. Smaller is better (S/N ratios) 
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The optimal setting for single response optimization for kerf angle from Figure 14 shows 

water pressure at level 2, abrasive flowrate at level 3, traverse speed at level 2, standoff distance 

at level 2, and material thickness at level 1 (Wp2-Af3-Ts2-Sd2-Mt1). Each level has a 

corresponding setting value at the bottom of the plot. The Abrasive flowrate shows a steeper 

slope in the plot, indicating its significant influence on the kerf angle. 

 

Figure 14. Main Effect Plot for the S/N Ratios – Kerf Angle 

  The response table below for the S/N ratio shows that standoff distance comes after 

abrasive flowrate for the factors that are significant to the kerf angle; however, from the 

statistical perspective, the p-value for standoff distance is 0.228, which is greater than the 

significance of 0.05, and its contribution to the variation is about 7.07%. ANOVA confirms that 

the kerf angle variation's abrasive flow rate is statistically significant. 
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Table 11. Analysis of Variance for Kerf Angle  

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

  Water pressure (MPa) 2 0.000535 0.68% 0.000535 0.000268 0.16 0.856 

  Abrasive Flowrate(g/min) 2 0.036022 45.97% 0.036022 0.018011 10.56 0.001 

  Traverse Speed(mm/min) 2 0.005150 6.57% 0.005150 0.002575 1.51 0.251 

  Standoff Distance(mm) 2 0.005540 7.07% 0.005540 0.002770 1.62 0.228 

  Material Thickness(mm) 2 0.003814 4.87% 0.003814 0.001907 1.12 0.351 

Error 16 0.027302 34.84% 0.027302 0.001706   

Total 26 0.078363 100.00%     

 

Note. Confidence level of 95% 

In Figure 15, the actual and predicted models for kerf angle show irregularities in the 

trend. The actual (experimental) model shows relatively low kerf angles of 0.03 degrees for 

experiments 4 and 16. On the other hand, there were some high values in the same experimental 

run, which were more than the predicted values for all five input factors and one input factor. 

Investigation shows that the kerf angle is sensitive to the material thickness. Based on the input 

factor level constraints, material thickness can reduce the angular deviation between the top and 

bottom cut of the metal. 

 

Figure 15. Actual vs. Predicted data for 5 and 1 Factor Respectively 
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4.2.3 Material Removal Rate (MRR) 

 Material thickness was obviously the main input factor influencing the amount of 

material removed per unit time, followed by the traverse speed, which is the speed at which the 

nozzle head moves over the metal. These two factors are paramount to the MRR mathematical 

equation, where the removed material volume is multiplied by the material thickness and nozzle 

speed (traverse speed). The criteria for Material Removal Rate (MRR) analysis is "the larger, the 

better" regarding the S/N ratio, as increased material removal is desirable. 

Table 12. Response Table for S/N Ratios - MRR 

Level 

Water 

pressure (MPa) 

Abrasive 

Flowrate(g/min) 

Traverse 

Speed(mm/min) 

Standoff 

Distance(mm) 

Material 

Thickness(mm) 

1 25.02 24.53 22.90 24.88 17.78 

2 24.97 25.20 25.26 25.07 26.97 

3 25.07 25.33 26.90 25.11 30.31 

Delta 0.11 0.80 4.01 0.23 12.52 

Rank 5 3 2 4 1 

 

Note. Larger is better (S/N ratios) 

The three factors shown in the plot in the Figure 16 indicate that the main effect plots for 

water pressure, abrasive flow rate, and standoff distance are horizontal and parallel to the mean 

line, meaning there is not much variation coming from these input factors on the response. 

However, material thickness has a much more significant effect on MRR than traverse speed, as 

indicated by the slope in the plot and conformed in the response table for the S/N ratio. Wp1-

Af3-Ts3-Sd3-Mt3 is the optimal setting to achieve high material removal concerning their levels. 
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Figure 16. Main Effect Plot for S/N Ratios - MRR 

Material thickness and standoff distance have p-values less than 0.05, statistically making 

them significant to MRR. Even though the p-value for both input factors is 0.000, the 

contribution of material thickness to traverse speed is shown in the ANOVA table. MRR is 

directly proportional to metal thickness and the speed of the cutting head. 

Table 13. Analysis of Variance for MRR 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

  Water pressure (MPa) 2 0.59 0.02% 0.59 0.30 0.04 0.957 

  Abrasive Flowrate(g/min) 2 26.18 0.75% 26.18 13.09 1.95 0.174 

  Traverse Speed(mm/min) 2 402.86 11.56% 402.86 201.43 30.07 0.000 

  Standoff Distance(mm) 2 1.61 0.05% 1.61 0.81 0.12 0.887 

  Material Thickness(mm) 2 2947.37 84.55% 2947.37 1473.69 219.98 0.000 

Error 16 107.19 3.07% 107.19 6.70   

Total 26 3485.81 100.00%     

 

Note. Confidence level of 95% 

This is shown in the models for the actual and predicted results for all factors and the 

significant input factors (material thickness and traverse speed). All the models follow that same 

trend where lower and higher data points are for the aluminum thickness of 1.016 mm and 4.826 
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mm, respectively. Thicker metals will have a large volume of metal removed per unit time during 

AWJM. 

 

Figure 17. Actual vs. Predicted data for 5 and 2 Factors Respectively 

4.2.4 Evaluation of Experimental Data 

 Figure 18 displays the probability plot for all the responses. The data conforms to a 

normal distribution, which is evident from all the data points falling within the symmetric bell-

shaped confidence interval. Additionally, the p-values exceeding 0.05 indicate that the data 

follows a normal distribution, allowing for further analysis to be conducted confidently. 

 

Figure 18. Probability Plot for the Three Output Responses – Aluminum 6061 – T6 
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4.3 Optimization analysis for 1020 Carbon Steel 

The 1020 carbon steel was also analyzed based on the same factors and different level 

settings based on its properties since it is solid and durable compared to aluminum 6061-T6. 

4.3.1 Surface Roughness (Ra) 

Table 14 shows that the material thickness significantly impacts surface roughness, as 

indicated by the most considerable delta value (2.36). The rank column indicates the ranking of 

each factor based on its influence on surface roughness, with a lower rank indicating a more 

significant impact. Variations in material thickness led to more noticeable changes in surface 

roughness compared to other factors. 

Table 14. Response Table for S/N Ratios – Surface Roughness (Ra) 

Level 

Water pressure 

(MPa) 

Abrasive 

Flowrate(g/min) 

Traverse 

Speed(mm/min) 

Standoff 

Distance(mm) 

Material 

Thickness(mm) 

1 -12.36 -12.34 -12.26 -11.98 -11.05 

2 -12.09 -12.25 -12.10 -12.31 -12.27 

3 -12.27 -12.13 -12.36 -12.43 -13.41 

Delta 0.28 0.21 0.26 0.44 2.36 

Rank 3 5 4 2 1 

 

Note. Smaller is better (S/N ratios) 

The plot in Figure 19 reveals that material thickness has the highest rank (1) in 

influencing surface roughness, indicating its significant impact on the quality of machined 

surfaces. This finding aligns with the expectation that thicker materials exhibit higher surface 

roughness due to increased resistance to the abrasive jet. These settings, Wp2-Af3-Ts2-Sd1-Mt1, 

represent a balance between cutting efficiency and surface finish quality, resulting in the highest 

S/N ratio and smoother machined surfaces. Also, when it comes to carbon steel, these optimal 

settings can lead to several benefits, such as reduced surface roughness and improved 

dimensional accuracy. 
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Figure 19. Main Effect for S/N Ratios – Surface Roughness (Ra) 

The P-value for material thickness is 0.000, indicating a highly significant effect. 

Material thickness contributes 84.78% of the variance in surface roughness, making it the most 

influential factor in Table 15. This finding emphasizes the importance of controlling material 

thickness to achieve the desired surface finish quality. 

Table 15. Analysis of Variance for Surface Roughness (Ra) 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

  Water pressure (MPa) 2 0.08556 1.31% 0.08556 0.04278 1.15 0.343 

  Abrasive 

Flowrate(g/min) 

2 0.04599 0.70% 0.04599 0.02299 0.62 0.552 

  Traverse Speed(mm/min) 2 0.06867 1.05% 0.06867 0.03434 0.92 0.419 

  Standoff Distance(mm) 2 0.19647 3.01% 0.19647 0.09824 2.63 0.103 

  Material Thickness(mm) 2 5.53603 84.78% 5.53603 2.76801 74.18 0.000 

Error 16 0.59704 9.14% 0.59704 0.03731   

Total 26 6.52976 100.00%     

 

Note. Confidence level of 95% 

When comparing the actual surface roughness values obtained under optimal settings 

with those predicted by the models, a notable trend emerges in Figure 20. The actual surface 
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roughness values tend to be lower than the predicted values, indicating that the actual data 

optimal settings consistently outperform the expected outcomes in terms of surface quality. 

 

Figure 20. Actual vs. Predicted data for 5 and 1 Factors Respectively 

4.3.2 Kerf Angle 

The S/N ratios indicate that traverse speed significantly impacts the kerf angle, as 

evidenced by its highest rank (1). A lower S/N ratio implies a better kerf angle. In this case, the 

higher delta value for traverse speed indicates a substantial improvement in the kerf angle as the 

speed increases. Adjusting the traverse speed can significantly improve the kerf angle. 

Table 16. Response Table for S/N Ratios – Kerf Angle 

Level 

Water pressure 

(MPa) 

Abrasive 

Flowrate(g/min) 

Traverse 

Speed(mm/min) 

Standoff 

Distance(mm) 

Material 

Thickness(mm) 

1 23.47 23.60 25.98 24.11 22.17 

2 23.30 22.71 22.45 22.51 22.91 

3 22.63 23.09 20.97 22.78 24.33 

Delta 0.84 0.89 5.01 1.60 2.16 

Rank 5 4 1 3 2 

     

Note. Smaller is better (S/N ratios) 

The main effect plot in Figure 21 reveals that traverse speed exhibits the steepest slope 

among all factors. This steep slope indicates that small changes in traverse speed result in 
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significant variations in the kerf angle. Therefore, optimizing traverse speed within the 

appropriate range is crucial for achieving the desired kerf angle. Based on the main effect plot 

analysis, the optimal settings for achieving the desired kerf angle are Wp1-Af1-Ts1-Sd1-M3. 

 

Figure 21. Main Effect Plot for S/N Ratios – Kerf Angle 

Traverse speed stands out as the most influential factor, with a highly significant p-value 

of 0.000 and contributing 63.06% to the variability in the kerf angle. Material thickness also 

plays an important role, with a p-value of 0.003 and contributing 14.32% to the variability. 

Adjusting material thickness within the appropriate range can effectively control the kerf angle 

by reducing the angular deviation. Although standoff distance is less significant compared to 

traverse speed and material thickness, it demonstrates a considerable p-value (p = 0.032) and 

contributes 7.00% to the variability in the kerf angle. 

 

 

 

 



 

49 

 

Table 17. Analysis of Variance for Kerf Angle 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

  Water pressure (MPa) 2 0.000204 1.90% 0.000204 0.000102 1.17 0.335 

  Abrasive Flowrate(g/min) 2 0.000078 0.73% 0.000078 0.000039 0.45 0.647 

  Traverse Speed(mm/min) 2 0.006755 63.06% 0.006755 0.003377 38.83 0.000 

  Standoff Distance(mm) 2 0.000750 7.00% 0.000750 0.000375 4.31 0.032 

  Material Thickness(mm) 2 0.001534 14.32% 0.001534 0.000767 8.82 0.003 

Error 16 0.001392 12.99% 0.001392 0.000087   

Total 26 0.010712 100.00%     

 

Note. Confidence level of 95% 

The graph in Figure 22 illustrates the actual and predicted values for the taper angle. It 

visually compares the observed taper angles with those predicted by the model across different 

levels of the five and three factors. The actual values consistently appear to have large taper 

angles compared to the two predicted models. Building upon the earlier examination involving 

aluminum, which exhibited notable taper angles attributed to thickness, the carbon steel 

thickness investigated in this study spans from 6.350 to 12.700 mm. In comparison, aluminum 

ranges from 1.016 to 4.826 mm. It becomes apparent from the graph below that the kerf angle in 

this study displays sensitivity to thicker metals, which is particularly evident when compared to 

the predicted plot for aluminum. 

 

Figure 22. Actual vs. Predicted data for 5 and 3 Factors Respectively 
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4.3.3 Material Removal Rate (MRR) 

Traverse Speed has the most substantial impact on MRR compared to the other factors 

considered in the study, with a delta value of 8.57. The significant influence of traverse speed 

variations on MRR highlights its critical importance as a factor to consider for optimization. 

Material thickness is another significant factor in the response, and it works closely with traverse 

speed to maximize the material removal rate. 

Table 18. Response Table for S/N Ratios - MRR 

Level 

Water pressure 

(MPa) 

Abrasive 

Flowrate(g/min) 

Traverse 

Speed(mm/min) 

Standoff 

Distance(mm) 

Material 

Thickness(mm) 

1 28.38 28.43 23.79 28.31 25.48 

2 28.57 28.48 29.31 28.55 28.85 

3 28.51 28.55 32.36 28.60 31.12 

Delta 0.20 0.12 8.57 0.28 5.64 

Rank 4 5 1 3 2 

 

Note. Larger is better (S/N ratios) 

The plot shows that the first and second factors, namely Traverse Speed and Material 

Thickness, significantly influence the S/N ratio. The steepness of the slope for certain factors in 

the main effect plot indicates their significant impact. Conversely, other factors such as Water 

Pressure, Abrasive flow rate, and Standoff Distance show slopes closer to the mean, suggesting 

their lesser influence on MRR than Traverse Speed and Material Thickness. The combination of 

factors Wp2-Af3-Ts3-Sd3-Mt3 represents the optimal configuration for maximizing MRR. 
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Figure 23. Main Effect Plot for S/N Ratios - MRR 

Traverse speed and material thickness emerge as the most influential factors, with 

traverse speed contributing significantly (65.54%) to the variance and material thickness 

demonstrating substantial importance (30.66%). Conversely, water pressure and abrasive flow 

rate exhibit negligible contributions (0.01% and 0.00%, respectively), indicating their lack of 

significance. Standoff distance also shows minimal impact (0.04%) on the response. 

Table 19. Analysis of Variance for MRR 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

  Water pressure (MPa) 2 0.55 0.01% 0.55 0.28 0.02 0.976 

  Abrasive Flowrate(g/min) 2 0.22 0.00% 0.22 0.11 0.01 0.990 

  Traverse Speed(mm/min) 2 3227.64 65.54% 3227.64 1613.82 140.38 0.000 

  Standoff Distance(mm) 2 2.11 0.04% 2.11 1.05 0.09 0.913 

  Material Thickness(mm) 2 1509.93 30.66% 1509.93 754.96 65.67 0.000 

Error 16 183.94 3.74% 183.94 11.50   

Total 26 4924.39 100.00%     

 

Note. Confidence level of 95% 

The predicted model, incorporating only two input factors (traverse speed and material 

thickness), exhibits an upward trend in Figure 24, with the highest Material Removal Rate 
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(MRR) observed. Following this, the model incorporating all factors displays a slightly lower 

MRR, while the experimental values consistently fall below this trend. The selected level settings 

for traverse speed likely resulted in an inconsistent representation of its influence on the MRR. 

 

Figure 24. Actual vs. Predicted data for 5 and 3 Factors Respectively 

4.3.4 Evaluation of Experimental Data 

The probability plot in Figure 25 revealed a normal data distribution across all responses 

with p-values exceeding 0.05, indicating normality; further analysis can be conducted 

confidently. 

 

Figure 25. Probability Plot for the Three Output Responses – 1020 Carbon Steel 
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4.4 Summary of the Single Response Optimization for Both Metals  

The analysis and subsequent validation experiments determined the optimal settings for 

each response variable, as depicted in Table 22. Notably, these optimal settings led to significant 

improvements in each response. 

Table 20. Results from the Optimal Settings for Each Response- Single Response Optimization 

Output response Optimal Settings 

(Aluminum 6061-T6) 

Result Optimal settings 

(1020 Carbon Steel) 

Result 

Ra(µm) P1A3T1S2M1 

(344,127,76.20,2.50,1.016) 

3.11 P2A3T2S1M1 

(386,250,50.80,2,6.350) 

3.20 

Taper angle (˚) P2A3T2S2M1 

(361,127,101.6,2.50,1.016) 

0.03 P1A1T1S1M3 

(372,218,25.40,2,12.70) 

0.05 

MRR (𝑚𝑚3/

𝑚𝑖𝑛) 

P1A3T3D3M3 

(344,127,127,3,4.826) 

30.38 P2A3T3D3M3 

(386,250,76.20,3,12.7) 

40.77 

 

For surface roughness (Ra), the optimal settings resulted in values of 3.11 µm for 

Aluminum 6061-T6 and 3.20 µm for 1020 Carbon Steel. Regarding taper angle, minimal angles 

of 0.03° and 0.05° were achieved for Aluminum 6061-T6 and 1020 Carbon Steel, respectively, 

with the optimal settings. Lastly, for Material Removal Rate (MRR), the optimal settings yielded 

values of 30.38 𝑚𝑚3/𝑚𝑖𝑛 for Aluminum 6061-T6 and 40.77 𝑚𝑚3/𝑚𝑖𝑛 for 1020 Carbon steel.  

4.5 Taguchi- Grey Relational Analysis Optimization- Multi Response 

Using Taguchi-Grey Relational Analysis for multi-responses such as MRR, kerf angle, 

and surface roughness provided a comprehensive understanding of how different input factors 

collectively impact various aspects of the machining process. Unlike single-response 

optimization, which focuses on optimizing one output at a time, multi-response optimization 

allows for a holistic approach. This approach considers the trade-offs between different 

responses and aims to find a balance that maximizes overall performance or quality. 

Simultaneously optimizing multiple responses guarantees that the selected settings yield an 
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optimal outcome across all pertinent factors, enhancing the robustness and efficiency of the 

machining process. 

 4.5.1 Aluminum 6061-T6 

  The highest Grey Relational Grade (GRG) was 0.825, ranked 1st among all the 27 

experiments. Further optimization was carried out using the GRG as the new response, and the 

result was obtained, as shown in Table 23. Based on the analysis of the GRG optimization, the 

material thickness emerges as the most influential factor, as evidenced by its highest rank (1) and 

the most significant delta value (3.163). Various material thicknesses demonstrate the most 

critical impact on surface quality across the three output responses. 

Table 21. Response Table for S/N Ratios - GRG 

Level 

Water 

pressure (MPa) 

Abrasive 

Flowrate(g/min) 

Traverse 

Speed(mm/min) 

Standoff 

Distance(mm) 

Material 

Thickness(mm) 

1 -4.929 -3.701 -5.469 -4.813 -6.512 

2 -4.687 -4.946 -4.807 -5.492 -4.539 

3 -4.785 -5.754 -4.125 -4.096 -3.350 

Delta 0.242 2.053 1.343 1.396 3.163 

Rank 5 2 4 3 1 

 

Note.  Larger is better (S/N ratios) 

The optimal setting for the five input factors that simultaneously optimize the three 

responses is denoted by Wp2-Af1-Ts3-Sd3-Mt3. This setting corresponds to water pressure at 

level 2 (361 MPa), abrasive flowrate at level 1 (45 g/min), traverse speed at level 3 (127 

mm/min), standoff distance at level 3 (3 mm), and material thickness at level 3 (4.826 mm). 

These specific levels are chosen based on their collective ability to maximize the performance of 

all three responses, ensuring an efficient and effective machining process. 

Figure 21 indicates the main effect plots for the signal-to-noise ratio of the GRA 

optimization for Aluminum 6061-T6 
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Figure 21. Main Effect Plot for GRA Optimization 

Table 24 of ANOVA reveals several relevant factors with their respective p-values and 

contributions to the variation in output responses for aluminum machining. Among these factors, 

abrasive flow rate, traverse speed, standoff distance, and material thickness significantly 

influence the machining process. The abrasive flow rate demonstrates a notable contribution of 

18.16% with a p-value of 0.004, followed by traverse speed with a contribution of 9.05% and a 

p-value of 0.043. Standoff distance also exhibits significance with a contribution of 7.97% and a 

p-value of 0.058. However, material thickness emerges as the most influential factor, boasting 

the highest contribution of 45.44% and a p-value of 0.000. 
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Table 22. Analysis of Variance for GRA - Aluminum 6061-T6 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

  Water pressure (MPa) 2 0.002861 0.69% 0.002861 0.001431 0.30 0.748 

 Abrasive Flowrate(g/min) 2 0.075297 18.16% 0.075297 0.037648 7.77 0.004 

  Traverse Speed(mm/min) 2 0.037515 9.05% 0.037515 0.018757 3.87 0.043 

  Standoff Distance(mm) 2 0.033063 7.97% 0.033063 0.016531 3.41 0.058 

  Material Thickness(mm) 2 0.188424 45.44% 0.188424 0.094212 19.45 0.000 

Error 16 0.077514 18.69% 0.077514 0.004845   

Total 26 0.414674 100.00%     

 

Note. Confidence level of 95% 

The regression model was generated with a fit regression model to quantify further the 

relationships between the input factors and the responses. The equation indicates that the GRA 

optimization for aluminum machining is influenced by abrasive flow rate (A_f), traverse speed 

(T_s), and material thickness (M_t). The coefficients associated with these factors provide 

insight into the magnitude of their effects on the surface quality. 

Regression model  

𝐺𝑅𝐴_𝑂𝐴𝑙 = 0.3886 − 0.001543 𝑥 𝐴𝑓 + 0.001774 𝑥 𝑇𝑠 + 0.05352 𝑥 𝑀𝑡 

4.5.2 1020 Carbon steel 

The abrasive flow rate had the most significant impact on the quality of the machining 

process for 1020 carbon steel. Due to carbon steel's robust and durable nature, the increased 

abrasive particles in the pressurized water will affect its machining process. 

Table 23. Response Table for S/N Ratios - GRA 

Level 

Water pressure 

(MPa) 

Abrasive 

Flowrate(g/min) 

Traverse 

Speed(mm/min) 

Standoff 

Distance(mm) 

Material 

Thickness(mm) 

1 -4.739 -5.776 -5.010 -4.525 -4.572 

2 -5.325 -5.020 -4.429 -5.522 -5.697 

3 -4.958 -4.225 -5.583 -4.975 -4.753 

Delta 0.586 1.551 1.153 0.998 1.125 

Rank 5 1 2 4 3 

 

Note. Larger the better (S/N ratio) 



 

57 

 

Based on the main effect plot depicted in Figure 24, the optimal input factors for 

achieving better responses in terms of Ra, kerf angle, and material removal rate were determined 

to be Wp1-Af3-Ts2-Sd1-Mt1: Water pressure at level 1(372 MPa), Abrasive flowrate at level 3 

(250 g/min), Traverse speed at level 2 (60.80 mm/min), Standoff distance at level 1 ( 2 mm), and 

Material thickness at level 1 (6.350 mm). 

Figure 26 indicates the main effect plot for the signal-to-noise ratio for the GRA 

optimization for 1020 carbon steel. 

 

 

Figure 26. Main Effect Plot for the GRA Optimization 

Abrasive flow rate, traverse speed, and Material Thickness were the most influential 

factors, as evidenced by their relatively low p-values (<0.05) and substantial contributions to the 

variation in GRA. In particular, the Abrasive flow rate contributes the largest variation at 

25.79%, succeeded by Material Thickness at 15.23% and Traverse Speed at 14.14%. These 

findings suggest that adjusting these factors can significantly improve the machining process's 
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overall quality (Ra, Kerf angle, and MRR). However, Water Pressure and Standoff Distance 

exhibit higher p-values (>0.05), indicating weaker effects on the GRA.  

Table 24. Analysis of Variance for GRA- 1020 Carbon Steel. 

Source  DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

  Water pressure (MPa)  2 0.008071 4.85% 0.008071 0.004035 1.29 0.301 

  Abrasive Flowrate(g/min)  2 0.042946 25.79% 0.042946 0.021473 6.89 0.007 

  Traverse Speed(mm/min)  2 0.023545 14.14% 0.023545 0.011772 3.78 0.045 

  Standoff Distance(mm)  2 0.016740 10.05% 0.016740 0.008370 2.69 0.099 

  Material Thickness(mm)  2 0.025367 15.23% 0.025367 0.012683 4.07 0.037 

Error  16 0.049877 29.95% 0.049877 0.003117   

Total  26 0.166546 100.00%     

 

Note. Confidence level of 95% 

Since water pressure and standoff distance were not statistically significant, they were 

excluded from the regression model.  

 Regression model 

𝐺𝑅𝑂𝐶𝑆 =  −0.064 + 0.00292 𝑥 𝐴𝑓 − 0.000568 𝑥 𝑇𝑠 − 0.00178 𝑥 𝑀𝑡 

4.6 Summary for Both Optimization Methods 

Table 27 compares single-response and multi-response optimization (MRO) outcomes 

using Taguchi-Grey Relational Analysis for Aluminum 6061-T6 and 1020 Carbon Steel. In the 

case of Aluminum 6061-T6, the multi-response optimization demonstrated slight improvements 

across all output responses (Ra, taper angle, and MRR) compared to single-response 

optimization. For 1020 Carbon Steel, the single response optimization yielded Ra, taper angle, 

and MRR values of 3.20 µm, 0.05 degrees, and 40.77 𝑚𝑚3/𝑚𝑖𝑛, respectively. After multi-

response optimization, these metrics improved to 3.15 µm for Ra, 0.05 degrees for taper angle, 

and 42.26 𝑚𝑚3/𝑚𝑖𝑛 for MRR. 
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Table 25. Summary of Single Response and Multi Response Optimization (Taguchi-Grey 

Relational Analysis) 

Output responses Aluminum 6061-

T6 

GRA MRO 1020 Carbon steel GRA MRO 

Ra(µm) 3.11 3.02 3.20 3.13 

Taper angle (˚) 0.03 0.02 0.05 0.05 

MRR (𝑚𝑚3/𝑚𝑖𝑛) 30.38 33.89 40.77 42.26 

 

Note. GRA-MRO: Grey relational Analysis- Multi-response optimization 
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CHAPTER 5: DISCUSSION 

The discussion section of this thesis focuses on the impact of material thickness on 

Abrasive Waterjet Machining (AWJM) output responses, namely surface roughness, kerf angle, 

and material removal rate. Through a thorough analysis of the results, the discussion supports the 

research objective by providing relevant insights into the relationship between material thickness 

and AWJM parameters. The following discussion draws upon relevant findings from previous 

research to examine the results and contribute to the existing knowledge base. The discussion 

section offers a comprehensive summary of the study's outcomes, highlighting key trends and 

observations that enhance our understanding of AWJM performance and material thickness 

variations. 

5.1 Single Response Optimization 

This optimization study aimed to analyze the effects of three key responses: surface roughness, 

kerf angle, and material removal rate relative to the five selected process factors: water pressure, 

abrasive flow rate, traverse speed, standoff distance, and material thickness. The investigation 

primarily focused on Aluminum 6061 and 1020 carbon steel. It became evident that these 

materials exhibited varying impacts on the surface quality of machined parts across their 

respective thickness levels. 

5.2 Influence of material thickness on the output response 

5.2.1 Surface Roughness (Ra) 

 Analyzing the signal-to-noise ratio and examining various factors for Aluminum 6061 T6 

revealed a significant influence of material thickness on surface roughness. The obtained p-value 

for material thickness (0.002) was below the threshold of 0.05, indicating its substantial 
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contribution to the variation in Ra. Notably, a thickness of 1.016 mm for Aluminum was 

associated with comparatively lower surface quality than other thickness levels. This finding 

aligns with the study by Khan and Gupta (2020), which suggests that achieving low surface 

roughness can pose challenges. Moreover, the results indicate a trend where surface roughness 

increases with thicker materials (Edriys et al., 2020).  

On the other hand, material thickness tends to be an essential factor for obtaining low 

surface roughness for 1020 carbon steel; It was ranked as the main factor influencing Ra. Based 

on ANOVA, material thickness contributed about 84.78% to the variation since the thickness 

level ranges from 6.35 to 12.70 mm. However, the 6.35 mm machined parts achieved a low Ra 

metric, regarding this finding for the second metal. Conclusively, the relationship between 

material thickness and surface roughness reveals a direct proportionality. As the thickness of the 

material increases, there is a corresponding increase in surface roughness, indicating a 

deterioration in surface quality (Pahuja et al., 2019). Prior research has consistently 

demonstrated the impact of workpiece thickness on surface quality, aligning with the outcomes 

of this investigation conducted on aluminum 6061 T6 and 1020 carbon steel across three 

different thickness levels. Thinner metals consistently yielded desirable output responses in this 

study. 

5.2.1 Kerf Angle 

In the case of aluminum 6061 T6, material thickness emerges as the least influential 

factor regarding kerf angle, as indicated by the ANOVA results in Table 10. It does not exhibit 

statistical significance to the kerf angle. The primary significant factor affecting kerf angle is the 

abrasive flow rate. Previous research has consistently highlighted the importance of the type of 

abrasive particle in reducing kerf angle. An increase in the abrasive flow rate correlates with a 
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decrease in the kerf taper (Kumar & Kant, 2020). This study reveals that abrasive flow rate, 

particularly at level 3 (127 g/min), representing the maximum abrasive flow rate, is a prominent 

factor influencing kerf angle. 

The analysis table identifies traverse speed as the primary influential factor affecting the 

kerf angle, followed by material thickness, as validated by the ANOVA results for 1020 carbon 

steel. Llanto et al. noted in their research that decreasing the traverse speed leads to a reduction 

in the kerf angle, although their study did not explore variations in thickness. This study reveals 

that level 1 (25.4 mm/min) from the response table's signal-to-noise ratio has the highest value, 

indicating that a slower movement of the cutting head over the workpiece results in a smaller 

kerf angle, consistent with findings by Vigneshwaran et al. (2018). Contrary to the study by 

Kusnurkar & Singh (2019), which suggested a reduction in kerf angle with thicker metal using 

different types of abrasive particles, our findings suggest that material thickness tends to 

correlate with a smaller kerf angle, particularly with thicker metals. Granite particles' cutting 

performance also closely resembles garnet material regarding kerf angles. 

5.2.2 Material Removal Rate (MRR) 

 Material thickness accounts for a high variation in material removal rate, followed by 

traverse speed, which contributed 84.55% and 11.56% to MRR, respectively. The p-values for 

these factors are less than 0.05 (0.000), indicating statistical significance to the response for 

aluminum 6061-T6. The main effect plot for Signal-to-Noise (S/N) ratios in Figure () shows that 

thicker material and higher traverse speed maximize the volume of material removed per unit of 

time. This finding aligns with other studies by researchers. Edriys et al. concluded in their study 

that MRR had a direct correlation with thickness and the speed of the nozzle (traverse speed). 

According to Fuset et al. (2021), the MRR of 0.2304 g was achieved at a traverse speed setting 
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of 250 mm/min, corresponding to the highest-level settings. Compared to this study, the MRR 

was maximum at the highest traverse speed of 127 mm/min. Traverse speed significantly affects 

the Material Removal Rate (MRR) compared to other typical process input factors such as water 

pressure, abrasive flow rate, and standoff distance (Shunmugasundaram et al., 2021). Material 

thickness outperforms traverse speed in this study since material thickness was a relevant process 

input factor that was not included in most research works. A direct proportionality exists between 

the Material Removal Rate (MRR) and thickness. 

In the analysis of 1020 carbon steel, similar factors influencing Material Removal Rate 

(MRR) were identified as in aluminum 6061 T6, with traverse speed and material thickness 

being significant. Traverse speed contributed 65.54% to MRR, holding the highest influence as 

the primary factor (Rank 1), while material thickness accounted for 30.66%. This inverse 

relationship compared to aluminum suggests differing machining characteristics between the 

materials. The traverse speed greatly influences the material removal rate, enabling faster 

machining and improved productivity, an essential factor in time-sensitive industries (Gowthama 

et al., 2022). Material thickness follows traverse speed in determining MRR, influencing the 

material removal volume. Optimizing traverse speed is essential for enhancing MRR and 

production efficiency in machining operations on 1020 carbon steel. 

5.3 Multiple Response Optimization 

 The primary aim of this research is to explore the impact of material thickness on three 

key responses simultaneously: Ra, kerf angle, and MRR. Material thickness is the primary factor 

influencing the quality of the responses under study for aluminum 6061 T6. According to the 

response Table 23 for the Signal-to-Noise (S/N) ratio in optimizing the Grey Relational Grade, 

material thickness is an outstanding factor influencing all responses simultaneously. The ANOVA 
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Table 24 presents the significance of certain factors, namely material thickness, abrasive flow 

rate, and traverse speed, with p-values less than 0.05. Their contributions to the variation are 

45.44%, 18.16%, and 9.05%, respectively. This suggests that these factors significantly impact 

the three output responses in single-response optimization scenarios. Another study indicates that 

higher Grey Relational Grade values are observed when the abrasive flow rate is at its highest 

level (Gnanavelbabu et al., 2020). 

In the multi-response optimization for 1020 carbon steel, material thickness ranked third 

in importance based on the delta values from the response table. Abrasive flow rate emerged as 

the primary influencing factor, followed by traverse speed. These three process input factors are 

statistically significant to the responses, as evidenced by their p-values being less than 0.05 in the 

ANOVA Table 26. Similar factors were observed in the analyses for aluminum, although with 

differing contribution variations. Given the range of metal thickness studied for carbon steel, 

spanning from 6.35 to 12.7 mm, the quantity of abrasive particles mixed with water becomes a 

relevant consideration. This emphasizes setting the abrasive flow rate at its maximum level to 

achieve optimal results. Numerous researchers are actively developing industry optimization 

techniques using machine learning (Deb et al., 2022). 

Due to various potential factors, water pressure might not have demonstrated significance 

in the study. One possible explanation could be the operating pressure range, which ranged from 

344 to 399 MPa for both metals. However, the upper limit of this range aligns with the maximum 

operational capacity of the WARDJet machine. This limitation could have restricted the ability to 

detect any substantial effects on the outcomes, particularly considering the wide range of metal 

thicknesses studied, ranging from 1.016 to 12.70 mm. 
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5.4 Confirmation Test 

 After selecting the optimal level of the GRA optimization, another experiment was run 

using the optimal setting, and the result was compared to the single response optimization. The 

result for the three-response optimization using the single response is presented in Table 22, and 

that of the multi-response optimization in Table 27 with their respective settings. The comparison 

between single-response and multi-response optimization highlights the advantages of the GRA 

approach in achieving more comprehensive and balanced machining outcomes. While single-

response optimization may be sufficient for addressing specific performance criteria individually, 

multi-response optimization offers a more integrated and efficient approach, leading to superior 

overall machining performance. These findings emphasize the importance of adopting advanced 

optimization methodologies, such as multi-response optimization, to enhance the machining 

process's efficiency and quality.  

 The limited number of experimental runs was a challenge in this study, as there were only 

27 runs (Taguchi L27) for five process input factors with three levels each for both metals, with 

no replicates. This limited sample size made it difficult to adequately analyze the data and 

thoroughly explore the interactions between factors, particularly when considering the 

complexity of the process and the number of parameters being studied. 
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CHAPTER 6: Conclusion and Future Works 

6.1 Conclusion of Study  

The study draws key insights from Taguchi's Design of Experiment (DOE) and Grey 

Relational Analysis (GRA) optimization methodologies. While Taguchi DOE excels in 

optimizing individual responses, its limitation lies in achieving overall efficiency due to its focus 

on isolated factors and minimal attention to variable interactions. Conversely, GRA offers a more 

comprehensive approach by concurrently optimizing multiple responses, including surface 

roughness, kerf angle, and material removal rate (MRR). The research investigates the robustness 

of Grey Relational Analysis (GRA) in optimizing critical responses within the Abrasive Water Jet 

Machining (AWJM) process. GRA provides a systematic approach to improving multiple output 

responses simultaneously while considering the effects of various machining process parameters 

on aluminum and carbon steel, commonly used in industries. 

6.2 Key Conclusions from the Study 

1. The study highlights the significant influence of material thickness on output variables 

such as surface roughness, kerf angle, and material removal rate. Optimal machining 

parameters with specific thickness ranges were identified for aluminum and carbon steel. 

For aluminum (1.016 to 4.826 mm), optimal parameters included a water pressure of 361 

MPa, abrasive flow rate of 45.0 g/min, traverse speed of 127.0 mm/min, and standoff 

distance of 3.0 mm. For carbon steel (6.35 to 9.525 mm), optimal parameters were a 

water pressure of 372 MPa, abrasive flow rate of 250 g/min, traverse speed of 50.8 

mm/min, and standoff distance of 2.0 mm. These parameters were found to enhance 

surface quality significantly in machining operations. 

2. The analysis indicated a direct relationship between MRR and material thickness, 

implying that as the material thickness increases, so does the MRR. Recognizing this 
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correlation is essential for streamlining machining processes to attain desired material 

removal rates efficiently. 

3. The study found roughness commonly occurs in machined parts' exit region (Rough 

Cutting Region), especially noticeable in 1020 carbon steel due to energy dissipation. 

Using a maximum metal thickness of 12.70 mm and water pressures between 344 and 

379, MPa highlighted the importance of Abrasive Water Jet Machining (AWJM) 

concerning high water pressures relative to the metal’s thickness and properties. 

4. It was noted that roughness often occurs in the exit region (Rough Cutting Region) for 

1020 carbon steel machine parts due to energy dissipation. The thickest metal used to 

study carbon steel was 12.70 mm within a water pressure of 344 and 379 MPa. 

Highlighting the importance of machining under high water pressure compared to metal 

thickness and its properties emphasizes the necessity of maintaining sufficient water jet 

pressure at the exit region of the material. 

5. Some controlled variables, including water pressure, were determined to be insignificant 

within the specified level range. Despite their limited impact on the response variables at 

the designated input levels, it is essential to recognize their influence, especially in cases 

where roughness occurs at the exit region. 

6. Measuring Ra is relatively straightforward but may only partially capture the actual 

surface roughness of AWJ machined parts with complex topography, as Rt does. While 

Ra focuses on the deviation over a specific sampling length, Rz (total roughness) 

considers the entire surface, providing a more comprehensive understanding of the 

roughness. 
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In future research stemming from this study, attention may be directed toward investigating the 

clamping style utilized for securing the workpiece during machining and conducting vibration 

analysis originating from the machining process. This exploration aims to deepen understanding 

of how different clamping methods influence machining outcomes and to identify potential 

sources of vibration-induced defects. Also, there is potential for exploring advanced optimization 

techniques, such as machine learning, to enhance the optimization process. Applying machine 

learning algorithms to analyze extensive datasets generated from full factorial experiments 

makes it possible to uncover intricate relationships between process parameters and output 

responses, thereby improving overall machining performance. 
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