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ABSTRACT 

 

SLIDER CRANK WAVE ENERGY CONVERTER PERFORMANCE ANALYSIS WITH 

ADAPTIVE AUTOREGRESSING FILTERING 

 

Md Rakib Hasan Khan, M.S.T. 

Western Carolina University (April 2019) 

Director: Dr. Bora Karayaka 

 

This study investigates a performance analysis of wave excitation force prediction to extract 

wave power for a slider crank power take-off system (PTOS) based on auto regressive (AR) 

filters. To efficiently convert wave energy into electricity, the prediction of wave excitation 

forces into near future to keep the generator and the wave excitation force in sync is important 

for maximum energy extraction. The study shows a prediction methodology of half period and 

zero crossings in the practical scenario of irregular ocean waves. The prediction has been tested 

for different wave periods and with different filter orders in noisy and noiseless environment. 

The prediction results have been used in the PTOS simulation to analyze the energy extraction. It 

has been shown that the prediction accuracy in the wave half period between the truth data and 

the predicted data drives the WEC energy extraction efficiency. The amplitude of the wave force 

is not used and hence the prediction deviation in the wave force amplitude does not affect the 

PTOS energy extraction. Further analysis shows that the optimum energy can be extracted at 15th 

order filter with moderate prediction horizon length.



1 
 

CHAPTER 1: INTRODUCTION 

 

1.1 Key Terms 

Autoregressive Filter (AR): An autoregressive filter is a model where the current value of a 

variable depends upon only the values that this variable took in previous periods plus an error 

term. 

Wave Energy Converter (WEC):  A wave energy converter is a device that converts the kinetic 

and potential energy associated with a moving wave into useful mechanical or electrical energy. 

Zero Crossing: When the wave excitation force changes its transition either positive to negative 

or negative to positives, we called the transition point as a zero crossing. 

Half Cycle Duration:  The difference between two zero crossings is called the half cycle 

duration. 

1.2 Problem Statement 

At present, our electricity production is highly dependent on conventional energy sources 

includes oil, gas and coal. These conventional sources are usually fossil fuels. Fossil fuels are 

non-renewable, that is, they draw on finite resources that will eventually dwindle, becoming too 

expensive or too environmentally damaging to retrieve. In contrast, the many types of renewable 

energy resources-such as wave, wind and solar energy are constantly replenished and will never 

run out [1]. Therefore, renewable energy is now a matter of interest to produce electricity. 

Ocean wave energy is an emerging field in renewable energy research. In the ocean, 

energy exists in various form and waves are one of the largest marine resources as well as the 

most widely accessible [1]. Compared with other renewable energy sources like wind energy, 

ocean wave energy has a higher power density. Wave energy contains roughly 1000 times the 

kinetic energy of wind, allowing much smaller and less conspicuous devices to produce the same 



2 
 

amount of power in a fraction of the space. Unlike wind and solar power, power from ocean 

waves continues to be produced around the clock, whereas wind velocity tends to die in the 

morning and at night, and solar is only available during the day in areas with relatively little 

cloud cover. So, Wave power has been considered as one of the most promising renewable 

energy sources. Wave energy converter (WEC) is a device, which captures the power of waves 

and transforms it to electricity. The slider crank WEC converts the heave motion of ocean waves 

into rotational motion. In order to run the slider crank PTOS at relatively high efficiency, the 

generator needs to be synchronized with the wave excitation forces. 

Nowadays real-time control has become popular to maximize the energy extraction of 

WEC. In order to implement the real-time control, a prediction of wave excitation force is 

needed. In this control strategy, the control law has to be determined at every time step based on 

the prediction of wave excitation force in the near future. A semi-submerged spherical buoy is 

assumed for this research. The prediction algorithms are carried out in the MATLABTM 

environment. Then the offline prediction results are used to the simulation model in the 

SIMULINKTM environment to analyze the energy extraction with different wave periods and 

filter orders. 

The outline of this thesis is organized as follows: Chapter 2 describes the literature review, 

research on related topics is analyzed to choose the best technique for wave excitation force 

prediction. Chapter 3 describes the methodology and control methods are used to develop the 

prediction algorithm. Chapter 4 verifies the effectiveness of the methodology and control methods 

through simulations. Finally, conclusions and future works are described in Chapter 5. 

  



3 
 

CHAPTER 2: LITERATURE REVIEW 

 

2.1 Current Techniques 

At present, a number of different wave energy converter concepts are being investigated 

by companies and academic research groups around the world. Among the challenges faced, 

wave resource prediction is an important barrier to the use of ocean wave energy arising from its 

highly variable nature. Although many working designs have been developed and tested through 

modelling and wave tank-tests, only a few concepts have progressed to sea testing. Research has 

been done on DDR-PTOS such as rack-and-pinion mechanisms and traction tires/wheels [3], but 

research on the slider-crank PTOS is rare. 

Various models have been developed for wave prediction, however they are hardly 

applied for WEC real-time control. In [4], the fast Fourier transformation has been utilized to 

predict the random sea waves, whereas in [5], the wave prediction model was developed based 

on the grey model. But both of this model depends on a large number of historical data and this 

slow down the prediction process, which is a big concern of real time application. In [6], the first 

order-one variable grey model GM (1,1) is used to predict the wave forces over the receding 

horizon. In [7], the autoregressive moving average model is used to predict the wave elevations. 

In [8], the pseudo-spectral control method is used to optimize the power capture of an oscillating 

surge WEC. 

Fusco et al. showed for low frequency wave prediction, the autoregressive (AR) model is 

a relatively simple and accurate method [9]. In this study, wave elevation was predicted to give 

satisfactory results. The initial analysis on the slider-crank PTOS under regular wave condition 

validated the suboptimal nature of the control strategy [10]. However, because ideal sinusoidal 
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wave conditions rarely exist in real oceans, it is very important to find a prediction methodology 

for the system under irregular wave conditions. 

Further investigations were also conducted with the slider-crank PTOS under irregular 

wave conditions, but with the assumption of known future half period information [11] - [12], 

which is infeasible in practical applications. 

2.2 Chosen Technique 

The proposed system uses Slider Crank WEC because of its simplicity. Control 

methodology with predicted wave data has been chosen for performance evaluation purposes. 

Slider crank WEC has a fixed amplitude motion, which eliminates the need for additional 

latching control technique to limit buoy motion under extreme wave conditions. In addition, 

slider crank is a well-accepted mechanical linkage system with a history of more than 2,000 

years. This study provides a lean prediction strategy because prediction and control execution 

runs simultaneously to the slider crank power take-off system for the continuous energy 

production. 

The control methodology with prediction is designed to keep the generator rotating in 

resonance with the wave excitation force so that energy can be extracted at a relatively high 

efficiency. In this study, an autoregressive model with a Forward-Backward parameter 

estimation approach [13] is used for the zero crossings’ prediction purpose. The future half 

period is not constant, it changes its length based on the finding of two zero crossings in each 

prediction horizon, which makes it suitable for real time control. 
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CHAPTER 3: METHODOLOGY 

 

3.1 Overall System Model 

Driven by the wave excitation force, the buoy’s linear motion pushes the generator to 

start to rotate. The generator that is coupled with the power take-off system needs to maintain 

continuous rotation in order to generate electricity. During one complete full cycle of rotation, 

there are instances when the torque is zero, at those moments the generator will pull power from 

the grid to continue the rotation to complete the cycle. To resonate with the wave, the generator 

needs to know, when its torque crosses the zero line, the next half-cycle’s duration to maintain 

the resonance [14]. In this study, prediction of future half cycle duration by detecting zero 

crossings has been analyzed with different AR filter orders. The excitation force is calculated 

from irregular waves generated through the JONSWAP spectrum [15], and simulations are 

carried out in the MATLAB/Simulink environment. A sample off – shore implementation of the 

proposed slider crank WEC system is shown in Fig. 3.1. 

 

Figure 3.1: Proposed Slider Crank WEC 
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The basic parts of the slider crank WEC system shown in Fig. 3.1 include a piston or 

slider, a connecting rod, a crank and a buoy. The piston or slider is firmly affixed to a buoyant 

wave energy capture device which tracks the relative heave motion of ocean waves. The force 

that is exerted on the buoy pushes the connecting rod to turn the crank up (or down; depending 

on the PTOS orientation) and develops the necessary torque that drives the generator to start 

turning and continue the rotational motion. The control algorithm detects the half period and 

zero-crossings of wave excitation force and records real time, and then an angle reference is 

generated. In the meantime, the shaft angle of the generator is detected and compared with the 

reference. Then the angle control algorithm, which is a simplified version of a PID controller, 

calculates a speed reference for the motor drive system according to the difference between the 

shaft angle and its reference. The reference speed makes sure that buoy’s velocity is in phase 

with the excitation force [12].    

3.2 Hydrodynamics Model 

The Cummins equation [16] is utilized to model buoy and wave interactions. The buoy  

selected is a sphere and assumed to be half submerged regardless of wave conditions. Equation 

(1) models the relationship between the buoy motion and hydrodynamic forces. 

(𝑀 + 𝑎∞)𝑧̈(𝑡) + ∫ 𝐻𝑟𝑎𝑑(𝑡 − 𝜏)
𝑡

−∞
𝑧̇(𝜏)𝑑𝜏 + 𝑆𝑏𝑧(𝑡) = 𝐹𝑒(𝑡) − 𝐹𝑢(𝑡)   (1) 

where M is the physical mass of the buoy, a∞ is the buoy-added mass at an infinite wave period, z 

is the buoy center of the gravity displacement in heave direction, Hrad is the radiation impulse 

response function, Sb is the hydrostatic stiffness, Fe is the wave excitation force, and Fu is the 

PTOS’ reactionary force. 
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3.3 Wave Excitation Force Generated for Irregular Waves 

An irregular wave can be composed of several regular sinusoidal waves with different 

amplitudes, angular velocities, and phases. In this research, the angular velocity is chosen in the 

range of 0.08 Hz to 0.22 Hz with an interval of 1.6 mHz. The significant wave height used is 1.4 

meter and the peak period of irregular waves varies from 6 seconds to 10 seconds in this study. 

The amplitudes of the irregular waves were generated with the JONSWAP spectrum shown in 

Fig. 3.2, which can be expressed as [15] 

𝑆(𝑓) =
𝛼𝑗𝑔2

(2𝜋)4 𝑓−5exp [−
5

4
(

𝑓𝑝

𝑓
)

4

] 𝛾𝛤                                                            (2) 

where 𝛼𝑗 is a nondimensional variable that is a function of the wind speed and fetch length, 𝑓𝑝 is 

the peak frequency of the irregular wave, 𝑓 is the frequency of the wave components, and 𝛾𝛤 is 

the peak enhancement factor. A value of 6 is used for 𝛾 in this study, and 

𝛤 = exp [− (

𝑓

𝑓𝑝
−1

√2𝜎
)

2

] , 𝜎 = {
0.07    𝑓 ≤ 𝑓𝑝

0.09    𝑓 > 𝑓𝑝
                                            (3) 

𝛼𝑗 =
𝐻𝑚0

2

16 ∫ 𝑆∗(𝑓)𝑑𝑓
∞

0

        (4) 

In the above equation, 𝐻𝑚0 is the significant wave height of the irregular wave, and 

𝑆∗(𝑓) =
𝑔2

(2𝜋)4
𝑓−5exp [−

5

4
(

𝑓𝑝

𝑓
)

4

] 𝛾𝛤                (5) 

Significant wave heights in the simulations can be chosen according to the equal energy transport 

theorem . 

 𝐻𝑚0 = 2√2𝐴      (6) 

where 𝐴 is the amplitude of the regular sinusoidal wave with equal energy. 
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Figure 3.2: The JONSWAP spectrum used for irregular wave 

The amplitude of each component of the irregular wave can thus be expressed as in [17].  

                                                    𝐴𝑖 = √2𝑆(𝑓𝑖)∆𝑓                                      (7) 

where 𝑓𝑖 represents each regular wave component and ∆𝑓 is the separation between two frequency 

components 

The phase of each component of the irregular wave is randomly generated from 0 to 2π, 

and it is denoted as 𝜑𝑖  . Thus, the irregular wave elevation can be expressed as the summation of 

all the wave components 

                                                 𝑧𝑤 = ∑ 𝐴𝑖 ∙ sin (𝜔𝑖𝑡 + 𝜑𝑖)
𝑀
𝑖=1                              (8) 

where 𝑀 is the total number of wave components, 𝜔𝑖 is the frequency of wave component in 

radian/second and 𝜑𝑖 is the phase angle for each wave component in radian. 

The wave excitation force due to the incident wave is calculated as 

                                                   𝐹𝑒 = |𝜅|𝜌𝑔𝜋𝑎2𝑧𝑤∠𝜑𝜅                                                                  (9) 

where 𝑧𝑤  is the water surface elevation, 𝜅 is the excitation force coefficient 𝑔 is the acceleration of 

gravity, 𝜌 is the density of water, and 𝑎 is the radius of buoy. 
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The amplitude, imaginary and real parts are calculated as 

                                                        |𝜅| = √
4𝜀𝑟

3𝜋𝑘𝑎
                                                                     (10) 

                                                       𝐼𝑚(𝜅) =
2𝜀𝑟𝑘𝑎

3
                          (11) 

                                       𝑅𝑒(𝜅) = √|𝜅|2 − [𝐼𝑚(𝜅)]2                                             (12) 

where 𝜅 is wave number and 𝜀𝑟 is radiation resistance coefficient. Wave excitation force data was 

generated with a precision of 10 ms/sample. 

3.4 Autoregressive Filter Model 

This study proposes a half-cycle wave excitation force prediction algorithm based on AR 

model, using the Forward-Backward parameter estimation approach. An autoregressive model is 

one where the current value of a variable 𝑦, depends only upon its previous values and an error 

term. Equation (13) shows the AR filter expression. 

𝑦𝑡 = 𝑎1𝑦𝑡−1 + 𝑎2𝑦𝑡−2 + ⋯ + 𝑎𝑁𝑦𝑡−𝑁 + 𝑒𝑡 

                                                       = ∑ 𝑎𝑖𝑦𝑡−𝑖
𝑁
𝑖=1 + 𝑒𝑡                                                                             (13)   

where 𝑦𝑡 is the data series, which is the value of the variable 𝑦 for which the prediction needs to 

be done at the time period 𝑡. It depends upon the previous value of that series i.e.  𝑦𝑡−1, 

𝑦𝑡−2…𝑦𝑡−𝑁 . Here, 𝑁 is the order of the filter, or the number of samples used for prediction, and 

𝑒𝑡 is the noise or disturbance term. 

Deriving the linear prediction model involves determining the coefficients 𝑎1, 𝑎2…𝑎𝑁 in 

the equation. Several methods and algorithms exist for calculating the coefficients of the AR 

model, and many are implemented by MATLABTM command 'ar' [13], which is what this study 

has used. 
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3.5 Training Window Model 

In the wave excitation force prediction model, the first five complete cycles of irregular wave 

excitation force initialized the training window. As the prediction continues the training window also 

shifts by the last ten zero crossings. Equation (14) shows the shifting of the training data. 

𝒚𝑠ℎ𝑖𝑓𝑡 = [𝑦1+𝑏𝑛 𝑦2+𝑏𝑛 … … … 𝑦𝑛+𝑏𝑛]                                                               (14) 

where 𝑏𝑛 is the data index of the first zero crossing point in each predicted half cycle and 𝑛 is a 

constant and defines the length of data array with the first ten zero crossings. After getting the first 

training window, the autoregressive filter coefficients can be found with the help of training data 

in (13). 

After getting the AR filter coefficients, prediction horizon size is set to be about four zero-

crossings in (15) to ensure two zero crossings exist in each prediction window since the waves are 

irregular. 

𝑇𝑠𝑡𝑒𝑝 = 4×(𝑛 ÷ 𝑑)                                                                   (15) 

where 𝑑 is the number of zero crossings in the first training window and set to 10 in this study. 

As mentioned before, 𝑛 is the data length. 

3.6 Prediction Model 

After determining the prediction horizon and AR filter coefficients, prediction starts. 

Equation (16) shows the prediction of the data series [13]. 

       𝑦𝑡+1 = −𝑎1𝑦𝑡 − 𝑎2𝑦𝑡−1 − ⋯ − 𝑎𝑁𝑦𝑡−𝑁−1                                   (16) 

where 𝑦𝑡 is the final data value of each training window, 𝑎1, 𝑎2…𝑎𝑁 are the AR filter 

coefficients, 𝑁 is the filter order. After getting the predicted data, the prediction algorithm detects 

the zero crossing and half cycle duration. 
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3.7 Zero Crossing and Half Period Prediction 

To maintain the resonance between the slider-crank and the generator, a prediction of 

future half period of the wave excitation force is needed. The prediction algorithm flow chart is 

shown in Fig. 3.3. The future half period is identified by two zero crossings detection 

mechanism. At first, the irregular wave data generated by the irregular wave force calculator is 

loaded. Then the prediction horizon is chosen, following the procedure presented in Equation 

(15).  

Equation (17) shows the data length that needs to be predicted 

𝑦𝑙𝑒𝑛𝑔𝑡ℎ = 𝑙 − 𝑛                                                           (17) 

where  𝑙 is the length of total actual data and 𝑛 is the length of initial training data that encompasses 

ten zero crossings. 

The prediction algorithm is initialized by finding the AR filter coefficients from (13). The 

algorithm is repeated inside a while loop until the end of the sample data series to be predicted 

(see Fig. 3.3). The AR model estimation is constantly adapted using the data from the last zero-

crossing point. The AR filter coefficients are used in (16) to predict data in each prediction 

horizon by using a for loop and the number of repetitions of that is the prediction horizon length. 

The zero crossing is determined when the value of the predicted data makes a transition from 

being positive to negative or negative to positive. If the number of the zero crossings is fewer 

than two, prediction horizon Tstep is extended as a safety precaution to cover two zero crossings. 

However, this rarely happens. 
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Figure 3.3: Flow chart of wave excitation force prediction algorithm 
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Data prediction for the current window ends as soon as two zero crossings are 

determined. After that, new training and prediction cycle start. It should be noted that the 

algorithm predicts the same zero crossing twice, one with the larger prediction length and the 

next with the smaller prediction length. For the second prediction of the same zero crossing, the 

training window will be the same only the starting point of that prediction advances for better 

accuracy. After that, the half cycle duration has been calculated and recorded. Equation (18) 

shows the half cycle duration calculation. 

𝑇𝑝 = 𝑡𝑧𝑐2 − 𝑡𝑧𝑐1                                       (18) 

where 𝑡𝑧𝑐1 and 𝑡𝑧𝑐2 are the time of first and second zero crossing occurrence time of each 

prediction horizon. This process of zero crossing and half cycle detection is continued until the 

end of the actual data series. When the prediction is finished, the difference between the square 

of the predicted half cycles and the actual half cycles duration is calculated and its sum is the 

metric to evaluate the sum of squares for error (SSE). Equation (19) shows the SSE, 𝑇𝑒𝑟𝑟𝑜𝑟 

between the actual and predicted half cycles duration. 

𝑇𝑒𝑟𝑟𝑜𝑟 = ∑ (𝑇𝑎𝑖 − 𝑇𝑝𝑖)²𝐾
𝑖=1                                           (19) 

where 𝑇𝑎 is the array, which contains the half cycles durations of the actual data series and 𝑇𝑝 is 

the array, which contains the half cycles durations of the predicted data series. 𝐾 is the number of 

observations. 

The normalized SSE can be found by dividing the SSE by the number of observations. 

Equation (20) shows the normalized sum square error. 

𝑇𝐾 = 𝑇𝑒𝑟𝑟𝑜𝑟 ÷ 𝐾                              (20) 

𝑇𝐾 is later used to assess the quality of prediction process for specific filter and time series.   
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The wave excitation force prediction is used to identify the zero-crossing points to predict 

the next half-wave period, and hence the amplitude of the wave excitation force prediction is not 

critical. Although, there are some minor errors in predicted waveform’s peaks and valleys, these 

errors won’t impact our analysis since this study focuses only the zero crossings and half cycle 

durations.   

3.8 Test Procedure 

 First the prediction control algorithm is successfully tested and validated with regular 

wave forces. Then the control algorithm is tested with irregular wave forces for practical 

purposes. It should be noted that the irregular wave forces are generated with the help of 

JONSWAP spectrum. The irregular wave force calculator was already mentioned in section 3.3. 

After getting the satisfactory prediction results, the next step is to extract the energy. For this 

reason, simulation has been done to show how much energy can be extracted in comparison to 

the actual wave data. To compare between the actual and predicted results, the actual wave data 

needs to be used in the simulation first. After getting power extraction simulation result from the 

actual data then the prediction data has been used in the simulation model. Finally, the two 

output results were compared. The wave data has been analyzed with five frequently occurs 

wave period in ocean, i.e. 6,7,8,9 and 10 seconds wave period. The filter order has been tested 

for 7, 10 & 15 orders. For each wave period, 5 different wave samples were generated and tested 

again with 3 different filter orders, in total 75 different cases were analyzed in this study.  

It should be noted, in order to compare the predicted data with the actual data, the actual 

waveform also be truncated to make the same length with the predicted data based on the first 10 

zero crossings, as after the first 10 zero crossings prediction starts. 
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CHAPTER 4: RESULTS 

 

4.1 Prediction Results with Regular Waves 

A regular sinusoidal ocean wave is adopted as the excitation source and it has the following 

form: 

𝑧𝑤 = 𝐴 ∙ sin (𝜔𝑡 + 𝜑)                 (21) 

where A is the amplitude of wave, 𝜔 is wave angular velocity and 𝜑 is the initial angle of the 

wave. 

In this study, five different shift angles have been chosen for the regular waves, i.e. 0°, 

72°, 144°, 216°, 288°. Then for each wave periods, 5 samples of data with different shift angles 

have been formed. It has to be noted that, the regular wave data length is 500 seconds. The wave 

excitation force due to incident regular wave is calculated as 

𝐹𝑒 = 𝜅𝜌𝑔𝜋𝑎2𝑧𝑤                   (22) 

where 𝜅 is the excitation force coefficient, whose amplitude is calculated as  

|𝜅| = √
4𝜀𝑟

3𝜋𝑘𝑎
                       (23) 

The generation of wave excitation force for 6 seconds wave period with the shift angel of 

0° is shown in Fig. 4.1. In the figure the blue line shows the true wave excitation forces. The 

horizontal axis shows the time duration. The total time duration is 500 seconds, where in the 

figure it shows the duration from 30 seconds to 80 seconds. The vertical axis shows the amplitude 

of the waves with respect to time. 

After generating the excitation force the prediction algorithms discussed in chapter 3 was 

employed. It generates the predicted waveform shown in Fig 4.2, where the red lines indicate the 

predicted data for the same time duration 30 seconds to 80 seconds within the total time 500 
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seconds. The horizontal and vertical axis are the same as discussed in Fig 4.1. This prediction runs 

for 6 seconds wave periods and filter order 15. 

 

 

Figure 4.1:  Wave excitation force for regular waves 

 

  
 

Figure 4.2:  Predicted wave excitation force for regular waves 
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In Fig 4.3, the plot shows the predicted data vs actual data. The blue waveforms show the 

actual or truth data and the red waveforms shows the predicted data. From the figure, it can be 

shown that for 6 seconds wave period and filter order 15, the predicted data perfectly overlaps 

with the actual data. This indicates the accuracy of prediction. In order to distinguish both 

waveforms, the truth data linewidth is increased, and the predicted data linewidth is decreased as 

it is shown in legend section of the figure. As discussed in chapter 3, this prediction is based on 

autoregressive (AR) model, which is a model that can predict the future data based on previous 

data. 

In Fig 4.4, the prediction error histogram is shown, which clearly shows the accuracy of 

the prediction. 

 

Figure 4.3:  Predicted data vs actual data for regular waves 
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Figure 4.4:  Prediction error histogram for regular waves 

 

From the prediction error histogram in Fig 4.4, it has been shown that most of the error occurs 

within ±10 ms. This indicates the validity of prediction algorithms for regular waves. It should 

be noted that this prediction histogram error plot is for 6 seconds wave periods and filter order 

15. 

To validate the system under different wave conditions and study the influence of period 

on energy extraction, prediction process is carried out with regular waves of five different 

periods (6, 7, 8, 9, and & 10 sec) for a data length of 500 seconds. For each wave period these 

cases were studied and three different filter orders, i.e. 7, 10 & 15 were utilized. The prediction 

results are shown in Table 4.1. 
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Table 4.1: Half cycle duration prediction results for regular waves 

Wave Period 

(Sec) 

Filter Order 

(N) 

Average 

Normalized SSE 

(ms) of Half Cycle 

Duration Prediction 

Average Zero Crossings Number 

Real Predicted 

6 

7 0.052 

156 

156 

10 0.050 156 

15 0.049 156 

7 

7 0.065 

132 

132 

10 0.072 132 

15 0.075 132 

8 

7 0.067 

120 

120 

10 0.069 120 

15 0.067 120 

9 

7 0.073 

106 

106 

10 0.061 106 

15 0.069 106 

10 

7 0.07 

99 

99 

10 0.07 99 

15 0.08 99 

 

From the table, it can be observed that, for 6 second wave period, filter order 15 gives the 

best prediction in terms of half cycle duration error, which is 0.049 ms. However, for 7 second, 

filter order 7 gives the best prediction with error of 0.065 ms. Again for 8 second wave period, 

filter order 7 and 15 gives the best accuracy with an error of 0.067 ms, whereas for 9 second, 

filter order 10 gives the best prediction with 0.061 ms error and for 10 second, filter order 7 and 

10 gives the best prediction with 0.07 ms error. However, the average normalized sum square 

error based on filter order for overall 6,7,8,9 & 10 second together is really close, i.e. 0.07 ms for 

filter order 7, 0.06 ms for filter order 10 and 15. In addition, with all the filter orders, the number 

of zero crossings in the actual and predicted data series is identical. Or, the prediction gives 

almost the same replica of the actual wave curve. 



20 
 

4.2 Power Extraction Simulation Results with Regular Waves 

In this simulation, only the control algorithm is modified, the PTOS model and the 

hydrodynamic model is still the same as in this research’s early work [12]. The simulation model 

is the same for both regular and irregular waves. In simulations of this study, parameters in Table 

4.2 and Table 4.3 are adopted. Table 4.2 shows the mechanical parameters used in this simulation 

and Table 4.3 shows the generator’s parameters used in this simulation. 

Table 4.2: Mechanical parameters used in simulations 

Parameter Value 

Radius of crank (r) 0.5m 

Length of connecting rod (l) 1.0m 

The distance between the lowest edge of the crank and reference water surface 
(𝑑𝑟 − 𝑑𝑠𝑏) 

1.0m 

Density of water (𝜌) 1020kg/m2 

Gravitational acceleration (g) 9.81N/kg 

Viscous force coefficient (𝑅𝑣) 10kg/s 

Friction force coefficient (𝑅𝑓) 0 

The total mass of slider and connecting rod (𝑚𝑐𝑟 − 𝑚𝑝) 10kg 

Table 4.3: Generator’s parameters used in simulations 

Parameter Value 

Nominal Speed 1184rpm 

Nominal Power 149.2kW 

Nominal Voltage 440V 

Viscous Friction Coefficient  0.32N/(m/s) 

Armature Resistance 0.076Ω 

Armature Inductance 0.00157H 

Field Resistance 310 Ω 

Field Inductance 232.25H 

Mutual Inductance 3.320H 
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In order to get a better picture of simulation results, the simulation was run for 5 different 

wave periods (i.e. 6,7,8,9 & 10 seconds) and 5 different cases for each wave period. For each 

simulation case 3 different filter orders (i.e. 7, 10 & 15) were tested. In total 75 simulations have 

been conducted to validate the prediction algorithm. Fig. 5 highlights various blocks of the 

proposed WEC system with the control features. In the simulation model, the control algorithm 

is highlighted in blue, the hydrodynamics part is highlighted in yellow and the PTOS model is 

highlighted in green. 

 

 

Figure 4.5:  Simulation model for the WEC system. 
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The offline prediction results are provided to the control algorithm block, which includes 

the half period duration array T_s, the zero crossing time-stamp array T1_s and the type of zero 

crossing array pn_flag (positive or negative zero crossing). In simulations, the complete duration 

of each run is 500 seconds. The data from the first ten zero-crossings is used in training, and the 

rest of the data is used in prediction. The wave cycle duration in waves varies, and hence the 

actual duration of the first ten zero-crossings, 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, may vary between runs, and 

correspondingly the actual duration of the prediction phase is 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 500 − 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 

varies. From the simulation data shown in Table 4.4, it can be observed that, for 6 second wave 

period the output power is increased overall by 0.008 % with the predicted data, whereas for 7 

seconds the output power is increased by 0.003% and for 8 seconds its 0.38%. It should be noted 

that these results only reflect computational analysis of this WEC system. 

Table 4.4: Simulation power extraction results for regular waves 

Wave 

Period 

(Sec) 

Filter 

Order 

(N) 

Average Truth 

Output Power 

(kw) 

Average 

Predicted 

Output 

Power (kw) 

Wave Period wise 

Average 

Predicted Power 

Change (%) 

Filter wise Average 

Predicted Power 

Change (%) 

6 

7 

34.110 

34.112 

0.008 

0.006 

10 34.114 0.012 

15 34.112 0.006 

7 

7 

38.574 

38.574 

0.003 

0 

10 38.578 0.01 

15 38.574 0 

8 

7 

39.954 

39.960 

0.38 

0.01 

10 40.104 0.38 

15 40.252 0.75 

9 

7 

39.518 

39.518 

0.14 

0 

10 39.522 0.01 

15 39.680 0.41 

10 

7 

38.344 

38.348 

0.33 

0.01 

10 38.510 0.43 

15 38.532 0.49 
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For 9 second wave period, the output power is increased overall by 0.14 % with the 

predicted data and for 10 second it increased by 0.33 %. In terms of filter orders of overall 

examined wave periods, the filter order of 15 gives the best power generation with an increased 

power extraction of 0.34%, whereas the filter order 10 gives 0.18% increased power extraction 

and the filter order 7 gives an increased power extraction of 0.01%. Results from the 75 

simulation cases of regular waves validate the system can be able to work under a variety of 

irregular wave conditions and produce satisfactory amounts of energy. 

4.3 Prediction Results with Irregular Waves 

In this prediction algorithm, adaptive training and prediction run sequentially, so the filter 

order needs to balance between accuracy and time delay. Filter order determines how many past 

values need to be used to predict the future value. In this study 7th, 10th and 15th order filters 

were examined with variety of irregular waves. The prediction process is carried out with 

irregular waves of five different peak periods (6, 7, 8, 9, and & 10 sec) for a data length of 500 

seconds. The significant wave height kept the same at 1.414 m, which is chosen according to the 

equal energy transport theorem. All the randomly generated waves are derived from the 

JONSWAP spectrum. In total, there are 75 different trials tested using the prediction and 

simulation model. The generation of wave excitation force for 8 seconds wave period is shown in 

Fig. 4.6. In the figure the blue line shows the truth wave excitation forces. The horizontal axis 

shows the time duration. The total time duration is 500 seconds, the figure shows the duration 

from 100 seconds to 150 seconds. The vertical axis shows the amplitude of the waves with 

respect to time. Then the prediction algorithm runs and generates the predicted waveform as 

shown in Fig. 4.7. In this figure wave period is 8 seconds and filter order is 15. 
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Figure 4.6:  Wave excitation force for irregular waves 

 

 

Figure 4.7:  Predicted wave excitation force for irregular waves 
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In Fig 4.8, the plot shows the predicted data vs truth data. The blue waveform shows the 

actual or truth data and the red waveform shows the predicted data. From the figure, it can be 

shown that for 8 seconds wave period and filter order 15, the predicted data closely matches the 

actual data. This indicates the accuracy of prediction. Minor excursions in the peak and valleys 

of the predicted wave curve comparing with the actual curve can be observed, but as mentioned 

earlier the amplitude of the future wave is not used in the PTO system. The small spikes in 

predicted (red) curve represent the reinitializations of a new training/prediction cycles for better 

accuracy. It is important to note that in every half cycle prediction process, there is a training 

followed by a prediction. This prediction is later fine-tuned or corrected by making another 

prediction as real time approaches the first zero crossing in this cycle. 

Fig. 4.9 shows the prediction error histogram for 8 second sample wave period with filter order 

15. From the prediction error histogram, it has been shown that most of the error occurs within 

±200 ms window. 

 

Figure 4.8:  Predicted data vs actual data for irregular waves 
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Figure 4.9:  Prediction error histogram for irregular waves 

In this study, a time offset or cushion of 0.55 seconds is used after each prediction’s end to 

start the new prediction process for the same half period (or two zero crossings). This cushion is a 

value designed to account for inaccuracies in prediction. By introducing a sufficiently large 

cushion the same zero crossing are not double counted. However, a half cycle can be smaller than 

this cushion. If that is the case, the cushion is reduced, and prediction is repeated. 

The prediction results are shown in Table 4.5. In this prediction algorithm training and 

prediction run sequentially, so the algorithm needs to work with a filter order that gives good 

accuracy and takes less time for the whole process. It’s important to note that the error in 

prediction increases as the peak period increases. This is primarily because the prediction horizon 

in this study depends on the zero-crossing detection and extends with increasing wave period. As 

the prediction horizon extends, the sum square error naturally increases. 
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Table 4.5: Half cycle duration prediction results for irregular waves 

Wave Period 

(Sec) 

Filter Order 

(N) 

Average Normalized SSE 

(Sec) of Half Cycle 

Duration Prediction 

Average Zero Crossings 

Number 

Real Predicted 

6 

7 0.049 

156 

156 

10 0.049 156 

15 0.069 156 

7 

7 0.446 

132 

132 

10 0.451 132 

15 0.150 132 

8 

7 0.137 

120 

120 

10 0.110 120 

15 0.276 120 

9 

7 0.427 

106 

106 

10 0.242 106 

15 0.731 106 

10 

7 1.075 

99 

97 

10 1.056 97 

15 0.48 99 

 

From the table, it can be observed that, for 6 second wave period, filter order 7 & 10 gives 

the best prediction in terms of half cycle duration error, which is 0.049 second. However, for 7 

second, filter order 15 gives the best prediction with error of 0.150 second. Again for 8 and 9 

second wave period, filter order 10 gives the best accuracy with an error of 0.110 & 0.242 second 

respectively, whereas for 10 second, filter order 15 gives the best prediction with 0.48 second 

error. However, the average normalized sum square error based on filter order for overall 6, 7, 8, 

9 & 10 second together is less in filter order 15, which is 0.341 second, whereas filter order 7 

error is 0.427 second and filter order 10 error is 0.382 second. According to the prediction results 

filter order 15 gives the best prediction. In addition, with a filter order of 15, the number of zero 
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crossings in the actual and predicted data series is identical. Or, the prediction gives almost the 

same replica of the actual wave curve. 

4.4 Power Extraction Simulation Results with Irregular Waves 

Fig. 4.5 highlights various parts of the proposed WEC system with the control features. In 

the simulation model, the control algorithm is highlighted in blue, in which the half period 

duration array T_s, the zero-crossing time-stamp array T1_s and the type of zero crossing array 

pn_flag (positive or negative zero crossing) derived from the prediction algorithm. Simulations 

are implemented in the following steps. First, as a baseline, the actual data of the irregular wave 

excitation force is provided to the simulation model. Energy extraction results and system 

operation waveforms generated from the actual data shows the feasibility of the model. In 

practice, however, future wave information is never known, and this best-case scenario is not 

feasible, but just serves as the optimal performance a system can approach. Then the offline wave 

excitation force prediction data which contains the predicted half cycles, zero crossings and types 

of zero crossings is tested with the simulation model. 

Simulations results are listed in Table 4.6. From the data shown in Table 4.6, it can be 

observed that, for 6 second wave period the output power is increased overall by 0.99 % with the 

predicted data. This is possible since perfect phase lock between the excitation force and the 

generator as in the case of perfect prediction does not necessarily produce best outcome [18]. 

However, for the other wave periods examined in this study, the output power with 

predicted data is moderately lower than the power extracted with actual data. For example, with 8 

second peak period, the output is reduced by 5.33% with the predicted data. In terms of filter 

orders of overall examined wave periods, a filter order of 15, gives the best power generation with 
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a power reduction of 4.29%, whereas filter order 7 gives 5.2% power reduction and filter order 10 

gives a power reduction of 4.41%. 

Fig. 4.10 shows the cumulative energy generation during the simulation of 9 second peak 

wave period data. The energy extraction started around 11 seconds after the initialization process 

of control algorithm, the first wave force affected the system by this time and hence the generator 

started to produce power. The next wave is then aligned with the slider-crank mechanism and the 

device extracts more energy than it consumes. This trend continues to produce power at an 

average rate of 37.6 kw for this specific 9 second wave period. 

Table 4.6: Simulation power extraction results for irregular waves 

Wave 

Period 

(Sec) 

Filter 

Order (N) 

Average 

Truth Output 

Power (kw) 

Average 

Predicted 

Output Power 

(kw) 

Wave Period 

wise Average 

Predicted 

Power Change 

(%) 

Filter wise 

Average 

Predicted 

Power Change 

(%) 

6 

7 

21.93 

22.21 

0.99 

1.29 

10 22.22 1.33 

15 22.01 0.36 

7 

7 

31.84 

29.82 

-5.35 

-6.34 

10 29.98 -5.85 

15 30.61 -3.87 

8 

7 

32.82 

30.97 

-5.33 

-5.64 

10 31.40 -4.32 

15 30.84 -6.02 

9 

7 

36.40 

33.59 

-6.54 

-7.72 

10 33.92 -6.83 

15 34.55 -5.08 

10 

7 

32.98 

31.26 

-4.9 

-5.21 

10 30.83 -6.53 

15 31.26 -5.21 
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Figure 4.10:  Cumulative Electric Energy Production 

 

Results from the 75 simulation cases validate that the system can work under a variety of 

irregular wave conditions and produce reasonable amounts of energy. 

4.5 Prediction & Simulation Result with Noisy Irregular Wave Data 

In order to generate the noisy irregular wave data, Signal to Noise Ratio (SNR) has been 

introduced to the irregular wave force calculator. In this experiment, SNR=0 and SNR=1000:1 

has been used to show the noisy environment performance.  

In Fig 4.11, the plot shows the predicted data vs actual data for noisy irregular wave. The 

blue waveform shows the actual or truth data and the red waveform shows the predicted data. 

From the figure, it can be shown that for 6 second wave period and filter order 15 with  
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Figure 4.11:  Predicted data vs actual data for noisy irregular waves 

 

 

Figure 4.12:  Prediction error histogram for noisy irregular waves 

 

SNR 1000:1 
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SNR=1000:1, the predicted data moderately overlaps with the actual data. This indicates noise 

sensitivity of the prediction. The small spikes in predicted (red) curve represent the 

reinitialization of a new training/prediction cycle. Fig. 4.12 shows the prediction error histogram 

for 6 second sample wave period with filter order 15 and SNR=1000:1. Table 4.7 shows the 

prediction results with noisy data. From the table, it can be observed that, for 6 second wave 

period with SNR=0, all the filter orders give almost the same replica of the truth half cycle 

duration with no error. However, when the SNR=1000:1, filter order 15 gives the best prediction 

with 0.08 half cycle duration error, rest of the filter orders give 0.14 second error. For 7 second 

wave period with SNR=0, filter order 15 again gives the best prediction with no error, where 

filter order 7 and 10 give 0.3 second error. However, with SNR=1000:1 all 3 filter orders give 

error of 0.9 second. Again for 8 second wave period and SNR=0, filter order 7 and 10 gives the 

best accuracy with an error of 0.01 second. For the same wave period when the SNR is 1000:1, 

all 3 filter orders gives almost the same accuracy. Again for 9 second wave period with SNR=0, 

filter order 7 gives the best accuracy with an error of 0.01 second. Although with SNR=1000:1 

filter order 7 and 15 gives almost the same accuracy. For 10 second wave period with SNR=0, 

filter order 10 gives the same accuracy with an error of 0.03 second, although with SNR=1000:1, 

filter order 15 gives the best accuracy with an error of 1.25 second. However, the normalized 

sum square error based on examined filter order for overall 6,7,8,9 & 10 second and both SNR=0 

and SNR=1000:1 is less in filter order 15, which is 0.28 second, whereas filter order 7 error is 

0.32 second and filter order 10 error is 0.3 second. According to the prediction results filter order 

15 gives the best prediction. In addition, with a filter order of 15, the number of zero crossings in 

the actual and predicted data series is identical or, almost the same replica.  

Power Extraction simulation results for noisy irregular waves are shown in Table 4.8.  
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Table 4.7: Half cycle duration prediction results for noisy irregular waves 

Wave 

Period (Sec) 
SNR  

Filter Order 

(N) 

Normalized SSE 

(Sec) of Half 

Cycle Duration 

Prediction 

Zero Crossings Number 

Real Predicted 

6 

0 

7 0 

158 

158 

10 0 158 

15 0 158 

1000:1 

7 0.14 

138 

138 

10 0.14 138 

15 0.08 138 

 

7 

0 

7 0.3 

136 

134 

10 0.3 134 

15 0 136 

1000:1 

7 0.9 

138 

138 

10 0.9 138 

15 0.9 138 

 

8 

 

 

 

0 

7 0.01 

120 

120 

10 0.01 120 

15 0.03 120 

1000:1 

7 0.07  

121 

 

121 

10 0.07 121 

15 0.08 121 

 

9 

0 

7 0.01 

109 

109 

10 0.05 109 

15 0.03 109 

1000:1 

7 0.23 

109 

109 

10 0.25 109 

15 0.24 109 

 

10 

 

0 

7 0.22 

100 

100 

10 0.03 100 

15 0.22 100 

1000:1 

7 1.27 

102 

102 

10 1.27 102 

15 1.25 102 
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Table 4.8: Simulation power extraction results for noisy irregular waves 

Wave 

Period (Sec) 
SNR  

Filter Order 

(N) 

Truth Output 

Power (kw) 

 Predicted 

Output 

Power (kw) 

Predicted 

Power Change 

(%) 

6 

0 

7  

29.28 

 

29.27 -0.034 

10 29.27 -0.034 

15 29.27 -0.034 

1000:1 

7  

29.29 

 

28.03 -4.495 

10 28.93 -1.244 

15 29.10 -0.652 

 

7 

0 

7  

31.74 

 

28.79 -10.247 

10 28.79 -10.247 

15 31.70 -0.126 

1000:1 

7  

31.76 

 

28.02 -13.348 

10 28.80 -10.277 

15 28.70 -10.662 

 

8 

 

 

 

0 

7  

35.02 

 

34.90 -0.343 

10 34.90 -0.343 

15 34.90 -0.343 

1000:1 

7  

35.65 

 

34.90 -2.149 

10 35.00 -1.857 

15 35.00 -1.857 

 

9 

0 

7  

37.38 

 

37.09 -0.782 

10 37.12 -0.700 

15 37.04 -0.917 

1000:1 

7  

37.38 

 

34.46 -8.474 

10 34.17 -9.394 

15 34.22 -9.234 

 

10 

 

0 

7  

32.37 

 

32.40 0.093 

10 32.40 0.093 

15 31.60 -2.437 

1000:1 

7  

31.53 

 

30.10 -4.751 

10 30.20 -4.404 

15 30.20 -4.404 
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From the data shown in Table 4.8, it can be observed that for 6 sec wave period with 

SNR=0, the power is reduced by 0.034 %. For SNR=1000:1, filter order 15 gives the best power 

extraction with 0.625 % reduction. Again, for wave period of 7 second with SNR=0, filter order 

15 extracts higher power with a reduction of 0.126 % but with SNR=1000:1, filter order 10 gives 

less percentage reduction of power, which is 10.277 %. For wave period of 8 second with SNR=0, 

the power is reduced by 0.343 %, where with SNR=1000:1, filter order 10 and 15 both give the 

best result with 1.857 % reduction. However, for wave period of 9 second with SNR=0, filter 

order 10 results less reduction of power. Finally, for wave period of 10 second with SNR=1000:1, 

filter order 15 gives the best result with a power reduction of 4.404 %. In terms of filter orders of 

overall examined wave periods, a filter order of 15, gives the best power generation with a power 

reduction of 3.06 %, whereas filter order 7 gives 4.45 % power reduction and filter order 10 gives 

a power reduction of 3.84 %. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

 

A control methodology for regular and irregular ocean waves is applied in a slider crank 

WEC system to maximize energy extraction by ensuring that the WEC generator can rotate in 

resonance with the wave excitation force. The wave excitation force prediction algorithm is 

based on the AR filter model and examined with three filter orders 7,10 & 15 and with five 

commonly found ocean wave periods of 6, 7, 8, 9 & 10 seconds. The prediction algorithm first 

tested with the regular waves to prove its validity. After that, it was tested with irregular waves 

and finally tested with noisy irregular wave data. Moreover, the prediction strategy requires only 

the future half-period duration, not the future amplitude of the wave force, which greatly 

alleviates the prediction challenges. The buoy used in this slider crank model is semi-submerged 

spherical buoy. The irregular waves are generated with the JONSWAP spectrum and the 

irregular wave force generator, in order to generate the noisy data Signal to Noise Ratio (SNR) is 

introduced in the wave force generator. In this study, the AR filter model is identified and 

utilized in MATLABTM environment, which renders fairly accurate prediction with forward-

backward estimation approach. Then the offline prediction results are implemented to the 

simulation model. The simulation model is developed in SIMULINKTM.  

This study presents a unique prediction strategy, where the prediction horizon is adapted 

continuously with the change of length of half cycle duration, whereas in the initial research 

[11], prediction horizon was considered constant, which is not practically viable for real time 

applications. The prediction and simulation results show that, a filter order of 15 gives a fairly 

accurate prediction results for the most energy extraction cases of regular and irregular waves, 

satisfying the real-time processing requirement to validate the feasibility of the system under 
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practical ocean wave conditions. The prediction methodology proposed in this study can also be 

applied to other WEC control schemes such as latching control, which heavily relies on phase 

prediction. 

Future work of this study includes the extensive noise analysis of this prediction 

algorithm with a more noise corrupted sensor measurements of wave data. In real life 

applications, sensor data includes noise at different levels. This is something that needs to be 

tested to validate the performance of proposed prediction algorithm. Once the performance under 

the presence of noise is satisfactory, the system will be tested in a hardware in the loop 

simulation environment.  
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APPENDIX A: SOURCE CODE 

 

%% Irregular Wave Force Generation “Irregular_Wave_Force.m” 

 

clear;clc;close all; 

%=================================================================% 

% initial inertia: 10  

% initial viscous friction coefficient: 0.32 

%==================================================================% 

%Callback for the simulink model 

Ts=20e-6; % Sampling time 

Td=1e-3; % Discrete Sampling time 

%%% setting 1 %%% 

gr=110;    % Gear ratio 

 %====================== 

aa=20e-6/(.5+20e-6); 

%================================================================% 

%Slider-Crank initialization 

global r       % Radius of crank. used again in the rk4sys_step function and slider crank function. 

global l                % Length of rod, used again in the slider crank function. 

global dr_dsb      % (Used to be r+A) Distance between the lowest edge of the crank and the 

reference water surface 

r=.5;            % Radius of crank. used again in the rk4sys_step function and slider crank function. 

l=1;                      % Length of rod, used again in the slider crank function. 
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lambda=r/l;               % used again in the slider crank function. 

B=0.01;                  % Viscous friction, used again in the slider crank function. 

J=10;                   % inertia of flywheel, used again in the slider crank function. 

dr_dsb=l;                   % (Used to be r+A) Distance between the lowest edge of the crank and the 

reference water surface 

mcrp=10;                % Total of mass of piston (or slider) and connecting rod respectively. 

%=================================================================% 

% Hydrodynamics initialization (frequency domain) 

delta_omega=0.01; 

omega=0.5:delta_omega:1.4; 

N=length(omega); 

fn=omega/2/pi;% frequencies of the wave components 

%%%========================================%%% 

%%% Settings for irregular wave parameters %%% 

% Equivalent energy transfer: Hm0=2*sqrt(2)*A  (A is the amplitude of the regular wave) 

Hm0=sqrt(2); % significant wave height of the irregular wave. The same value is used as that in 

"Effect of..." 

Tp=6; % If this changes, int_S_star has to be recalculated. Peak period of the irregular wave. In 

"Effect of...", they used an average period of 6. We can use our own to make the spectrum fit our 

need. 

%%%========================================%%% 

fp=1/Tp; 

g=9.81; % gravity acceleration 
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rho=1020;% water density 

%==================================================================% 

% Choose Spectrum for the System: 

flag = 1; % 0 for Breschneider model and 1 for JONSWAP Model 

switch flag 

    case 0 

% =====================  Bretschneider model  ============================% 

%         R=(Tp/1.057)^(-4); % These are calculated separately for the sake of the organing the 

formula 

%         Q=R*Hm0^2/4;% These are calculated separately for the sake of the organing the 

formula 

%         S=Q*fn.^(-5).*exp(-R*fn.^(-4)); % Bretschneider spectrum ("sea spectra revisited" or 

MIT OCW slides) 

        S=Hm0^2/4*(1.057*fp)^4*fn.^(-5).*exp(-5/4*(fp./fn).^4); %According to 

WEC_Sim_User_Manual_v1.0.pdf 

    case 1 

% ==============  JONSWAP Model ==================================% 

        m0=sqrt(Hm0/4); % wave field variance. See "On control ...". 

  %alpha=0.0081; % a given constant which is used in most references, see "sea spectra 

revisited". 

        gamma=6;% If this changes, int_S_star has to be recalculated. The average of gamma is 3.3 

(see "sea spectra revisited"). enhancement factor by which the P_M peak energy is multiplied to 

get the peak energy value of the spectrum. 
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        %Increasing gamma has the effect of reducing the spectral bandwidth, 

        %thereby increasing periodicity of the wave field. See "On control ...". 

        for i2=1:N 

            if fn(i2)<=fp 

                sigma=0.07;%if f<fp  sigma is the width factor of the enhanced peak, see "sea spectra 

revisited". The numbers are given in "sea spectra revisited". 

            elseif fn(i2)>fp 

                sigma=0.09;%if f>fp 

            end   

%=================================================================% 

            % the following eqn is from On Control of a Pitching and Surging Wave Energy 

Converter-HYavuz.pdf 

            %     S(i2)=5*m0/fp*((fp/fn(i2))^5)*exp(-5/4*((fp/fn(i2))^4))*gamma^exp(-(fn(i2)/fp-

1/(2*sigma^2)));         

%==================================================================% 

            % the following eqn is from sea_spectra_revisited.pdf and Measurements of wind-wave 

growth and swell decay during the Joint North Sea Wave Project (JONSWAP)_Jonswap-

Hasselmann1973.pdf 

            %     S(i2)=alpha*g^2*(2*pi)^(-4)*fn(i2)^(-5)*exp(-5/4*((fp/fn(i2))^4))*gamma^exp(-

(fn(i2)-fp)^2/(2*sigma^2*fp^2));       

%==================================================================% 

            % The following eqn uses basic spectrum from "On control ..." and peak enhancement 

factor from "Sea_spectra_revisited". 
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            S(i2)=5*m0/fp*((fp/fn(i2))^5)*exp(-5/4*((fp/fn(i2))^4))*gamma^exp(-(fn(i2)-

fp)^2/(2*sigma^2*fp^2));        

%==================================================================% 

            % The following eqn is according to WEC_Sim_User_Manual_v1.0.pdf 

            % integral of 

            % 9.81^2/(2*pi)^4*x^(-5)*exp(-5/4*(0.125/x)^4)*6^exp(-((x/0.125-1)/(sqrt(2)*0.07))^2) 

            % from 0 to 0.125 = 37.61 calculated by Wolframalpha 

            % integral of 

            % 9.81^2/(2*pi)^4*x^(-5)*exp(-5/4*(0.125/x)^4)*6^exp(-((x/0.125-1)/(sqrt(2)*0.09))^2) 

            % from 0.125 to infinity=65.8056 calculated by Wolframalpha 

            switch Tp 

                case 6 

                    int_S_star=11.9001+20.8213; 

                case 7 

                    int_S_star=22.0463+38.574; 

                case 8 

                    int_S_star=37.61+65.8056; 

                case 9 

                    int_S_star=60.244+105.408; 

                case 10 

                    int_S_star=91.8214+160.658; 

            end 
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            alpha=Hm0^2/(int_S_star*16); %int_S_star should be changed when Tp or gamma 

changes. 

            GAMMA=exp(-((fn(i2)/fp-1)/(sqrt(2)*sigma))^2); 

            S(i2)=alpha*g^2/(2*pi)^4*fn(i2)^(-5)*exp(-5/4*(fp/fn(i2))^4)*gamma^GAMMA; 

        end 

end 

 plot(omega/(2*pi),S) 

 grid on 

 axis([0.08 0.26 0 3.5]) 

 xlabel('f (Hz)') 

 ylabel('Spectral Density (m^2s)') 

 title('JONSWAP Spectrum') 

%==================================================================% 

% Wave elevation and excitation force (time domain) 

Start_Time=0;             % time start 

End_Time=500;             % final time 

Interval=0.01;            % sampling time interval 

t=Start_Time:Interval:End_Time; 

M=length(t); 

%%% setting 2 %%% 

a=5; % buoy radius 

%====================== 

c=rho*g*pi*a^2; % a coefficient that is used later 
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%%% setting 3 %%% 

A=sqrt(2*S*delta_omega/2/pi); % calculate amplitude for each wave component 

%====================== 

%%% setting 5 %%% 

Phase=2*pi*rand(1,N); % randomly generate the initial phase of each wave component 

%====================== 

Ka=[0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 

9.0 10.0]'; 

Amass=[0.8310 0.8764 0.8627 0.7938 0.7157 0.6452 0.5861 0.5381 0.4999 0.4698 0.4464 

0.4284 0.4047 0.3924 0.3871 0.3864 0.3884 0.3988 0.4111 0.4322 0.4471 0.4574 0.4647 0.4700 

0.4740 0.4771]'; 

Damping=[0 0.1036 0.1816 0.2793 0.3254 0.3410 0.3391 0.3271 0.3098 0.2899 0.2691 0.2484 

0.2096 0.1756 0.1469 0.1229 0.1031 0.0674 0.0452 0.0219 0.0116 0.0066 0.0040 0.0026 0.0017 

0.0012]'; 

len=length(Ka); 

kappa=zeros(1,len); 

imkap=zeros(1,len); 

rekap=zeros(1,len); 

mm=rho*(2*pi/3)*a^3; 

Sb=rho*g*pi*a^2;%785890; 

kappa(1)=1; 

imkap(1)= 2*Damping(1)*Ka(1)/3; 

rekap(1)= sqrt(kappa(1)^2-imkap(1)^2); 
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for j=2:len 

    kappa(j)= sqrt(4*Damping(j)/(3*pi*Ka(j))); 

    imkap(j)= 2*Damping(j)*Ka(j)/3; 

    rekap(j)= sqrt(kappa(j)^2-imkap(j)^2); 

end 

Kaq=omega.^2/g*a; 

kappa_im=zeros(1,N); 

kappa_re=zeros(1,N); 

kappa_angle=zeros(1,N); 

kappa_abs=zeros(1,N); 

for i1=1:N 

    kappa_abs(i1)=interp1(Ka,kappa,Kaq(i1),'cubic'); 

    kappa_im(i1)=interp1(Ka,imkap,Kaq(i1),'cubic'); 

    kappa_re(i1)=interp1(Ka,rekap,Kaq(i1),'cubic'); 

    kappa_angle(i1)=atan(kappa_im(i1)/kappa_re(i1)); 

end 

%%% 

% kap=0.502764572022028; 

%%% 

% eta=zeros(1,M); 

% Fe=zeros(1,M); % initialization for wave force at each time point 

Fe=@(t)0; 

eta_total=@(t)0; 
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%%% setting 5 %%% 

% omega=2*pi/6*ones(1,N); 

% kappa_angle=0; 

%====================== 

for i=1:N 

    eta{i}=@(t)A(i)*sin(omega(i)*t+Phase(i)+kappa_angle(i)); 

    Fe_components{i}=@(t)c*kappa_abs(i)*eta{i}(t); 

    Fe=@(t)Fe(t)+Fe_components{i}(t); 

    eta_total=@(t)eta_total(t)+eta{i}(t); 

end 

% 

Fe=@(t)kap*rho*g*pi*a^2*(eta{1}(t)+eta{2}(t)+eta{3}(t)+eta{4}(t)+eta{5}(t)+eta{6}(t)+eta{7

}(t)+eta{8}(t)+eta{9}(t)+eta{10}(t));%zw(t); 

  

% for i=1:M 

%     eta(i)=sum(A.*sin(omega*t(i)+Phase)); 

%     Fe(i)=sum(c*kappa_abs.*A.*sin(omega*t(i)+Phase+kappa_angle)); 

% end 

figure; 

% subplot(2,1,1) 

% plot(t,eta); 

% grid 

% title('wave elevation') 
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% subplot(2,1,2) 

plot(t,Fe(t)); 

grid 

%title('excitation force') 

xlabel('Time(s)') 

ylabel('Excitation Force') 

% hold on; 

figure; 

plot(t,eta_total(t)); 

grid 

title('wave elevation') 

Ocean_Wave_AccP.signals.values=Fe(t)'; 

Ocean_Wave_AccP.time=t'; 
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%% Regular Wave Force Generation “mechanical_energy.m” 

 

 

% clear;clc;close all; 

%=================================================================% 

% initial inertia: 10  

% initial viscous friction coefficient: 0.32 

%==================================================================% 

%Callback for the simulink model 

Ts=20e-6; % Sampling time 

T_d=1e-3; % Discrete Sampling time 

%%% setting 1 %%% 

gr=110;    % Gear ratio 

%====================== 

aa=20e-6/(.5+20e-6); 

%=================================================================% 

%=========================Initialization===============================% 

% global Interval A r l lambda B J L_af V_f r_f I_f L_aa r_a kv dr m R Sb 

% %Hydrodynamics initialization 

% Start_Time=0;             % time start 

% End_Time=500;              % final time 

% Interval=0.01;            % simpling time interval 

rho=1020;                 % the density of water 

g=9.81;                   % acceleration of gravity 

a=5;%0.9533;                 % buoy radius 
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% Rv=10;                 % Viscous force coefficient 

% Rf=0;                     % Friction force coefficient 

% %omega=1;                  % The angular velocity of water wave  

% A=0.5;                    % The maximum amplitude of water wave, initialized again in the slider 

crank function. 

% f=1/10;                     % The frequency of water wave  

% omega=2*pi*f;             % The angular velocity of water wave  

% k=omega^2/g;              % Wave number for infinite water depth 

% Kaq=k*a;                  % ka 

% zw=@(t)A*sin(omega*t+288*pi/180);    % the function of water wave 

%Slider-Crank initialization 

global r                    % Radius of crank. used again in the rk4sys_step function and slider crank 

function. 

global l                    % Length of rod, used again in the slider crank function. 

global dr_dsb                   % (Used to be r+A) Distance between the lowest edge of the crank and 

the reference water surface 

r=0.5;                    % Radius of crank. used again in the rk4sys_step function and slider crank 

function. 

l=1;                      % Length of rod, used again in the slider crank function. 

lambda=r/l;               % used again in the slider crank function. 

B=0.01;                  % Viscous friction, used again in the slider crank function. 

J=10;                   % inertia of flywheel, used again in the slider crank function. 
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dr_dsb=l;                % sqrt(l^2-r^2);                 % Distance between the lowest edge of the crank 

and the reference water surface 

mcrp=10;                % Total of mass of piston (or slider) and connecting rod respectively. 

%Fu=zeros(1,(End_Time-Start_Time)/Interval+1); 

% %Generator initialization 

% L_af = 1.234; % Mutual inductance between the field and the rotating armature coils. 

% V_f = 220; % Field voltage.  

% r_f = 150; % Resistance of field windings 

% I_f = V_f/r_f; % Current of field windings  

% L_aa = 0.016; % Self-inductance of the field and armature windings. 

% r_a = 0.78;  % Resistance of the armature coils. 

% kv = L_af*I_f; % Stator constant 

%==================================================================% 

% %===Calculating mu, epsilon and kappa through graphical observation======% 

% Ka=[0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 

9.0 10.0]'; 

% Amass=[0.8310 0.8764 0.8627 0.7938 0.7157 0.6452 0.5861 0.5381 0.4999 0.4698 0.4464 

0.4284 0.4047 0.3924 0.3871 0.3864 0.3884 0.3988 0.4111 0.4322 0.4471 0.4574 0.4647 0.4700 

0.4740 0.4771]'; 

% Damping=[0 0.1036 0.1816 0.2793 0.3254 0.3410 0.3391 0.3271 0.3098 0.2899 0.2691 

0.2484 0.2096 0.1756 0.1469 0.1229 0.1031 0.0674 0.0452 0.0219 0.0116 0.0066 0.0040 0.0026 

0.0017 0.0012]'; 

% kappa(1)=1; 
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% for i=2:length(Ka) 

%     kappa(i)=sqrt(4*Damping(i)/(3*pi*Ka(i))); 

% end 

% Mu = interp1(Ka,Amass,Kaq','cubic'); 

% Ep = interp1(Ka,Damping,Kaq','cubic'); 

% kap= interp1(Ka,kappa,Kaq','cubic'); 

%==================================================================% 

%Calculating Coefficients of the Differential Equation of Buoy Displacement 

dr_dsb=1; 

Sb=rho*g*pi*a^2;%785890; 

mm=rho*(2*pi/3)*a^3; 

% m=mm*(1+Mu);%267040+156940; 

% R=Rv+Rf+Ep*omega*mm;%91520; 

% Fe=@(t)kap*rho*g*pi*a^2*zw(t); 

% t = Start_Time:Interval:End_Time; 

% figure; 

% % subplot(2,1,1) 

% % plot(t,eta); 

% % grid 

% % title('wave elevation') 

% % subplot(2,1,2) 

% plot(t,Fe(t)); 

% grid 
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% title('excitation force') 

% % hold on; 

% figure; 

% plot(t,zw(t)); 

% grid 

% title('wave elevation') 

% Ocean_Wave_AccP.signals.values=Fe(t)'; 

% Ocean_Wave_AccP.time=t'; 

%Call to find initial angle 

Theta_Initial=Initial_Angle_Solver(); 

[bs,as]=RadiationKomega(a,T_d); 

% load az 

% load bz 

Wave_Analysis; 

%Calculate initial position in case of complex conjugate control 

% init_z=-max((Fe(t)/(4*R*pi*f))) 
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%% Initial angel solver function “Initial_Angle_Solver.m” 

 

function Theta_Initial=Initial_Angle_Solver() 

format long; 

%==================================================================% 

%Slider-Crank initialization 

global r                    % Radius of crank. used again in the rk4sys_step function and slider crank 

function. 

global l                    % Length of rod, used again in the slider crank function. 

global dr_dsb                   % (Used to be r+A) Distance between the lowest edge of the crank and 

the reference water surface 

%==================================================================% 

f1=@(u)(dr_dsb-sqrt(l^2-(r*sin(u))^2))/r; 

f2=@(u)cos(u); 

Theta_Initial=pi/2; 

err=1; 

while err>1e-12 

    f1n=f1(Theta_Initial); 

    f2n=f2(Theta_Initial); 

    Theta_Initial=acos(f1n); 

    err=abs(f1n-f2n); 

end 

disp('The Initial Angle is (in radian): '); 

disp(Theta_Initial); 
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disp('In degrees: '); 

disp(Theta_Initial/pi*180); 
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%% Wave analysis program “Wave_Analysis_Prediction.m” 

 

% =============Output============== 

% T_s are the half periods 

% T1_s are the time point of zero-crossings 

Excitation_Force=Ocean_Wave_AccP.signals.values; 

Ocean_Wave_AccP.time=Ocean_Wave_AccP.time; 

l_Fe=length(Excitation_Force); 

i_T=1; 

for index=2:l_Fe 

    if Excitation_Force(index)*Excitation_Force(index-1)<=0  %0-crossing detection 

        if Excitation_Force(index)>Excitation_Force(index-1) 

            pn_flag(i_T)=1; 

        else pn_flag(i_T)=0; 

        end 

        T1_s(i_T)=t(index-1); 

        if i_T>1 

            T_s(i_T)=T1_s(i_T)-T1_s(i_T-1); 

        else 

            T_s(i_T)=0; 

        end 

        i_T=i_T+1; 

    end 

end 



59 
 

%% Noisy irregular wave generation 

SNR=1/1000; 

for i=1:N 

    eta{i}=@(t)A(i)*(sin(omega(i)*t+Phase(i)+kappa_angle(i))+(randn(size(t))*SNR)); 

    Fe_components{i}=@(t)c*kappa_abs(i)*eta{i}(t); 

    Fe=@(t)Fe(t)+Fe_components{i}(t); 

    eta_total=@(t)eta_total(t)+eta{i}(t); 

end 
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%% Prediction Code “half_period_even_updated_stats.m” 

 
 

clear all; 

close all; 

clc; 

load c_5_t_9_snr_1_500 

%% 10 ms sampling 

t = Ocean_Wave_AccP.time; 

% x = Ocean_Wave_AccP.signals.waves;                 % wave elevation 

y = Ocean_Wave_AccP.signals.values;                  % excitation force 

%% Collecting data until ten zero crossing to train 

f_ori=0;                                            % Variable initialize to store the original value  

lnp_ori=0;                                          % Variable for zero crossing number 

b_ori=1;                                            % Variable to loop the actual value index 

Y_data_zero=[];                                     % Array for zero crossing index of actual data 

actual_zero_crossing_ori=[];                        % Array for zero crossing time of actual data 

actual_number_of_zero_crossing_ori=[];              % Array contains number of zero crossing in 

actual data 

init_zeroc = 10;                                    % Initial number of zero crossings to be detected 

while lnp_ori<init_zeroc                            % Condition to run the loop until ten zero crossing 

    yN_first(f_ori+1)=y(b_ori);                     % Store the original value to yN_first 

    if f_ori>0                                      % Condition to check the zero crossing of actual data 

          e_index_ori=f_ori;                          
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                    if (y(e_index_ori)<0 && y(e_index_ori+1)>0)|| (y(e_index_ori)>0 && 

y(e_index_ori+1)<0) % Positive & Negetive zero crossing condition 

                        Y_data_zero=[ Y_data_zero,(e_index_ori+1)];                                        % Array 

to store zero crossing index   

                        actual_zero_crossing_ori=[actual_zero_crossing_ori,t(e_index_ori+1)];              % 

Array to store zero crossing time 

                        actual_number_of_zero_crossing_ori=[actual_number_of_zero_crossing_ori 

length(actual_zero_crossing_ori)];  % Array for zero crossing length 

                        lnp_ori=length(actual_number_of_zero_crossing_ori);                                % 

Number of zero crossing 

                    end 

    end 

    f_ori=f_ori+1; 

    b_ori=b_ori+1; 

end 

Ocean_Wave_AccP.time = t(f_ori:end)-t(f_ori);       % Cut the time of the truth based on the first 

10 zero crossing length 

Ocean_Wave_AccP.signals.values = y(f_ori:end);      % Cut the excitation force of the truth 

based on the first 10 zero crossing length  

yN=length(yN_first);                                % Use five cycles or ten zero crossings to train 

y_test = y(yN+1:end);                               % Data needs to be predicted 

Data_for_iteration=length(y_test);                  % The length of the data to be predicted 

YH_data=zeros(length(y_test),1);                    % Preallocating the size of predicted data  
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%% Prediction horizon length selection  

T_step =ceil(4*yN/init_zeroc);                      % Prediction horizon limit  

N =15;                                             % filter order 

var=55;                                             % Cushion size based on our experiment best results 

%% initialize necessary variable to implement the filter equation  

f=0;                                                % Variable for predicted data index in the prediction loop  

g=0;                                                % For i>j, g=0 

p=0;                                                % Variable for predicted data index for filter equation when 

i<j 

b=N;                                                % Filter order 

d=T_step;                                           % Prediction horizon limit 

aN=0;                                               % Variable for training window shifting or next prediction 

horizon starting 

bN=aN;                                              % Varibale used in filter equation when counter>2 

%% Initialize necessary variable for while loop   

total_data=0;                                       % Variable for number of data predicted 

counter=0;                                          % Variable which count while loop iteration 

%% Initialize necessary variable to find the zero crossing for each predicted window 

twice=4;                                             % Varible to identify 4,6,8,10.... even zero crossing 

estimate_zero_crossing_odd=[];                       % Array contains time when  zero crossing occurs 

in odd prediction. 

estimate_number_of_zero_crossing_odd=[];             % Array contains number of  zero crossing 

in YH_data_odd 
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estimate_half_cycle_duration_odd=[];                 % Array contains duration between two zero 

crossings of odd prediction 

estimate_zero_crossing_even=[];                      % Array contains time when  zero crossing occurs 

in even prediction. 

estimate_number_of_zero_crossing_even=[];            % Array contains number of  zero crossing 

in YH_data_even 

T_s=[];                                              % Array contains duration between two zero crossings of 

even prediction 

YH_data_zero_odd=[];                                 % Array to store zero crossing index of odd 

prediction  

YH_data_zero_even=[];                                % Array to store zero crossing index of even 

prediction 

Zero_crossing_array=[];                              % Array to store final zero crossing 

T1_s=[];                                             % Array to store final zero crossing time of even prediction 

pn_flag_total=[];                                    % Determine positive or negetive zero crossing 

pn_flag=[];                                          % Determine positive or negetive zero crossing for only 

even prediction 

num=1;                                               % Variable for first zero crossing index for each horizon 

started from 2nd counter 

ep=0; 

lnp_odd=0;                                           % Variable for zero crossing number for odd prediction 

lnp_even=0;                                          % Variable for zero crossing number for even prediction 
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iteration_number=(Data_for_iteration);               % Iteration go on in second while loop until 

total_data cross this value 

wq=4; 

qw=4; 

%% For y_test/ actual data, the number of  zero crossing and their half cycle duration 

determination 

truth_zero_crossing=[];                              % Array contains time when zero crossing occurs. 

number_of_true_zero_crossing=[];                     % total number of  zero crossing in actual data 

truth_data_zero=[];                                  % Array contains time when zero crossing occurs. 

truth_half_cycle_duration=[];                        % Array contains the duration between two zero 

crossings. 

tr_lnp=0;                                            % Initialize number of zero crossing 

tr_ep=0; 

for truth_index=1:(length(y_test)-1)  

 t_index=truth_index ;                               % Index number 

    if (y_test(t_index)<0 && y_test(t_index+1)>0)|| (y_test(t_index)>0 && y_test(t_index+1)<0) 

% Positive & Negetive zero crossing condition 

        truth_data_zero=[truth_data_zero,t_index+1];                                           % Array contains 

index when zero crossing occurs. 

        truth_zero_crossing=[truth_zero_crossing,t(t_index+1)];                                % Array 

contains time when zero crossing occurs. 

        number_of_true_zero_crossing=[ number_of_true_zero_crossing length( 

truth_zero_crossing)]; 
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        tr_lnp=length(number_of_true_zero_crossing);                                           % Number of 

zero crossings 

    end 

    %% truth half cycle duration determine 

    if tr_lnp >=2 && tr_lnp>tr_ep 

        truth_half_cycle_duration=[truth_half_cycle_duration,(truth_zero_crossing(end)-

truth_zero_crossing(end-1))]; % Array contains the duration between two zero crossings. 

    end 

    tr_ep=tr_lnp; 

end 

%% Starting of while loop until at the end of prediction 

while total_data<(iteration_number)                        % Loop will be continue until 

total_data<Data_for_iteration 

    counter=counter+1; 

   switch counter 

       case {1,2} 

       if counter==1                                        % This if loop ultimately for storing the ar coeeficient 

based on counter  

           f=0;                                             % Initialize the index of the predicted array, see 148 line 

           y_train = y(1+(counter-1)*aN:yN+(counter-1)*aN); % Train data , for counter=1; 

y_train=y(1:yn); five cycles to train 

           model = ar(y_train, N);                          % ar filter  model 

           k=model.Structure.a.Value(1:end);                % ar filter coefficient 
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       else 

           %Prediction starts from the index point z. 

           %Where, z= every first zero crossing of odd prediction cycle – a cushion length 

          if bN<0 % if the first zero crossing occurs before the var value 

              var=ceil(0.01*55); 

              bN=YH_data_zero_odd(1)-var; 

              aN=bN; 

          end 

           y_train = y(1+bN:yN+bN);                         % Training window shifting and starts from the 

point where we start our predicttion. 

           model = ar(y_train, N);                          % ar filter  model 

           k=model.Structure.a.Value(1:end);                % ar filter coefficient 

           f=YH_data_zero_odd(1)-var;                       % Prediction horizon starting point index 

       end 

       temp_b=b;                                            % Actual predicted data + filter order 

    %% implement filter equation 

   if  counter==1  

    for j=1:d                                        % Loop to cover each prediction horizon limit (Predifined 2 

cycles) until two zero crossings 

            sum=0; 

            p=j-1;                                   % Predicted data index when i<j 

            for i=2:N+1                              % loop to use the AR filter co-efficients  

                if i>j                               % Condition to choose actual data in filter equation 
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                    c=-((k(i)*y_train(end-(i-j-1))));% filter equation for MATLAB:a(1)*y(n) = 

b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb) - a(2)*y(n-1) - ... - a(na+1)*y(n-na) 

                    g=0; 

                else                                 % Condition to choose predicted data in filter equation 

                    g=-(k(i)*YH_data(p));            % filter equation for MATLAB when i<j 

                    p=p-1; 

                    c=0; 

                end 

                sum=sum+c+g;                         % Sum all N data value for one predicted data, when 

N=7 OR 10 OR 15 

                YH_data(f+1)=sum;                    % predicted data array 

            end 

    %% start finding zero crossing after predicting every data for first prediction window     

        if f>0 

        e_index=f;                         

                    if (YH_data(e_index)<0 && YH_data(e_index+1)>0)|| (YH_data(e_index)>0 && 

YH_data(e_index+1)<0)                 % Positive & Negetive zero crossing condition 

                        YH_data_zero_odd=[ YH_data_zero_odd,(e_index+1)];                                                          

% Array to store zero crossing index of odd prediction 

                        estimate_zero_crossing_odd=[estimate_zero_crossing_odd,t(e_index+1)];                                      

% Array to store zero crossing time of odd prediction 
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estimate_number_of_zero_crossing_odd=[estimate_number_of_zero_crossing_odd 

length(estimate_zero_crossing_odd)];% Array for zero crossing length of odd prediction 

                        lnp_odd=length(estimate_number_of_zero_crossing_odd);                                                      

% Number of zero crossing in odd prediction 

                    end 

                  if lnp_odd>=2 && lnp_odd>ep                % Condition when half cycle dration needs 

to be calculated              

estimate_half_cycle_duration_odd=[estimate_half_cycle_duration_odd,(estimate_zero_crossing

_odd(end)-estimate_zero_crossing_odd(end-1))]; % Half cycle duration of odd prediction 

                  end 

                    ep=lnp_odd; 

                       end 

            b=temp_b+j; 

            f=f+1;                                           % Increment the index 

            if lnp_odd==2                                    % Condition to stop the iteration for the ongoing 

prediction horizon (two zero crossings) 

                aN=YH_data_zero_odd(1)-var;                  % Calculating the index value to start to 

predict the second zero crossing once again  

                bN=aN; 

                break                                        % Stop iteration for current prediction horizon limit 

which starts from 131 line (for j=1:d) 

            end   
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    end 

   else                                                      % Else condition for counter 2 

        for j=1:d                                            % Loop to cover each prediction horizon limit until two 

zero crossings 

            sum=0; 

            p=aN+(j-1);                                      % Predicted data index started from the second 

horizon starting point and used where i<j 

            for i=2:N+1                                      % loop to use the AR filter co-efficients  

                if i>j                                       % Condition to choose actual data in filter equation  

                    c=-((k(i)*y_train(end-(i-j-1))));        % filter equation for MATLAB 

                    g=0; 

                else                                         % Condition to choose predicted data in filter equation 

                    g=-(k(i)*YH_data(p));                    % filter equation for MATLAB 

                    p=p-1; 

                    c=0; 

                end 

                sum=sum+c+g;                                 % Sum all N data value for one predicted data, 

when N=7,10,15 

                YH_data(f+1)=sum;                            % predicted data array for even prediction 

            end 

    %% start finding zero crossing after predicting every data for first prediction window     

        if f>0 

        e_index=f;                         
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                    if (YH_data(e_index)<0 && YH_data(e_index+1)>0)|| (YH_data(e_index)>0 && 

YH_data(e_index+1)<0) % Positive & Negetive zero crossing condition 

                        if YH_data(e_index)<0 && YH_data(e_index+1)>0 

                            flag=1;                                                                           % Positive zero crossing 

                            pn_flag_total=[pn_flag_total, flag];                                       % Total Flag array 

                        else 

                            flag=0;                                                                         % Negetive zero crossing 

                            pn_flag_total=[pn_flag_total, flag];                                       % Total Flag array 

                        end      

                        YH_data_zero_even=[ YH_data_zero_even,(e_index+1)];                                                          

% Array to store zero crossing index of even prediction 

                        estimate_zero_crossing_even=[estimate_zero_crossing_even,t(e_index+1)];                                      

% Array to store zero crossing time of even prediction                     

estimate_number_of_zero_crossing_even=[estimate_number_of_zero_crossing_even 

length(estimate_zero_crossing_even)];% Array for zero crossing length of even prediction 

                        lnp_even=length(estimate_number_of_zero_crossing_even);                                                      

% Number of zero crossing in even prediction 

                    end 

                  if lnp_even>=2 && lnp_even>ep                                                                    % 

Condition when half cycle dration needs to be calculated 

                      Zero_crossing_array=[Zero_crossing_array, YH_data_zero_even(num)];                           

% Array to store zero crossing index of even prediction 
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                      T1_s=[T1_s, estimate_zero_crossing_even(num)];                                               % 

Array to store final zero crossing time of even prediction       

%                       T_s=[T_s,(estimate_zero_crossing_even(end)-

estimate_zero_crossing_even(end-1))];             % Half cycle duration of even prediction 

                      pn_flag=[pn_flag,pn_flag_total(num)];                                                        % 

Ultimate positive or negetive zero crossing for only even prediction 

                      num=num+2; 

                  end 

                    ep=lnp_even; 

                       end 

            b=temp_b+j;                                                       % Actual predicted data + filter order 

            f=f+1;                                                                   % Increment the index 

            if lnp_even==2             % Condition to stop the iteration for the ongoing prediction 

horizon (two zero crossings) 

               bN=YH_data_zero_even(end)-var;                                                                       % 

Calculating the index value to start to predict the second zero crossing once again  

                break                                                                                               % Stop iteration for 

current prediction horizon limit which starts from 174 line counter 2 case (for j=1:d) 

            end   

        end 

   end                                                                                                              % End of filter 

equation prediction and zero crossing detection section if-else condition of counter=1 or 2, starts 

from if counter==1 (134 line) 
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    total_data=bN;                                                      % Total data already predicted with the var 

       otherwise                                                    % Condition when the counter starts from 3      

    y_train = y(1+bN:yN+bN);                                                                                        % Training 

window shifting and starts from the point where we start our predicttion from counter 3. 

    f=bN;                                                           % Starting index value for the prediction horizon 

    model = ar(y_train, N);                                                         % ar filter  model 

    k=model.Structure.a.Value(1:end);                                    % ar filter coefficient 

    temp_b=b; 

    %% implement filter equation 

    for j=1:d                    % Loop to cover each prediction horizon size until two zero crossings 

            sum=0; 

            p=bN+(j-1);                                % Predicted data index 

            for i=2:N+1                                % loop to use the AR filter co-efficients  

                if i>j                                 % Condition to choose actual data in filter equation 

                    c=-((k(i)*y_train(end-(i-j-1))));  % filter equation for MATLAB 

                    g=0; 

                else                                   % Condition to choose predicted data in filter equation 

                    g=-(k(i)*YH_data(p));              % filter equation for MATLAB 

                    p=p-1; 

                    c=0; 

                end 

                sum=sum+c+g;           % Sum all N data value for one predicted data, when N=7,10,15 

                YH_data(f+1)=sum;                      % predicted data array 
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            end 

    %% start finding zero crossing after predicting every data for first prediction window     

        if f>0 

        e_index=f;                         

                    if (YH_data(e_index)<0 && YH_data(e_index+1)>0)|| (YH_data(e_index)>0 && 

YH_data(e_index+1)<0) % Positive & Negetive zero crossing condition 

                         if YH_data(e_index)<0 && YH_data(e_index+1)>0 

                            flag=1; 

                            pn_flag_total=[pn_flag_total, flag]; 

                        else 

                            flag=0; 

                            pn_flag_total=[pn_flag_total, flag]; 

                        end 

                        YH_data_zero_even=[ YH_data_zero_even,(e_index+1)];                                                          

% Array to store zero crossing index of odd prediction 

                        estimate_zero_crossing_even=[estimate_zero_crossing_even,t(e_index+1)];                                      

% Array to store zero crossing time of odd prediction                

estimate_number_of_zero_crossing_even=[estimate_number_of_zero_crossing_even 

length(estimate_zero_crossing_even)];% Array for zero crossing length of odd prediction 

                        lnp_even=length(estimate_number_of_zero_crossing_even);                                                      

% Number of zero crossing in odd prediction 

                    end 

                      % estimate  half cycle duration determine 
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                      % 1st positive zero crossing occurs 

                  if lnp_even==qw                                                                                     % Condition 

when half cycle dration needs to be calculated 

                      Zero_crossing_array=[Zero_crossing_array, YH_data_zero_even(num)]; 

                      T1_s=[T1_s, estimate_zero_crossing_even(num)];  

                      T_s=[T_s,(estimate_zero_crossing_even(end-1)-estimate_zero_crossing_even(end-

3))];                % Half cycle duration of odd prediction 

                      pn_flag=[pn_flag,pn_flag_total(num)]; 

                      num=num+2;  

                  end 

%                     ep=lnp_even; 

                       end 

            b=temp_b+j; 

            f=f+1; 

            if lnp_even==qw                                                                                           % Condition to 

stop the iteration for the ongoing prediction horizon (two zero crossings)   

               zi1=estimate_zero_crossing_even(end)-estimate_zero_crossing_even(end-1);  

               if zi1<=0.55 

                  bbN=ceil(0.1*55); 

                  bN=YH_data_zero_even(end)-bbN; 

                  qw=qw+2; 

                  break                                                                                               % Stop iteration  

               else 
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                  bN=YH_data_zero_even(end)-var; 

                  qw=qw+2; 

                  break   

               end  

            end 

    end 

    total_data=bN;                                                                                                    % Total data 

already predicted with var 

   end                                                                                                                % End of switch 

statement 

end 

%% Error: difference between actual and predicted half cycle duration  

% min_length_error=min([length(truth_half_cycle_duration) length(T_s)]); 

% half_period_prediction_even_error=(truth_half_cycle_duration(1:min_length_error)-

T_s(1:min_length_error)); 

% mean_error=mean(half_period_prediction_even_error) 

% max_error=max(abs(half_period_prediction_even_error)) 

% st_deviation_error=std(half_period_prediction_even_error) 

% histogram(truth_half_cycle_duration(1:min_length_error)-T_s(1:min_length_error), 

min_length_error) 

sq1=1; 

sse=0; 

min_length_error=min([length(truth_half_cycle_duration) length(T_s)]); 
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while sq1<=min_length_error 

 half_period_prediction_even_error=(truth_half_cycle_duration(sq1)-T_s(sq1));    

 sse=sse+(half_period_prediction_even_error)^2; 

 sq1=sq1+1; 

end 

sum_sq_error=sse;                                                                                                       % Sum 

square error 

norm_sum_sq_error=sse/min_length_error                                                                                % 

Normalizing the error to produce apples to apples comparison               

length(truth_zero_crossing) 

length(Zero_crossing_array) 
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%% Simulation code for truth “half_period_calc_for_truth.m” 

clear all; 

close all; 

clc; 

load Ocean_Wave_AccP_10_3 

%% 10 ms sampling  

t = Ocean_Wave_AccP.time; 

% x = Ocean_Wave_AccP.signals.waves;                 % wave elevation 

y = Ocean_Wave_AccP.signals.values;                % excitation force 

%% Collecting data until ten zero crossing to train 

f_ori=0;                                            % Variable initialize to store the original value  

lnp_ori=0;                                          % Variable for zero crossing number 

b_ori=1;                                            % Variable to loop the actual value index 

Y_data_zero=[];                                     % Array for zero crossing index of actual data 

actual_zero_crossing_ori=[];                        % Array for zero crossing time of actual data 

actual_number_of_zero_crossing_ori=[];               % Array contains number of zero crossing in 

actual data 

init_zeroc = 10;                                    % Initial number of zero crossings to be detected 

while lnp_ori<init_zeroc                            % Condition to run the loop until four zero crossing 

    yN_first(f_ori+1)=y(b_ori);                     % Store the original value to yN_first 

    if f_ori>0                                      % Condition to check the zero crossing of actual data 

          e_index_ori=f_ori;                          
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                    if (y(e_index_ori)<0 && y(e_index_ori+1)>0)|| (y(e_index_ori)>0 && 

y(e_index_ori+1)<0) % Positive & Negetive zero crossing condition 

                        Y_data_zero=[ Y_data_zero,(e_index_ori+1)];                                        % Array 

to store zero crossing index   

                        actual_zero_crossing_ori=[actual_zero_crossing_ori,t(e_index_ori+1)];              % 

Array to store zero crossing time 

                        actual_number_of_zero_crossing_ori=[actual_number_of_zero_crossing_ori 

length(actual_zero_crossing_ori)];  % Array for zero crossing length 

                        lnp_ori=length(actual_number_of_zero_crossing_ori);                                 % 

Number of zero crossing 

                    end 

    end 

    f_ori=f_ori+1; 

    b_ori=b_ori+1; 

end 

Ocean_Wave_AccP.time = t(f_ori:end)-t(f_ori); 

Ocean_Wave_AccP.signals.values = y(f_ori:end); 

Irregular_Wave_Force_Prediction 

%% Irregular_Wave_Force_Prediction.m 

%==================================================================% 

%Callback for the simulink model 

Ts=20e-6; % Sampling time 

T_d=1e-3; % Discrete Sampling time 
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Wm_s=5e-4; 

%%% setting 1 %%% 

gr=110;    % Gear ratio 

%====================== 

aa=20e-6/(.5+20e-6); 

%==================================================================% 

%Slider-Crank initialization 

global r                    % Radius of crank. used again in the rk4sys_step function and slider crank 

function. 

global l                    % Length of rod, used again in the slider crank function. 

global dr_dsb                   % (Used to be r+A) Distance between the lowest edge of the crank and 

the reference water surface 

r=.5;                    % Radius of crank. used again in the rk4sys_step function and slider crank 

function. 

l=1;                      % Length of rod, used again in the slider crank function. 

lambda=r/l;               % used again in the slider crank function. 

     

dr_dsb=l;                   % (Used to be r+A) Distance between the lowest edge of the crank and the 

reference water surface 

mcrp=10;                % Total of mass of piston (or slider) and connecting rod respectively. 

a=5;                  % buoy radius 
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g=9.81; % gravity acceleration 

rho=1020;% water density 

mm=rho*(2*pi/3)*a^3; 

Sb=rho*g*pi*a^2; 

  

%====================== 

% save ExFcC1 Ocean_Wave_AccP 

Theta_Initial=Initial_Angle_Solver(); 

[bs,as]=RadiationKomega(a,T_d); 

%load as 

%load bs 

Wave_Analysis_Prediction; %Replace this with Rakib's prediction algorithm 

  

%Calculate initial position in case of complex conjugate control 

%init_z=-max((Fe(t)/(4*R*pi*f))) 
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%% Simulation code for prediction “half_period_calc_for_prediction.m” 

 

%modify for different prediction parameters 

half_period_even_updated_statss 

%%after running half_period_even_updated_stats 

T_s_pred=T_s; 

T1_s_pred=T1_s; 

pn_flag_pred=pn_flag; 

Irregular_Wave_Force_Prediction 

%%after running Irregular_Wave_Force_Prediction 

T_s=[0 T_s_pred(1:end-1)]; 

T1_s=T1_s_pred; 

pn_flag=pn_flag_pred; 

%Then run simulation 

%zb1.Data(end)/500/1000 

 

 


