

SLIDER CRANK WAVE ENERGY CONVERTER PERFORMANCE ANALYSIS WITH

ADAPTIVE AUTOREGRESSING FILTERING

A thesis presented to the faculty of the Graduate School of

Western Carolina University in partial fulfillment of the

requirements for the degree of Master of Science in Technology

By

Md Rakib Hasan Khan

Director: Dr. Bora Karayaka

Associate Professor

School of Engineering and Technology

Committee Members: Dr. Yanjun Yan, School of Engineering and Technology

Dr. Peter Tay, School of Engineering and Technology

Western Carolina University

April 2019

© Md Rakib Hasan Khan

ii

 ACKNOWLEDGEMENTS

The contemporary, but vast course structure along with world-class research facilities and

renowned faculty members at WCU not only increased my enthusiasm towards research but also

enlightened my knowledge of my interest. It’s my immense pleasure that at WCU I am working

with Dr. H. Bora Karayaka, whose invaluable experience and guidance have helped me to evaluate

the research problems comprehensively. I would like to thank my thesis advisor and committee

members Dr. Yanjun Yan and Dr. Peter Tay for their help and valuable guidelines in my thesis

and conference papers.

iii

TABLE OF CONTENTS

LIST OF TABLES... iv
LIST OF FIGURES…………………………………………………………………………….. v

ABSTRACT…………………………………………………………………………………… vi
CHAPTER 1: INTRODUCTION……………………………………………………………… vi

1.1 Key Terms……………………………………………………………………………….. 1
1.2 Problem Statement………………………………………………………………………. 1

CHAPTER 2: LITERATURE REVIEW……………………………………………………….. 3

2.1 Current Techniques……………………………………………………………………… 3
2.2 Chosen Techniques……………………………………………………………………… 4

CHAPTER 3: METHODOLOGY……………………………………………………………… 5
3.1 Overall System Model…………………………………………………………………... 5
3.2 Hydrodynamics Model………………………………………………………………….. 6
3.3 Wave Excitation Force Generated For Irregular Waves……………….……………….. 7

3.4 Autoregressive Filter Model………...…………………………………………………... 9
3.5 Training Window Model………...…………………………………………………….. 10

3.6 Prediction Model…………………………………...………………………………….. 10
3.7 Zero Crossing and Half Period Prediction……………………………………………... 11
3.8 Test Procedure……………………………...………………………………………….. 14

CHAPTER 4: RESULTS……………………………………………………………………… 15

4.1 Prediction Result with Regular Waves…..……………………...……………………... 15

4.2 Power Extraction Simulation Result with Regular Waves………………...…….…….. 20
4.3 Prediction Result with Irregular Waves……………………………….……...……….. 23

4.4 Power Extraction Simulation Result with Irregular Waves…………...…………...…... 28

4.3 Prediction and Simulation Result with Noisy Irregular Waves……………...……….. 30

CHAPTER 5: CONCLUSION AND FUTURE WORK……………………………………… 36
REFERENCES………………………………………………………………………………... 38
APPENDIX A: SOURCE CODE……………………………………………………………... 41

iv

LIST OF TABLES

Table 4.1. Half cycle duration prediction results for regular waves………………………… 19

Table 4.2. Mechanical parameters used in simulations…………………………………….. 20

Table 4.3. Generator parameters used in simulations……………………………………….. 20

Table 4.4. Simulation power extraction results for regular wave…………………………… 22

Table 4.5. Half cycle duration prediction results for irregular waves……………………… 27

Table 4.6. Simulation power extraction results for irregular waves………………………… 29

Table 4.7. Half cycle duration prediction results for noisy irregular waves………………... 33

Table 4.8. Simulation power extraction results for noisy irregular waves………………….. 34

v

LIST OF FIGURES

Figure 3.1. Proposed Slider Crank WEC…………………………………………………….. 5

Figure 3.2. The JONSWAP spectrum used for irregular waves…………………………….. 8

Figure 3.3. Flow chart of wave excitation force prediction algorithm………………………. 12

Figure 4.1. Wave excitation force for regular waves………………………………………... 16

Figure 4.2. Predicted wave excitation force for regular waves……………………………... 16

Figure 4.3. Predicted data vs actual data for regular waves…………………………………. 17

Figure 4.4. Prediction error histogram for regular waves…………………………………… 18

Figure 4.5. Simulation model for the WEC system…………………………………………. 21

Figure 4.6. Wave excitation force for irregular waves……………………………………… 24

Figure 4.7. Predicted wave excitation force for irregular waves……………………………. 24

Figure 4.8. Predicted data vs actual data for irregular waves……………………………….. 25

Figure 4.9. Prediction error histogram for irregular waves…………………………………. 26

Figure 4.10. Cumulative Electric Energy Production………………………………………. 30

Figure 4.11. Predicted data vs actual data for noisy irregular waves……………………….. 31

Figure 4.12. Prediction error histogram for noisy irregular waves…………………………. 31

vi

ABSTRACT

SLIDER CRANK WAVE ENERGY CONVERTER PERFORMANCE ANALYSIS WITH

ADAPTIVE AUTOREGRESSING FILTERING

Md Rakib Hasan Khan, M.S.T.

Western Carolina University (April 2019)

Director: Dr. Bora Karayaka

This study investigates a performance analysis of wave excitation force prediction to extract

wave power for a slider crank power take-off system (PTOS) based on auto regressive (AR)

filters. To efficiently convert wave energy into electricity, the prediction of wave excitation

forces into near future to keep the generator and the wave excitation force in sync is important

for maximum energy extraction. The study shows a prediction methodology of half period and

zero crossings in the practical scenario of irregular ocean waves. The prediction has been tested

for different wave periods and with different filter orders in noisy and noiseless environment.

The prediction results have been used in the PTOS simulation to analyze the energy extraction. It

has been shown that the prediction accuracy in the wave half period between the truth data and

the predicted data drives the WEC energy extraction efficiency. The amplitude of the wave force

is not used and hence the prediction deviation in the wave force amplitude does not affect the

PTOS energy extraction. Further analysis shows that the optimum energy can be extracted at 15th

order filter with moderate prediction horizon length.

1

CHAPTER 1: INTRODUCTION

1.1 Key Terms

Autoregressive Filter (AR): An autoregressive filter is a model where the current value of a

variable depends upon only the values that this variable took in previous periods plus an error

term.

Wave Energy Converter (WEC): A wave energy converter is a device that converts the kinetic

and potential energy associated with a moving wave into useful mechanical or electrical energy.

Zero Crossing: When the wave excitation force changes its transition either positive to negative

or negative to positives, we called the transition point as a zero crossing.

Half Cycle Duration: The difference between two zero crossings is called the half cycle

duration.

1.2 Problem Statement

At present, our electricity production is highly dependent on conventional energy sources

includes oil, gas and coal. These conventional sources are usually fossil fuels. Fossil fuels are

non-renewable, that is, they draw on finite resources that will eventually dwindle, becoming too

expensive or too environmentally damaging to retrieve. In contrast, the many types of renewable

energy resources-such as wave, wind and solar energy are constantly replenished and will never

run out [1]. Therefore, renewable energy is now a matter of interest to produce electricity.

Ocean wave energy is an emerging field in renewable energy research. In the ocean,

energy exists in various form and waves are one of the largest marine resources as well as the

most widely accessible [1]. Compared with other renewable energy sources like wind energy,

ocean wave energy has a higher power density. Wave energy contains roughly 1000 times the

kinetic energy of wind, allowing much smaller and less conspicuous devices to produce the same

2

amount of power in a fraction of the space. Unlike wind and solar power, power from ocean

waves continues to be produced around the clock, whereas wind velocity tends to die in the

morning and at night, and solar is only available during the day in areas with relatively little

cloud cover. So, Wave power has been considered as one of the most promising renewable

energy sources. Wave energy converter (WEC) is a device, which captures the power of waves

and transforms it to electricity. The slider crank WEC converts the heave motion of ocean waves

into rotational motion. In order to run the slider crank PTOS at relatively high efficiency, the

generator needs to be synchronized with the wave excitation forces.

Nowadays real-time control has become popular to maximize the energy extraction of

WEC. In order to implement the real-time control, a prediction of wave excitation force is

needed. In this control strategy, the control law has to be determined at every time step based on

the prediction of wave excitation force in the near future. A semi-submerged spherical buoy is

assumed for this research. The prediction algorithms are carried out in the MATLABTM

environment. Then the offline prediction results are used to the simulation model in the

SIMULINKTM environment to analyze the energy extraction with different wave periods and

filter orders.

The outline of this thesis is organized as follows: Chapter 2 describes the literature review,

research on related topics is analyzed to choose the best technique for wave excitation force

prediction. Chapter 3 describes the methodology and control methods are used to develop the

prediction algorithm. Chapter 4 verifies the effectiveness of the methodology and control methods

through simulations. Finally, conclusions and future works are described in Chapter 5.

3

CHAPTER 2: LITERATURE REVIEW

2.1 Current Techniques

At present, a number of different wave energy converter concepts are being investigated

by companies and academic research groups around the world. Among the challenges faced,

wave resource prediction is an important barrier to the use of ocean wave energy arising from its

highly variable nature. Although many working designs have been developed and tested through

modelling and wave tank-tests, only a few concepts have progressed to sea testing. Research has

been done on DDR-PTOS such as rack-and-pinion mechanisms and traction tires/wheels [3], but

research on the slider-crank PTOS is rare.

Various models have been developed for wave prediction, however they are hardly

applied for WEC real-time control. In [4], the fast Fourier transformation has been utilized to

predict the random sea waves, whereas in [5], the wave prediction model was developed based

on the grey model. But both of this model depends on a large number of historical data and this

slow down the prediction process, which is a big concern of real time application. In [6], the first

order-one variable grey model GM (1,1) is used to predict the wave forces over the receding

horizon. In [7], the autoregressive moving average model is used to predict the wave elevations.

In [8], the pseudo-spectral control method is used to optimize the power capture of an oscillating

surge WEC.

Fusco et al. showed for low frequency wave prediction, the autoregressive (AR) model is

a relatively simple and accurate method [9]. In this study, wave elevation was predicted to give

satisfactory results. The initial analysis on the slider-crank PTOS under regular wave condition

validated the suboptimal nature of the control strategy [10]. However, because ideal sinusoidal

4

wave conditions rarely exist in real oceans, it is very important to find a prediction methodology

for the system under irregular wave conditions.

Further investigations were also conducted with the slider-crank PTOS under irregular

wave conditions, but with the assumption of known future half period information [11] - [12],

which is infeasible in practical applications.

2.2 Chosen Technique

The proposed system uses Slider Crank WEC because of its simplicity. Control

methodology with predicted wave data has been chosen for performance evaluation purposes.

Slider crank WEC has a fixed amplitude motion, which eliminates the need for additional

latching control technique to limit buoy motion under extreme wave conditions. In addition,

slider crank is a well-accepted mechanical linkage system with a history of more than 2,000

years. This study provides a lean prediction strategy because prediction and control execution

runs simultaneously to the slider crank power take-off system for the continuous energy

production.

The control methodology with prediction is designed to keep the generator rotating in

resonance with the wave excitation force so that energy can be extracted at a relatively high

efficiency. In this study, an autoregressive model with a Forward-Backward parameter

estimation approach [13] is used for the zero crossings’ prediction purpose. The future half

period is not constant, it changes its length based on the finding of two zero crossings in each

prediction horizon, which makes it suitable for real time control.

5

CHAPTER 3: METHODOLOGY

3.1 Overall System Model

Driven by the wave excitation force, the buoy’s linear motion pushes the generator to

start to rotate. The generator that is coupled with the power take-off system needs to maintain

continuous rotation in order to generate electricity. During one complete full cycle of rotation,

there are instances when the torque is zero, at those moments the generator will pull power from

the grid to continue the rotation to complete the cycle. To resonate with the wave, the generator

needs to know, when its torque crosses the zero line, the next half-cycle’s duration to maintain

the resonance [14]. In this study, prediction of future half cycle duration by detecting zero

crossings has been analyzed with different AR filter orders. The excitation force is calculated

from irregular waves generated through the JONSWAP spectrum [15], and simulations are

carried out in the MATLAB/Simulink environment. A sample off – shore implementation of the

proposed slider crank WEC system is shown in Fig. 3.1.

Figure 3.1: Proposed Slider Crank WEC

6

The basic parts of the slider crank WEC system shown in Fig. 3.1 include a piston or

slider, a connecting rod, a crank and a buoy. The piston or slider is firmly affixed to a buoyant

wave energy capture device which tracks the relative heave motion of ocean waves. The force

that is exerted on the buoy pushes the connecting rod to turn the crank up (or down; depending

on the PTOS orientation) and develops the necessary torque that drives the generator to start

turning and continue the rotational motion. The control algorithm detects the half period and

zero-crossings of wave excitation force and records real time, and then an angle reference is

generated. In the meantime, the shaft angle of the generator is detected and compared with the

reference. Then the angle control algorithm, which is a simplified version of a PID controller,

calculates a speed reference for the motor drive system according to the difference between the

shaft angle and its reference. The reference speed makes sure that buoy’s velocity is in phase

with the excitation force [12].

3.2 Hydrodynamics Model

The Cummins equation [16] is utilized to model buoy and wave interactions. The buoy

selected is a sphere and assumed to be half submerged regardless of wave conditions. Equation

(1) models the relationship between the buoy motion and hydrodynamic forces.

(𝑀 + 𝑎∞)�̈�(𝑡) + ∫ 𝐻𝑟𝑎𝑑(𝑡 − 𝜏)
𝑡

−∞
�̇�(𝜏)𝑑𝜏 + 𝑆𝑏𝑧(𝑡) = 𝐹𝑒(𝑡) − 𝐹𝑢(𝑡) (1)

where M is the physical mass of the buoy, a∞ is the buoy-added mass at an infinite wave period, z

is the buoy center of the gravity displacement in heave direction, Hrad is the radiation impulse

response function, Sb is the hydrostatic stiffness, Fe is the wave excitation force, and Fu is the

PTOS’ reactionary force.

7

3.3 Wave Excitation Force Generated for Irregular Waves

An irregular wave can be composed of several regular sinusoidal waves with different

amplitudes, angular velocities, and phases. In this research, the angular velocity is chosen in the

range of 0.08 Hz to 0.22 Hz with an interval of 1.6 mHz. The significant wave height used is 1.4

meter and the peak period of irregular waves varies from 6 seconds to 10 seconds in this study.

The amplitudes of the irregular waves were generated with the JONSWAP spectrum shown in

Fig. 3.2, which can be expressed as [15]

𝑆(𝑓) =
𝛼𝑗𝑔2

(2𝜋)4 𝑓−5exp [−
5

4
(

𝑓𝑝

𝑓
)

4

] 𝛾𝛤 (2)

where 𝛼𝑗 is a nondimensional variable that is a function of the wind speed and fetch length, 𝑓𝑝 is

the peak frequency of the irregular wave, 𝑓 is the frequency of the wave components, and 𝛾𝛤 is

the peak enhancement factor. A value of 6 is used for 𝛾 in this study, and

𝛤 = exp [− (

𝑓

𝑓𝑝
−1

√2𝜎
)

2

] , 𝜎 = {
0.07 𝑓 ≤ 𝑓𝑝

0.09 𝑓 > 𝑓𝑝
 (3)

𝛼𝑗 =
𝐻𝑚0

2

16 ∫ 𝑆∗(𝑓)𝑑𝑓
∞

0

 (4)

In the above equation, 𝐻𝑚0 is the significant wave height of the irregular wave, and

𝑆∗(𝑓) =
𝑔2

(2𝜋)4
𝑓−5exp [−

5

4
(

𝑓𝑝

𝑓
)

4

] 𝛾𝛤 (5)

Significant wave heights in the simulations can be chosen according to the equal energy transport

theorem .

 𝐻𝑚0 = 2√2𝐴 (6)

where 𝐴 is the amplitude of the regular sinusoidal wave with equal energy.

8

Figure 3.2: The JONSWAP spectrum used for irregular wave

The amplitude of each component of the irregular wave can thus be expressed as in [17].

 𝐴𝑖 = √2𝑆(𝑓𝑖)∆𝑓 (7)

where 𝑓𝑖 represents each regular wave component and ∆𝑓 is the separation between two frequency

components

The phase of each component of the irregular wave is randomly generated from 0 to 2π,

and it is denoted as 𝜑𝑖 . Thus, the irregular wave elevation can be expressed as the summation of

all the wave components

 𝑧𝑤 = ∑ 𝐴𝑖 ∙ sin (𝜔𝑖𝑡 + 𝜑𝑖)
𝑀
𝑖=1 (8)

where 𝑀 is the total number of wave components, 𝜔𝑖 is the frequency of wave component in

radian/second and 𝜑𝑖 is the phase angle for each wave component in radian.

The wave excitation force due to the incident wave is calculated as

 𝐹𝑒 = |𝜅|𝜌𝑔𝜋𝑎2𝑧𝑤∠𝜑𝜅 (9)

where 𝑧𝑤 is the water surface elevation, 𝜅 is the excitation force coefficient 𝑔 is the acceleration of

gravity, 𝜌 is the density of water, and 𝑎 is the radius of buoy.

9

The amplitude, imaginary and real parts are calculated as

 |𝜅| = √
4𝜀𝑟

3𝜋𝑘𝑎
 (10)

 𝐼𝑚(𝜅) =
2𝜀𝑟𝑘𝑎

3
 (11)

 𝑅𝑒(𝜅) = √|𝜅|2 − [𝐼𝑚(𝜅)]2 (12)

where 𝜅 is wave number and 𝜀𝑟 is radiation resistance coefficient. Wave excitation force data was

generated with a precision of 10 ms/sample.

3.4 Autoregressive Filter Model

This study proposes a half-cycle wave excitation force prediction algorithm based on AR

model, using the Forward-Backward parameter estimation approach. An autoregressive model is

one where the current value of a variable 𝑦, depends only upon its previous values and an error

term. Equation (13) shows the AR filter expression.

𝑦𝑡 = 𝑎1𝑦𝑡−1 + 𝑎2𝑦𝑡−2 + ⋯ + 𝑎𝑁𝑦𝑡−𝑁 + 𝑒𝑡

 = ∑ 𝑎𝑖𝑦𝑡−𝑖
𝑁
𝑖=1 + 𝑒𝑡 (13)

where 𝑦𝑡 is the data series, which is the value of the variable 𝑦 for which the prediction needs to

be done at the time period 𝑡. It depends upon the previous value of that series i.e. 𝑦𝑡−1,

𝑦𝑡−2…𝑦𝑡−𝑁 . Here, 𝑁 is the order of the filter, or the number of samples used for prediction, and

𝑒𝑡 is the noise or disturbance term.

Deriving the linear prediction model involves determining the coefficients 𝑎1, 𝑎2…𝑎𝑁 in

the equation. Several methods and algorithms exist for calculating the coefficients of the AR

model, and many are implemented by MATLABTM command 'ar' [13], which is what this study

has used.

10

3.5 Training Window Model

In the wave excitation force prediction model, the first five complete cycles of irregular wave

excitation force initialized the training window. As the prediction continues the training window also

shifts by the last ten zero crossings. Equation (14) shows the shifting of the training data.

𝒚𝑠ℎ𝑖𝑓𝑡 = [𝑦1+𝑏𝑛 𝑦2+𝑏𝑛 … … … 𝑦𝑛+𝑏𝑛] (14)

where 𝑏𝑛 is the data index of the first zero crossing point in each predicted half cycle and 𝑛 is a

constant and defines the length of data array with the first ten zero crossings. After getting the first

training window, the autoregressive filter coefficients can be found with the help of training data

in (13).

After getting the AR filter coefficients, prediction horizon size is set to be about four zero-

crossings in (15) to ensure two zero crossings exist in each prediction window since the waves are

irregular.

𝑇𝑠𝑡𝑒𝑝 = 4×(𝑛 ÷ 𝑑) (15)

where 𝑑 is the number of zero crossings in the first training window and set to 10 in this study.

As mentioned before, 𝑛 is the data length.

3.6 Prediction Model

After determining the prediction horizon and AR filter coefficients, prediction starts.

Equation (16) shows the prediction of the data series [13].

 𝑦𝑡+1 = −𝑎1𝑦𝑡 − 𝑎2𝑦𝑡−1 − ⋯ − 𝑎𝑁𝑦𝑡−𝑁−1 (16)

where 𝑦𝑡 is the final data value of each training window, 𝑎1, 𝑎2…𝑎𝑁 are the AR filter

coefficients, 𝑁 is the filter order. After getting the predicted data, the prediction algorithm detects

the zero crossing and half cycle duration.

11

3.7 Zero Crossing and Half Period Prediction

To maintain the resonance between the slider-crank and the generator, a prediction of

future half period of the wave excitation force is needed. The prediction algorithm flow chart is

shown in Fig. 3.3. The future half period is identified by two zero crossings detection

mechanism. At first, the irregular wave data generated by the irregular wave force calculator is

loaded. Then the prediction horizon is chosen, following the procedure presented in Equation

(15).

Equation (17) shows the data length that needs to be predicted

𝑦𝑙𝑒𝑛𝑔𝑡ℎ = 𝑙 − 𝑛 (17)

where 𝑙 is the length of total actual data and 𝑛 is the length of initial training data that encompasses

ten zero crossings.

The prediction algorithm is initialized by finding the AR filter coefficients from (13). The

algorithm is repeated inside a while loop until the end of the sample data series to be predicted

(see Fig. 3.3). The AR model estimation is constantly adapted using the data from the last zero-

crossing point. The AR filter coefficients are used in (16) to predict data in each prediction

horizon by using a for loop and the number of repetitions of that is the prediction horizon length.

The zero crossing is determined when the value of the predicted data makes a transition from

being positive to negative or negative to positive. If the number of the zero crossings is fewer

than two, prediction horizon Tstep is extended as a safety precaution to cover two zero crossings.

However, this rarely happens.

12

Figure 3.3: Flow chart of wave excitation force prediction algorithm

 Yes No

 Yes No

 No Yes

Start

Load the irregular waves data

Select the training data (ytrain) based on first 10 zero crossings of actual excitation force data

Use AR model with a filter order (N) and

training window to determine the AR

model coefficients

Find the zero crossings for each prediction window and also determine the sign (positive or

negative) of each zero crossings

Compare each half cycle duration of predicted data with the half cycle

duration of actual data and calculates the error

End

Determine prediction horizon size based on ytrain

 Starts the prediction by running iteration using while loop

If counter <2

Use AR model coefficients in a FIR filter to predict data for each prediction horizon by using

for loop (loop variable j=1: Tstep, where Tstep is the prediction horizon limit)

Use AR model with a filter order (N) and training window

(shifted by bn) to determine the AR model coefficients

If number of zero crossing

>1

Data prediction for the current window ended at the point

of two zero crossings and calculate the half cycle duration

Provide an increased prediction horizon

to cover two zero crossings

If counter <=total

data

 Training window moved by the number of samples (bn) which cover two

zero crossings and initialize new training window

Determine the total zero crossings of the actual excitation force and calculate the actual half

cycle durations

13

Data prediction for the current window ends as soon as two zero crossings are

determined. After that, new training and prediction cycle start. It should be noted that the

algorithm predicts the same zero crossing twice, one with the larger prediction length and the

next with the smaller prediction length. For the second prediction of the same zero crossing, the

training window will be the same only the starting point of that prediction advances for better

accuracy. After that, the half cycle duration has been calculated and recorded. Equation (18)

shows the half cycle duration calculation.

𝑇𝑝 = 𝑡𝑧𝑐2 − 𝑡𝑧𝑐1 (18)

where 𝑡𝑧𝑐1 and 𝑡𝑧𝑐2 are the time of first and second zero crossing occurrence time of each

prediction horizon. This process of zero crossing and half cycle detection is continued until the

end of the actual data series. When the prediction is finished, the difference between the square

of the predicted half cycles and the actual half cycles duration is calculated and its sum is the

metric to evaluate the sum of squares for error (SSE). Equation (19) shows the SSE, 𝑇𝑒𝑟𝑟𝑜𝑟

between the actual and predicted half cycles duration.

𝑇𝑒𝑟𝑟𝑜𝑟 = ∑ (𝑇𝑎𝑖 − 𝑇𝑝𝑖)²𝐾
𝑖=1 (19)

where 𝑇𝑎 is the array, which contains the half cycles durations of the actual data series and 𝑇𝑝 is

the array, which contains the half cycles durations of the predicted data series. 𝐾 is the number of

observations.

The normalized SSE can be found by dividing the SSE by the number of observations.

Equation (20) shows the normalized sum square error.

𝑇𝐾 = 𝑇𝑒𝑟𝑟𝑜𝑟 ÷ 𝐾 (20)

𝑇𝐾 is later used to assess the quality of prediction process for specific filter and time series.

14

The wave excitation force prediction is used to identify the zero-crossing points to predict

the next half-wave period, and hence the amplitude of the wave excitation force prediction is not

critical. Although, there are some minor errors in predicted waveform’s peaks and valleys, these

errors won’t impact our analysis since this study focuses only the zero crossings and half cycle

durations.

3.8 Test Procedure

 First the prediction control algorithm is successfully tested and validated with regular

wave forces. Then the control algorithm is tested with irregular wave forces for practical

purposes. It should be noted that the irregular wave forces are generated with the help of

JONSWAP spectrum. The irregular wave force calculator was already mentioned in section 3.3.

After getting the satisfactory prediction results, the next step is to extract the energy. For this

reason, simulation has been done to show how much energy can be extracted in comparison to

the actual wave data. To compare between the actual and predicted results, the actual wave data

needs to be used in the simulation first. After getting power extraction simulation result from the

actual data then the prediction data has been used in the simulation model. Finally, the two

output results were compared. The wave data has been analyzed with five frequently occurs

wave period in ocean, i.e. 6,7,8,9 and 10 seconds wave period. The filter order has been tested

for 7, 10 & 15 orders. For each wave period, 5 different wave samples were generated and tested

again with 3 different filter orders, in total 75 different cases were analyzed in this study.

It should be noted, in order to compare the predicted data with the actual data, the actual

waveform also be truncated to make the same length with the predicted data based on the first 10

zero crossings, as after the first 10 zero crossings prediction starts.

15

CHAPTER 4: RESULTS

4.1 Prediction Results with Regular Waves

A regular sinusoidal ocean wave is adopted as the excitation source and it has the following

form:

𝑧𝑤 = 𝐴 ∙ sin (𝜔𝑡 + 𝜑) (21)

where A is the amplitude of wave, 𝜔 is wave angular velocity and 𝜑 is the initial angle of the

wave.

In this study, five different shift angles have been chosen for the regular waves, i.e. 0°,

72°, 144°, 216°, 288°. Then for each wave periods, 5 samples of data with different shift angles

have been formed. It has to be noted that, the regular wave data length is 500 seconds. The wave

excitation force due to incident regular wave is calculated as

𝐹𝑒 = 𝜅𝜌𝑔𝜋𝑎2𝑧𝑤 (22)

where 𝜅 is the excitation force coefficient, whose amplitude is calculated as

|𝜅| = √
4𝜀𝑟

3𝜋𝑘𝑎
 (23)

The generation of wave excitation force for 6 seconds wave period with the shift angel of

0° is shown in Fig. 4.1. In the figure the blue line shows the true wave excitation forces. The

horizontal axis shows the time duration. The total time duration is 500 seconds, where in the

figure it shows the duration from 30 seconds to 80 seconds. The vertical axis shows the amplitude

of the waves with respect to time.

After generating the excitation force the prediction algorithms discussed in chapter 3 was

employed. It generates the predicted waveform shown in Fig 4.2, where the red lines indicate the

predicted data for the same time duration 30 seconds to 80 seconds within the total time 500

16

seconds. The horizontal and vertical axis are the same as discussed in Fig 4.1. This prediction runs

for 6 seconds wave periods and filter order 15.

Figure 4.1: Wave excitation force for regular waves

Figure 4.2: Predicted wave excitation force for regular waves

17

In Fig 4.3, the plot shows the predicted data vs actual data. The blue waveforms show the

actual or truth data and the red waveforms shows the predicted data. From the figure, it can be

shown that for 6 seconds wave period and filter order 15, the predicted data perfectly overlaps

with the actual data. This indicates the accuracy of prediction. In order to distinguish both

waveforms, the truth data linewidth is increased, and the predicted data linewidth is decreased as

it is shown in legend section of the figure. As discussed in chapter 3, this prediction is based on

autoregressive (AR) model, which is a model that can predict the future data based on previous

data.

In Fig 4.4, the prediction error histogram is shown, which clearly shows the accuracy of

the prediction.

Figure 4.3: Predicted data vs actual data for regular waves

18

Figure 4.4: Prediction error histogram for regular waves

From the prediction error histogram in Fig 4.4, it has been shown that most of the error occurs

within ±10 ms. This indicates the validity of prediction algorithms for regular waves. It should

be noted that this prediction histogram error plot is for 6 seconds wave periods and filter order

15.

To validate the system under different wave conditions and study the influence of period

on energy extraction, prediction process is carried out with regular waves of five different

periods (6, 7, 8, 9, and & 10 sec) for a data length of 500 seconds. For each wave period these

cases were studied and three different filter orders, i.e. 7, 10 & 15 were utilized. The prediction

results are shown in Table 4.1.

19

Table 4.1: Half cycle duration prediction results for regular waves

Wave Period

(Sec)

Filter Order

(N)

Average

Normalized SSE

(ms) of Half Cycle

Duration Prediction

Average Zero Crossings Number

Real Predicted

6

7 0.052

156

156

10 0.050 156

15 0.049 156

7

7 0.065

132

132

10 0.072 132

15 0.075 132

8

7 0.067

120

120

10 0.069 120

15 0.067 120

9

7 0.073

106

106

10 0.061 106

15 0.069 106

10

7 0.07

99

99

10 0.07 99

15 0.08 99

From the table, it can be observed that, for 6 second wave period, filter order 15 gives the

best prediction in terms of half cycle duration error, which is 0.049 ms. However, for 7 second,

filter order 7 gives the best prediction with error of 0.065 ms. Again for 8 second wave period,

filter order 7 and 15 gives the best accuracy with an error of 0.067 ms, whereas for 9 second,

filter order 10 gives the best prediction with 0.061 ms error and for 10 second, filter order 7 and

10 gives the best prediction with 0.07 ms error. However, the average normalized sum square

error based on filter order for overall 6,7,8,9 & 10 second together is really close, i.e. 0.07 ms for

filter order 7, 0.06 ms for filter order 10 and 15. In addition, with all the filter orders, the number

of zero crossings in the actual and predicted data series is identical. Or, the prediction gives

almost the same replica of the actual wave curve.

20

4.2 Power Extraction Simulation Results with Regular Waves

In this simulation, only the control algorithm is modified, the PTOS model and the

hydrodynamic model is still the same as in this research’s early work [12]. The simulation model

is the same for both regular and irregular waves. In simulations of this study, parameters in Table

4.2 and Table 4.3 are adopted. Table 4.2 shows the mechanical parameters used in this simulation

and Table 4.3 shows the generator’s parameters used in this simulation.

Table 4.2: Mechanical parameters used in simulations

Parameter Value

Radius of crank (r) 0.5m

Length of connecting rod (l) 1.0m

The distance between the lowest edge of the crank and reference water surface
(𝑑𝑟 − 𝑑𝑠𝑏)

1.0m

Density of water (𝜌) 1020kg/m2

Gravitational acceleration (g) 9.81N/kg

Viscous force coefficient (𝑅𝑣) 10kg/s

Friction force coefficient (𝑅𝑓) 0

The total mass of slider and connecting rod (𝑚𝑐𝑟 − 𝑚𝑝) 10kg

Table 4.3: Generator’s parameters used in simulations

Parameter Value

Nominal Speed 1184rpm

Nominal Power 149.2kW

Nominal Voltage 440V

Viscous Friction Coefficient 0.32N/(m/s)

Armature Resistance 0.076Ω

Armature Inductance 0.00157H

Field Resistance 310 Ω

Field Inductance 232.25H

Mutual Inductance 3.320H

21

In order to get a better picture of simulation results, the simulation was run for 5 different

wave periods (i.e. 6,7,8,9 & 10 seconds) and 5 different cases for each wave period. For each

simulation case 3 different filter orders (i.e. 7, 10 & 15) were tested. In total 75 simulations have

been conducted to validate the prediction algorithm. Fig. 5 highlights various blocks of the

proposed WEC system with the control features. In the simulation model, the control algorithm

is highlighted in blue, the hydrodynamics part is highlighted in yellow and the PTOS model is

highlighted in green.

Figure 4.5: Simulation model for the WEC system.

22

The offline prediction results are provided to the control algorithm block, which includes

the half period duration array T_s, the zero crossing time-stamp array T1_s and the type of zero

crossing array pn_flag (positive or negative zero crossing). In simulations, the complete duration

of each run is 500 seconds. The data from the first ten zero-crossings is used in training, and the

rest of the data is used in prediction. The wave cycle duration in waves varies, and hence the

actual duration of the first ten zero-crossings, 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, may vary between runs, and

correspondingly the actual duration of the prediction phase is 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 500 − 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

varies. From the simulation data shown in Table 4.4, it can be observed that, for 6 second wave

period the output power is increased overall by 0.008 % with the predicted data, whereas for 7

seconds the output power is increased by 0.003% and for 8 seconds its 0.38%. It should be noted

that these results only reflect computational analysis of this WEC system.

Table 4.4: Simulation power extraction results for regular waves

Wave

Period

(Sec)

Filter

Order

(N)

Average Truth

Output Power

(kw)

Average

Predicted

Output

Power (kw)

Wave Period wise

Average

Predicted Power

Change (%)

Filter wise Average

Predicted Power

Change (%)

6

7

34.110

34.112

0.008

0.006

10 34.114 0.012

15 34.112 0.006

7

7

38.574

38.574

0.003

0

10 38.578 0.01

15 38.574 0

8

7

39.954

39.960

0.38

0.01

10 40.104 0.38

15 40.252 0.75

9

7

39.518

39.518

0.14

0

10 39.522 0.01

15 39.680 0.41

10

7

38.344

38.348

0.33

0.01

10 38.510 0.43

15 38.532 0.49

23

For 9 second wave period, the output power is increased overall by 0.14 % with the

predicted data and for 10 second it increased by 0.33 %. In terms of filter orders of overall

examined wave periods, the filter order of 15 gives the best power generation with an increased

power extraction of 0.34%, whereas the filter order 10 gives 0.18% increased power extraction

and the filter order 7 gives an increased power extraction of 0.01%. Results from the 75

simulation cases of regular waves validate the system can be able to work under a variety of

irregular wave conditions and produce satisfactory amounts of energy.

4.3 Prediction Results with Irregular Waves

In this prediction algorithm, adaptive training and prediction run sequentially, so the filter

order needs to balance between accuracy and time delay. Filter order determines how many past

values need to be used to predict the future value. In this study 7th, 10th and 15th order filters

were examined with variety of irregular waves. The prediction process is carried out with

irregular waves of five different peak periods (6, 7, 8, 9, and & 10 sec) for a data length of 500

seconds. The significant wave height kept the same at 1.414 m, which is chosen according to the

equal energy transport theorem. All the randomly generated waves are derived from the

JONSWAP spectrum. In total, there are 75 different trials tested using the prediction and

simulation model. The generation of wave excitation force for 8 seconds wave period is shown in

Fig. 4.6. In the figure the blue line shows the truth wave excitation forces. The horizontal axis

shows the time duration. The total time duration is 500 seconds, the figure shows the duration

from 100 seconds to 150 seconds. The vertical axis shows the amplitude of the waves with

respect to time. Then the prediction algorithm runs and generates the predicted waveform as

shown in Fig. 4.7. In this figure wave period is 8 seconds and filter order is 15.

24

Figure 4.6: Wave excitation force for irregular waves

Figure 4.7: Predicted wave excitation force for irregular waves

25

In Fig 4.8, the plot shows the predicted data vs truth data. The blue waveform shows the

actual or truth data and the red waveform shows the predicted data. From the figure, it can be

shown that for 8 seconds wave period and filter order 15, the predicted data closely matches the

actual data. This indicates the accuracy of prediction. Minor excursions in the peak and valleys

of the predicted wave curve comparing with the actual curve can be observed, but as mentioned

earlier the amplitude of the future wave is not used in the PTO system. The small spikes in

predicted (red) curve represent the reinitializations of a new training/prediction cycles for better

accuracy. It is important to note that in every half cycle prediction process, there is a training

followed by a prediction. This prediction is later fine-tuned or corrected by making another

prediction as real time approaches the first zero crossing in this cycle.

Fig. 4.9 shows the prediction error histogram for 8 second sample wave period with filter order

15. From the prediction error histogram, it has been shown that most of the error occurs within

±200 ms window.

Figure 4.8: Predicted data vs actual data for irregular waves

26

Figure 4.9: Prediction error histogram for irregular waves

In this study, a time offset or cushion of 0.55 seconds is used after each prediction’s end to

start the new prediction process for the same half period (or two zero crossings). This cushion is a

value designed to account for inaccuracies in prediction. By introducing a sufficiently large

cushion the same zero crossing are not double counted. However, a half cycle can be smaller than

this cushion. If that is the case, the cushion is reduced, and prediction is repeated.

The prediction results are shown in Table 4.5. In this prediction algorithm training and

prediction run sequentially, so the algorithm needs to work with a filter order that gives good

accuracy and takes less time for the whole process. It’s important to note that the error in

prediction increases as the peak period increases. This is primarily because the prediction horizon

in this study depends on the zero-crossing detection and extends with increasing wave period. As

the prediction horizon extends, the sum square error naturally increases.

27

Table 4.5: Half cycle duration prediction results for irregular waves

Wave Period

(Sec)

Filter Order

(N)

Average Normalized SSE

(Sec) of Half Cycle

Duration Prediction

Average Zero Crossings

Number

Real Predicted

6

7 0.049

156

156

10 0.049 156

15 0.069 156

7

7 0.446

132

132

10 0.451 132

15 0.150 132

8

7 0.137

120

120

10 0.110 120

15 0.276 120

9

7 0.427

106

106

10 0.242 106

15 0.731 106

10

7 1.075

99

97

10 1.056 97

15 0.48 99

From the table, it can be observed that, for 6 second wave period, filter order 7 & 10 gives

the best prediction in terms of half cycle duration error, which is 0.049 second. However, for 7

second, filter order 15 gives the best prediction with error of 0.150 second. Again for 8 and 9

second wave period, filter order 10 gives the best accuracy with an error of 0.110 & 0.242 second

respectively, whereas for 10 second, filter order 15 gives the best prediction with 0.48 second

error. However, the average normalized sum square error based on filter order for overall 6, 7, 8,

9 & 10 second together is less in filter order 15, which is 0.341 second, whereas filter order 7

error is 0.427 second and filter order 10 error is 0.382 second. According to the prediction results

filter order 15 gives the best prediction. In addition, with a filter order of 15, the number of zero

28

crossings in the actual and predicted data series is identical. Or, the prediction gives almost the

same replica of the actual wave curve.

4.4 Power Extraction Simulation Results with Irregular Waves

Fig. 4.5 highlights various parts of the proposed WEC system with the control features. In

the simulation model, the control algorithm is highlighted in blue, in which the half period

duration array T_s, the zero-crossing time-stamp array T1_s and the type of zero crossing array

pn_flag (positive or negative zero crossing) derived from the prediction algorithm. Simulations

are implemented in the following steps. First, as a baseline, the actual data of the irregular wave

excitation force is provided to the simulation model. Energy extraction results and system

operation waveforms generated from the actual data shows the feasibility of the model. In

practice, however, future wave information is never known, and this best-case scenario is not

feasible, but just serves as the optimal performance a system can approach. Then the offline wave

excitation force prediction data which contains the predicted half cycles, zero crossings and types

of zero crossings is tested with the simulation model.

Simulations results are listed in Table 4.6. From the data shown in Table 4.6, it can be

observed that, for 6 second wave period the output power is increased overall by 0.99 % with the

predicted data. This is possible since perfect phase lock between the excitation force and the

generator as in the case of perfect prediction does not necessarily produce best outcome [18].

However, for the other wave periods examined in this study, the output power with

predicted data is moderately lower than the power extracted with actual data. For example, with 8

second peak period, the output is reduced by 5.33% with the predicted data. In terms of filter

orders of overall examined wave periods, a filter order of 15, gives the best power generation with

29

a power reduction of 4.29%, whereas filter order 7 gives 5.2% power reduction and filter order 10

gives a power reduction of 4.41%.

Fig. 4.10 shows the cumulative energy generation during the simulation of 9 second peak

wave period data. The energy extraction started around 11 seconds after the initialization process

of control algorithm, the first wave force affected the system by this time and hence the generator

started to produce power. The next wave is then aligned with the slider-crank mechanism and the

device extracts more energy than it consumes. This trend continues to produce power at an

average rate of 37.6 kw for this specific 9 second wave period.

Table 4.6: Simulation power extraction results for irregular waves

Wave

Period

(Sec)

Filter

Order (N)

Average

Truth Output

Power (kw)

Average

Predicted

Output Power

(kw)

Wave Period

wise Average

Predicted

Power Change

(%)

Filter wise

Average

Predicted

Power Change

(%)

6

7

21.93

22.21

0.99

1.29

10 22.22 1.33

15 22.01 0.36

7

7

31.84

29.82

-5.35

-6.34

10 29.98 -5.85

15 30.61 -3.87

8

7

32.82

30.97

-5.33

-5.64

10 31.40 -4.32

15 30.84 -6.02

9

7

36.40

33.59

-6.54

-7.72

10 33.92 -6.83

15 34.55 -5.08

10

7

32.98

31.26

-4.9

-5.21

10 30.83 -6.53

15 31.26 -5.21

30

Figure 4.10: Cumulative Electric Energy Production

Results from the 75 simulation cases validate that the system can work under a variety of

irregular wave conditions and produce reasonable amounts of energy.

4.5 Prediction & Simulation Result with Noisy Irregular Wave Data

In order to generate the noisy irregular wave data, Signal to Noise Ratio (SNR) has been

introduced to the irregular wave force calculator. In this experiment, SNR=0 and SNR=1000:1

has been used to show the noisy environment performance.

In Fig 4.11, the plot shows the predicted data vs actual data for noisy irregular wave. The

blue waveform shows the actual or truth data and the red waveform shows the predicted data.

From the figure, it can be shown that for 6 second wave period and filter order 15 with

31

Figure 4.11: Predicted data vs actual data for noisy irregular waves

Figure 4.12: Prediction error histogram for noisy irregular waves

SNR 1000:1

32

SNR=1000:1, the predicted data moderately overlaps with the actual data. This indicates noise

sensitivity of the prediction. The small spikes in predicted (red) curve represent the

reinitialization of a new training/prediction cycle. Fig. 4.12 shows the prediction error histogram

for 6 second sample wave period with filter order 15 and SNR=1000:1. Table 4.7 shows the

prediction results with noisy data. From the table, it can be observed that, for 6 second wave

period with SNR=0, all the filter orders give almost the same replica of the truth half cycle

duration with no error. However, when the SNR=1000:1, filter order 15 gives the best prediction

with 0.08 half cycle duration error, rest of the filter orders give 0.14 second error. For 7 second

wave period with SNR=0, filter order 15 again gives the best prediction with no error, where

filter order 7 and 10 give 0.3 second error. However, with SNR=1000:1 all 3 filter orders give

error of 0.9 second. Again for 8 second wave period and SNR=0, filter order 7 and 10 gives the

best accuracy with an error of 0.01 second. For the same wave period when the SNR is 1000:1,

all 3 filter orders gives almost the same accuracy. Again for 9 second wave period with SNR=0,

filter order 7 gives the best accuracy with an error of 0.01 second. Although with SNR=1000:1

filter order 7 and 15 gives almost the same accuracy. For 10 second wave period with SNR=0,

filter order 10 gives the same accuracy with an error of 0.03 second, although with SNR=1000:1,

filter order 15 gives the best accuracy with an error of 1.25 second. However, the normalized

sum square error based on examined filter order for overall 6,7,8,9 & 10 second and both SNR=0

and SNR=1000:1 is less in filter order 15, which is 0.28 second, whereas filter order 7 error is

0.32 second and filter order 10 error is 0.3 second. According to the prediction results filter order

15 gives the best prediction. In addition, with a filter order of 15, the number of zero crossings in

the actual and predicted data series is identical or, almost the same replica.

Power Extraction simulation results for noisy irregular waves are shown in Table 4.8.

33

Table 4.7: Half cycle duration prediction results for noisy irregular waves

Wave

Period (Sec)
SNR

Filter Order

(N)

Normalized SSE

(Sec) of Half

Cycle Duration

Prediction

Zero Crossings Number

Real Predicted

6

0

7 0

158

158

10 0 158

15 0 158

1000:1

7 0.14

138

138

10 0.14 138

15 0.08 138

7

0

7 0.3

136

134

10 0.3 134

15 0 136

1000:1

7 0.9

138

138

10 0.9 138

15 0.9 138

8

0

7 0.01

120

120

10 0.01 120

15 0.03 120

1000:1

7 0.07

121

121

10 0.07 121

15 0.08 121

9

0

7 0.01

109

109

10 0.05 109

15 0.03 109

1000:1

7 0.23

109

109

10 0.25 109

15 0.24 109

10

0

7 0.22

100

100

10 0.03 100

15 0.22 100

1000:1

7 1.27

102

102

10 1.27 102

15 1.25 102

34

Table 4.8: Simulation power extraction results for noisy irregular waves

Wave

Period (Sec)
SNR

Filter Order

(N)

Truth Output

Power (kw)

 Predicted

Output

Power (kw)

Predicted

Power Change

(%)

6

0

7

29.28

29.27 -0.034

10 29.27 -0.034

15 29.27 -0.034

1000:1

7

29.29

28.03 -4.495

10 28.93 -1.244

15 29.10 -0.652

7

0

7

31.74

28.79 -10.247

10 28.79 -10.247

15 31.70 -0.126

1000:1

7

31.76

28.02 -13.348

10 28.80 -10.277

15 28.70 -10.662

8

0

7

35.02

34.90 -0.343

10 34.90 -0.343

15 34.90 -0.343

1000:1

7

35.65

34.90 -2.149

10 35.00 -1.857

15 35.00 -1.857

9

0

7

37.38

37.09 -0.782

10 37.12 -0.700

15 37.04 -0.917

1000:1

7

37.38

34.46 -8.474

10 34.17 -9.394

15 34.22 -9.234

10

0

7

32.37

32.40 0.093

10 32.40 0.093

15 31.60 -2.437

1000:1

7

31.53

30.10 -4.751

10 30.20 -4.404

15 30.20 -4.404

35

From the data shown in Table 4.8, it can be observed that for 6 sec wave period with

SNR=0, the power is reduced by 0.034 %. For SNR=1000:1, filter order 15 gives the best power

extraction with 0.625 % reduction. Again, for wave period of 7 second with SNR=0, filter order

15 extracts higher power with a reduction of 0.126 % but with SNR=1000:1, filter order 10 gives

less percentage reduction of power, which is 10.277 %. For wave period of 8 second with SNR=0,

the power is reduced by 0.343 %, where with SNR=1000:1, filter order 10 and 15 both give the

best result with 1.857 % reduction. However, for wave period of 9 second with SNR=0, filter

order 10 results less reduction of power. Finally, for wave period of 10 second with SNR=1000:1,

filter order 15 gives the best result with a power reduction of 4.404 %. In terms of filter orders of

overall examined wave periods, a filter order of 15, gives the best power generation with a power

reduction of 3.06 %, whereas filter order 7 gives 4.45 % power reduction and filter order 10 gives

a power reduction of 3.84 %.

36

CHAPTER 5: CONCLUSION AND FUTURE WORK

A control methodology for regular and irregular ocean waves is applied in a slider crank

WEC system to maximize energy extraction by ensuring that the WEC generator can rotate in

resonance with the wave excitation force. The wave excitation force prediction algorithm is

based on the AR filter model and examined with three filter orders 7,10 & 15 and with five

commonly found ocean wave periods of 6, 7, 8, 9 & 10 seconds. The prediction algorithm first

tested with the regular waves to prove its validity. After that, it was tested with irregular waves

and finally tested with noisy irregular wave data. Moreover, the prediction strategy requires only

the future half-period duration, not the future amplitude of the wave force, which greatly

alleviates the prediction challenges. The buoy used in this slider crank model is semi-submerged

spherical buoy. The irregular waves are generated with the JONSWAP spectrum and the

irregular wave force generator, in order to generate the noisy data Signal to Noise Ratio (SNR) is

introduced in the wave force generator. In this study, the AR filter model is identified and

utilized in MATLABTM environment, which renders fairly accurate prediction with forward-

backward estimation approach. Then the offline prediction results are implemented to the

simulation model. The simulation model is developed in SIMULINKTM.

This study presents a unique prediction strategy, where the prediction horizon is adapted

continuously with the change of length of half cycle duration, whereas in the initial research

[11], prediction horizon was considered constant, which is not practically viable for real time

applications. The prediction and simulation results show that, a filter order of 15 gives a fairly

accurate prediction results for the most energy extraction cases of regular and irregular waves,

satisfying the real-time processing requirement to validate the feasibility of the system under

37

practical ocean wave conditions. The prediction methodology proposed in this study can also be

applied to other WEC control schemes such as latching control, which heavily relies on phase

prediction.

Future work of this study includes the extensive noise analysis of this prediction

algorithm with a more noise corrupted sensor measurements of wave data. In real life

applications, sensor data includes noise at different levels. This is something that needs to be

tested to validate the performance of proposed prediction algorithm. Once the performance under

the presence of noise is satisfactory, the system will be tested in a hardware in the loop

simulation environment.

38

REFERENCES

[1] Nada Kh. M. A. Alrikabi, “Renewable Energy Types”, Journal of Clean Energy Technologies,

vol. 2, No. 1, January 2014.

[2] T. Brekken, Fundamentals of ocean wave energy conversion, modeling, and control, in: 2010

IEEE International Symposium on Industrial Electronics. (ISIE), pp. 3921, 3966, 4–7 July

2010.

[3] K. Rhinefrank et al. “Comparison of direct-drive power takeoff systems for ocean wave energy

applications,” IEEE J. Ocean. Eng., vol. 37, no.1, pp. 35–44, Jan. 2012.

[4] J. R. Halliday, D. G. Dorrell, and A. R. Wood, "An application of the Fast Fourier Transform

to the short-term prediction of sea wave behavior," Renew Energ, vol. 36, pp. 1685-1692, Jun

2011.

[5] D. Q. Truong and K. K. Ahn, "Wave prediction based on a modified grey model MGM(1,1)

for real-time control of wave energy converters in irregular waves," Renew Energ, vol. 43, pp.

242-255, Jul 2012.

[6] Liang Li, Zhiming Yuan, Yan Gao , Xinshu Zhang, ““Wave force prediction effect on the

energy absorption of a wave energy converter with real-time control” IEEE Transactions on

Sustainable Energy, 29 May, 2018.

[7] M. Ge and E. C. Kerrigan, "Short-term ocean wave forecasting using an autoregressive moving

average model," in Control (CONTROL), 2016 UKACC 11th International Conference on,

2016, pp. 1-6

[8] N. M. Tom, Y. H. Yu, A. D. Wright, and M. J. Lawson, "Pseudo-spectral control of a novel

oscillating surge wave energy converter in regular waves for power optimization including

load reduction," Ocean Eng, vol. 137, pp. 352-366, Jun 1 2017.

39

[9] F. Fusco, and J. V. Ringwood, “Short-term wave forecasting for real-time control of wave

energy converters,” IEEE Trans. Sustainable Energy, vol. 1, no. 2, pp. 99, 106, July 2010.

[10] Y. Sang et al., “Resonance control strategy for a slider crank WEC power take-off system,”

in Proc. MTS/IEEE OCEANS ’14, St. John’s, Canada, 2014, pp. 1–8

[11] Y. Sang et al., “Irregular Wave Energy Extraction Analysis for A Slider Crank WEC Power

Take-off System,” ACEMP-OPTIM-Electromotion 2015 Joint Conference, Side, Turkey, 2-4

September 2015.

[12] Y. Sang et al., “Energy Extraction from A Slider-Crank Wave Energy Converter under

Irregular Wave Conditions,” IEEE/MTS Oceans 15, Washington D.C., USA, 19-22 October

2015.

[13] Matlab 2017a System Identification Toolbox.

[14] Md Rakib Hasan Khan, H. Bora Karayaka,Yanjun Yan,Peter Tay,Yi-Hsiang Yu, “Slider

Crank WEC Performance Analysis with Adaptive Autoregressive Filtering” IEEE Southeast

Conference, 2019, Huntsville, Alabama, USA, 11-14 April 2019.

[15] K. Hasselman et al., “Measurements of wind-wave growth and swell decay during the Joint

North Sea Wave Project (JONSWAP),” German Hydrographic Institute, Germany, Tech. Rep.

12, 1973.

[16] W. E. Cummins, “The impulse response function and ship motions,” Schiffstechnik, vol. 9,

pp. 101–109, 1962.

[17] E. Tedeschi et al., “Effect of control strategies and power take-off efficiency on the power

capture from sea waves,” IEEE Trans. Energy Convers., vol. 26, no. 4, pp. 1088–1098, Dec.

2011.

40

[18] D. Wallace et. al., “Optimum Parameter Search for a Slider-Crank Wave Energy Converter

under Regular and Irregular Wave Conditions,” IEEE SoutheastCon, Concord NC, USA,

March 30-April 2 2017.

41

APPENDIX A: SOURCE CODE

%% Irregular Wave Force Generation “Irregular_Wave_Force.m”

clear;clc;close all;

%===%

% initial inertia: 10

% initial viscous friction coefficient: 0.32

%==%

%Callback for the simulink model

Ts=20e-6; % Sampling time

Td=1e-3; % Discrete Sampling time

%%% setting 1 %%%

gr=110; % Gear ratio

 %======================

aa=20e-6/(.5+20e-6);

%==%

%Slider-Crank initialization

global r % Radius of crank. used again in the rk4sys_step function and slider crank function.

global l % Length of rod, used again in the slider crank function.

global dr_dsb % (Used to be r+A) Distance between the lowest edge of the crank and the

reference water surface

r=.5; % Radius of crank. used again in the rk4sys_step function and slider crank function.

l=1; % Length of rod, used again in the slider crank function.

42

lambda=r/l; % used again in the slider crank function.

B=0.01; % Viscous friction, used again in the slider crank function.

J=10; % inertia of flywheel, used again in the slider crank function.

dr_dsb=l; % (Used to be r+A) Distance between the lowest edge of the crank and the

reference water surface

mcrp=10; % Total of mass of piston (or slider) and connecting rod respectively.

%===%

% Hydrodynamics initialization (frequency domain)

delta_omega=0.01;

omega=0.5:delta_omega:1.4;

N=length(omega);

fn=omega/2/pi;% frequencies of the wave components

%%%==%%%

%%% Settings for irregular wave parameters %%%

% Equivalent energy transfer: Hm0=2*sqrt(2)*A (A is the amplitude of the regular wave)

Hm0=sqrt(2); % significant wave height of the irregular wave. The same value is used as that in

"Effect of..."

Tp=6; % If this changes, int_S_star has to be recalculated. Peak period of the irregular wave. In

"Effect of...", they used an average period of 6. We can use our own to make the spectrum fit our

need.

%%%==%%%

fp=1/Tp;

g=9.81; % gravity acceleration

43

rho=1020;% water density

%==%

% Choose Spectrum for the System:

flag = 1; % 0 for Breschneider model and 1 for JONSWAP Model

switch flag

 case 0

% ===================== Bretschneider model ============================%

% R=(Tp/1.057)^(-4); % These are calculated separately for the sake of the organing the

formula

% Q=R*Hm0^2/4;% These are calculated separately for the sake of the organing the

formula

% S=Q*fn.^(-5).*exp(-R*fn.^(-4)); % Bretschneider spectrum ("sea spectra revisited" or

MIT OCW slides)

 S=Hm0^2/4*(1.057*fp)^4*fn.^(-5).*exp(-5/4*(fp./fn).^4); %According to

WEC_Sim_User_Manual_v1.0.pdf

 case 1

% ============== JONSWAP Model ==================================%

 m0=sqrt(Hm0/4); % wave field variance. See "On control ...".

 %alpha=0.0081; % a given constant which is used in most references, see "sea spectra

revisited".

 gamma=6;% If this changes, int_S_star has to be recalculated. The average of gamma is 3.3

(see "sea spectra revisited"). enhancement factor by which the P_M peak energy is multiplied to

get the peak energy value of the spectrum.

44

 %Increasing gamma has the effect of reducing the spectral bandwidth,

 %thereby increasing periodicity of the wave field. See "On control ...".

 for i2=1:N

 if fn(i2)<=fp

 sigma=0.07;%if f<fp sigma is the width factor of the enhanced peak, see "sea spectra

revisited". The numbers are given in "sea spectra revisited".

 elseif fn(i2)>fp

 sigma=0.09;%if f>fp

 end

%===%

 % the following eqn is from On Control of a Pitching and Surging Wave Energy

Converter-HYavuz.pdf

 % S(i2)=5*m0/fp*((fp/fn(i2))^5)*exp(-5/4*((fp/fn(i2))^4))*gamma^exp(-(fn(i2)/fp-

1/(2*sigma^2)));

%==%

 % the following eqn is from sea_spectra_revisited.pdf and Measurements of wind-wave

growth and swell decay during the Joint North Sea Wave Project (JONSWAP)_Jonswap-

Hasselmann1973.pdf

 % S(i2)=alpha*g^2*(2*pi)^(-4)*fn(i2)^(-5)*exp(-5/4*((fp/fn(i2))^4))*gamma^exp(-

(fn(i2)-fp)^2/(2*sigma^2*fp^2));

%==%

 % The following eqn uses basic spectrum from "On control ..." and peak enhancement

factor from "Sea_spectra_revisited".

45

 S(i2)=5*m0/fp*((fp/fn(i2))^5)*exp(-5/4*((fp/fn(i2))^4))*gamma^exp(-(fn(i2)-

fp)^2/(2*sigma^2*fp^2));

%==%

 % The following eqn is according to WEC_Sim_User_Manual_v1.0.pdf

 % integral of

 % 9.81^2/(2*pi)^4*x^(-5)*exp(-5/4*(0.125/x)^4)*6^exp(-((x/0.125-1)/(sqrt(2)*0.07))^2)

 % from 0 to 0.125 = 37.61 calculated by Wolframalpha

 % integral of

 % 9.81^2/(2*pi)^4*x^(-5)*exp(-5/4*(0.125/x)^4)*6^exp(-((x/0.125-1)/(sqrt(2)*0.09))^2)

 % from 0.125 to infinity=65.8056 calculated by Wolframalpha

 switch Tp

 case 6

 int_S_star=11.9001+20.8213;

 case 7

 int_S_star=22.0463+38.574;

 case 8

 int_S_star=37.61+65.8056;

 case 9

 int_S_star=60.244+105.408;

 case 10

 int_S_star=91.8214+160.658;

 end

46

 alpha=Hm0^2/(int_S_star*16); %int_S_star should be changed when Tp or gamma

changes.

 GAMMA=exp(-((fn(i2)/fp-1)/(sqrt(2)*sigma))^2);

 S(i2)=alpha*g^2/(2*pi)^4*fn(i2)^(-5)*exp(-5/4*(fp/fn(i2))^4)*gamma^GAMMA;

 end

end

 plot(omega/(2*pi),S)

 grid on

 axis([0.08 0.26 0 3.5])

 xlabel('f (Hz)')

 ylabel('Spectral Density (m^2s)')

 title('JONSWAP Spectrum')

%==%

% Wave elevation and excitation force (time domain)

Start_Time=0; % time start

End_Time=500; % final time

Interval=0.01; % sampling time interval

t=Start_Time:Interval:End_Time;

M=length(t);

%%% setting 2 %%%

a=5; % buoy radius

%======================

c=rho*g*pi*a^2; % a coefficient that is used later

47

%%% setting 3 %%%

A=sqrt(2*S*delta_omega/2/pi); % calculate amplitude for each wave component

%======================

%%% setting 5 %%%

Phase=2*pi*rand(1,N); % randomly generate the initial phase of each wave component

%======================

Ka=[0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0

9.0 10.0]';

Amass=[0.8310 0.8764 0.8627 0.7938 0.7157 0.6452 0.5861 0.5381 0.4999 0.4698 0.4464

0.4284 0.4047 0.3924 0.3871 0.3864 0.3884 0.3988 0.4111 0.4322 0.4471 0.4574 0.4647 0.4700

0.4740 0.4771]';

Damping=[0 0.1036 0.1816 0.2793 0.3254 0.3410 0.3391 0.3271 0.3098 0.2899 0.2691 0.2484

0.2096 0.1756 0.1469 0.1229 0.1031 0.0674 0.0452 0.0219 0.0116 0.0066 0.0040 0.0026 0.0017

0.0012]';

len=length(Ka);

kappa=zeros(1,len);

imkap=zeros(1,len);

rekap=zeros(1,len);

mm=rho*(2*pi/3)*a^3;

Sb=rho*g*pi*a^2;%785890;

kappa(1)=1;

imkap(1)= 2*Damping(1)*Ka(1)/3;

rekap(1)= sqrt(kappa(1)^2-imkap(1)^2);

48

for j=2:len

 kappa(j)= sqrt(4*Damping(j)/(3*pi*Ka(j)));

 imkap(j)= 2*Damping(j)*Ka(j)/3;

 rekap(j)= sqrt(kappa(j)^2-imkap(j)^2);

end

Kaq=omega.^2/g*a;

kappa_im=zeros(1,N);

kappa_re=zeros(1,N);

kappa_angle=zeros(1,N);

kappa_abs=zeros(1,N);

for i1=1:N

 kappa_abs(i1)=interp1(Ka,kappa,Kaq(i1),'cubic');

 kappa_im(i1)=interp1(Ka,imkap,Kaq(i1),'cubic');

 kappa_re(i1)=interp1(Ka,rekap,Kaq(i1),'cubic');

 kappa_angle(i1)=atan(kappa_im(i1)/kappa_re(i1));

end

%%%

% kap=0.502764572022028;

%%%

% eta=zeros(1,M);

% Fe=zeros(1,M); % initialization for wave force at each time point

Fe=@(t)0;

eta_total=@(t)0;

49

%%% setting 5 %%%

% omega=2*pi/6*ones(1,N);

% kappa_angle=0;

%======================

for i=1:N

 eta{i}=@(t)A(i)*sin(omega(i)*t+Phase(i)+kappa_angle(i));

 Fe_components{i}=@(t)c*kappa_abs(i)*eta{i}(t);

 Fe=@(t)Fe(t)+Fe_components{i}(t);

 eta_total=@(t)eta_total(t)+eta{i}(t);

end

%

Fe=@(t)kap*rho*g*pi*a^2*(eta{1}(t)+eta{2}(t)+eta{3}(t)+eta{4}(t)+eta{5}(t)+eta{6}(t)+eta{7

}(t)+eta{8}(t)+eta{9}(t)+eta{10}(t));%zw(t);

% for i=1:M

% eta(i)=sum(A.*sin(omega*t(i)+Phase));

% Fe(i)=sum(c*kappa_abs.*A.*sin(omega*t(i)+Phase+kappa_angle));

% end

figure;

% subplot(2,1,1)

% plot(t,eta);

% grid

% title('wave elevation')

50

% subplot(2,1,2)

plot(t,Fe(t));

grid

%title('excitation force')

xlabel('Time(s)')

ylabel('Excitation Force')

% hold on;

figure;

plot(t,eta_total(t));

grid

title('wave elevation')

Ocean_Wave_AccP.signals.values=Fe(t)';

Ocean_Wave_AccP.time=t';

51

%% Regular Wave Force Generation “mechanical_energy.m”

% clear;clc;close all;

%===%

% initial inertia: 10

% initial viscous friction coefficient: 0.32

%==%

%Callback for the simulink model

Ts=20e-6; % Sampling time

T_d=1e-3; % Discrete Sampling time

%%% setting 1 %%%

gr=110; % Gear ratio

%======================

aa=20e-6/(.5+20e-6);

%===%

%=========================Initialization===============================%

% global Interval A r l lambda B J L_af V_f r_f I_f L_aa r_a kv dr m R Sb

% %Hydrodynamics initialization

% Start_Time=0; % time start

% End_Time=500; % final time

% Interval=0.01; % simpling time interval

rho=1020; % the density of water

g=9.81; % acceleration of gravity

a=5;%0.9533; % buoy radius

52

% Rv=10; % Viscous force coefficient

% Rf=0; % Friction force coefficient

% %omega=1; % The angular velocity of water wave

% A=0.5; % The maximum amplitude of water wave, initialized again in the slider

crank function.

% f=1/10; % The frequency of water wave

% omega=2*pi*f; % The angular velocity of water wave

% k=omega^2/g; % Wave number for infinite water depth

% Kaq=k*a; % ka

% zw=@(t)A*sin(omega*t+288*pi/180); % the function of water wave

%Slider-Crank initialization

global r % Radius of crank. used again in the rk4sys_step function and slider crank

function.

global l % Length of rod, used again in the slider crank function.

global dr_dsb % (Used to be r+A) Distance between the lowest edge of the crank and

the reference water surface

r=0.5; % Radius of crank. used again in the rk4sys_step function and slider crank

function.

l=1; % Length of rod, used again in the slider crank function.

lambda=r/l; % used again in the slider crank function.

B=0.01; % Viscous friction, used again in the slider crank function.

J=10; % inertia of flywheel, used again in the slider crank function.

53

dr_dsb=l; % sqrt(l^2-r^2); % Distance between the lowest edge of the crank

and the reference water surface

mcrp=10; % Total of mass of piston (or slider) and connecting rod respectively.

%Fu=zeros(1,(End_Time-Start_Time)/Interval+1);

% %Generator initialization

% L_af = 1.234; % Mutual inductance between the field and the rotating armature coils.

% V_f = 220; % Field voltage.

% r_f = 150; % Resistance of field windings

% I_f = V_f/r_f; % Current of field windings

% L_aa = 0.016; % Self-inductance of the field and armature windings.

% r_a = 0.78; % Resistance of the armature coils.

% kv = L_af*I_f; % Stator constant

%==%

% %===Calculating mu, epsilon and kappa through graphical observation======%

% Ka=[0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0

9.0 10.0]';

% Amass=[0.8310 0.8764 0.8627 0.7938 0.7157 0.6452 0.5861 0.5381 0.4999 0.4698 0.4464

0.4284 0.4047 0.3924 0.3871 0.3864 0.3884 0.3988 0.4111 0.4322 0.4471 0.4574 0.4647 0.4700

0.4740 0.4771]';

% Damping=[0 0.1036 0.1816 0.2793 0.3254 0.3410 0.3391 0.3271 0.3098 0.2899 0.2691

0.2484 0.2096 0.1756 0.1469 0.1229 0.1031 0.0674 0.0452 0.0219 0.0116 0.0066 0.0040 0.0026

0.0017 0.0012]';

% kappa(1)=1;

54

% for i=2:length(Ka)

% kappa(i)=sqrt(4*Damping(i)/(3*pi*Ka(i)));

% end

% Mu = interp1(Ka,Amass,Kaq','cubic');

% Ep = interp1(Ka,Damping,Kaq','cubic');

% kap= interp1(Ka,kappa,Kaq','cubic');

%==%

%Calculating Coefficients of the Differential Equation of Buoy Displacement

dr_dsb=1;

Sb=rho*g*pi*a^2;%785890;

mm=rho*(2*pi/3)*a^3;

% m=mm*(1+Mu);%267040+156940;

% R=Rv+Rf+Ep*omega*mm;%91520;

% Fe=@(t)kap*rho*g*pi*a^2*zw(t);

% t = Start_Time:Interval:End_Time;

% figure;

% % subplot(2,1,1)

% % plot(t,eta);

% % grid

% % title('wave elevation')

% % subplot(2,1,2)

% plot(t,Fe(t));

% grid

55

% title('excitation force')

% % hold on;

% figure;

% plot(t,zw(t));

% grid

% title('wave elevation')

% Ocean_Wave_AccP.signals.values=Fe(t)';

% Ocean_Wave_AccP.time=t';

%Call to find initial angle

Theta_Initial=Initial_Angle_Solver();

[bs,as]=RadiationKomega(a,T_d);

% load az

% load bz

Wave_Analysis;

%Calculate initial position in case of complex conjugate control

% init_z=-max((Fe(t)/(4*R*pi*f)))

56

%% Initial angel solver function “Initial_Angle_Solver.m”

function Theta_Initial=Initial_Angle_Solver()

format long;

%==%

%Slider-Crank initialization

global r % Radius of crank. used again in the rk4sys_step function and slider crank

function.

global l % Length of rod, used again in the slider crank function.

global dr_dsb % (Used to be r+A) Distance between the lowest edge of the crank and

the reference water surface

%==%

f1=@(u)(dr_dsb-sqrt(l^2-(r*sin(u))^2))/r;

f2=@(u)cos(u);

Theta_Initial=pi/2;

err=1;

while err>1e-12

 f1n=f1(Theta_Initial);

 f2n=f2(Theta_Initial);

 Theta_Initial=acos(f1n);

 err=abs(f1n-f2n);

end

disp('The Initial Angle is (in radian): ');

disp(Theta_Initial);

57

disp('In degrees: ');

disp(Theta_Initial/pi*180);

58

%% Wave analysis program “Wave_Analysis_Prediction.m”

% =============Output==============

% T_s are the half periods

% T1_s are the time point of zero-crossings

Excitation_Force=Ocean_Wave_AccP.signals.values;

Ocean_Wave_AccP.time=Ocean_Wave_AccP.time;

l_Fe=length(Excitation_Force);

i_T=1;

for index=2:l_Fe

 if Excitation_Force(index)*Excitation_Force(index-1)<=0 %0-crossing detection

 if Excitation_Force(index)>Excitation_Force(index-1)

 pn_flag(i_T)=1;

 else pn_flag(i_T)=0;

 end

 T1_s(i_T)=t(index-1);

 if i_T>1

 T_s(i_T)=T1_s(i_T)-T1_s(i_T-1);

 else

 T_s(i_T)=0;

 end

 i_T=i_T+1;

 end

end

59

%% Noisy irregular wave generation

SNR=1/1000;

for i=1:N

 eta{i}=@(t)A(i)*(sin(omega(i)*t+Phase(i)+kappa_angle(i))+(randn(size(t))*SNR));

 Fe_components{i}=@(t)c*kappa_abs(i)*eta{i}(t);

 Fe=@(t)Fe(t)+Fe_components{i}(t);

 eta_total=@(t)eta_total(t)+eta{i}(t);

end

60

%% Prediction Code “half_period_even_updated_stats.m”

clear all;

close all;

clc;

load c_5_t_9_snr_1_500

%% 10 ms sampling

t = Ocean_Wave_AccP.time;

% x = Ocean_Wave_AccP.signals.waves; % wave elevation

y = Ocean_Wave_AccP.signals.values; % excitation force

%% Collecting data until ten zero crossing to train

f_ori=0; % Variable initialize to store the original value

lnp_ori=0; % Variable for zero crossing number

b_ori=1; % Variable to loop the actual value index

Y_data_zero=[]; % Array for zero crossing index of actual data

actual_zero_crossing_ori=[]; % Array for zero crossing time of actual data

actual_number_of_zero_crossing_ori=[]; % Array contains number of zero crossing in

actual data

init_zeroc = 10; % Initial number of zero crossings to be detected

while lnp_ori<init_zeroc % Condition to run the loop until ten zero crossing

 yN_first(f_ori+1)=y(b_ori); % Store the original value to yN_first

 if f_ori>0 % Condition to check the zero crossing of actual data

 e_index_ori=f_ori;

61

 if (y(e_index_ori)<0 && y(e_index_ori+1)>0)|| (y(e_index_ori)>0 &&

y(e_index_ori+1)<0) % Positive & Negetive zero crossing condition

 Y_data_zero=[Y_data_zero,(e_index_ori+1)]; % Array

to store zero crossing index

 actual_zero_crossing_ori=[actual_zero_crossing_ori,t(e_index_ori+1)]; %

Array to store zero crossing time

 actual_number_of_zero_crossing_ori=[actual_number_of_zero_crossing_ori

length(actual_zero_crossing_ori)]; % Array for zero crossing length

 lnp_ori=length(actual_number_of_zero_crossing_ori); %

Number of zero crossing

 end

 end

 f_ori=f_ori+1;

 b_ori=b_ori+1;

end

Ocean_Wave_AccP.time = t(f_ori:end)-t(f_ori); % Cut the time of the truth based on the first

10 zero crossing length

Ocean_Wave_AccP.signals.values = y(f_ori:end); % Cut the excitation force of the truth

based on the first 10 zero crossing length

yN=length(yN_first); % Use five cycles or ten zero crossings to train

y_test = y(yN+1:end); % Data needs to be predicted

Data_for_iteration=length(y_test); % The length of the data to be predicted

YH_data=zeros(length(y_test),1); % Preallocating the size of predicted data

62

%% Prediction horizon length selection

T_step =ceil(4*yN/init_zeroc); % Prediction horizon limit

N =15; % filter order

var=55; % Cushion size based on our experiment best results

%% initialize necessary variable to implement the filter equation

f=0; % Variable for predicted data index in the prediction loop

g=0; % For i>j, g=0

p=0; % Variable for predicted data index for filter equation when

i<j

b=N; % Filter order

d=T_step; % Prediction horizon limit

aN=0; % Variable for training window shifting or next prediction

horizon starting

bN=aN; % Varibale used in filter equation when counter>2

%% Initialize necessary variable for while loop

total_data=0; % Variable for number of data predicted

counter=0; % Variable which count while loop iteration

%% Initialize necessary variable to find the zero crossing for each predicted window

twice=4; % Varible to identify 4,6,8,10.... even zero crossing

estimate_zero_crossing_odd=[]; % Array contains time when zero crossing occurs

in odd prediction.

estimate_number_of_zero_crossing_odd=[]; % Array contains number of zero crossing

in YH_data_odd

63

estimate_half_cycle_duration_odd=[]; % Array contains duration between two zero

crossings of odd prediction

estimate_zero_crossing_even=[]; % Array contains time when zero crossing occurs

in even prediction.

estimate_number_of_zero_crossing_even=[]; % Array contains number of zero crossing

in YH_data_even

T_s=[]; % Array contains duration between two zero crossings of

even prediction

YH_data_zero_odd=[]; % Array to store zero crossing index of odd

prediction

YH_data_zero_even=[]; % Array to store zero crossing index of even

prediction

Zero_crossing_array=[]; % Array to store final zero crossing

T1_s=[]; % Array to store final zero crossing time of even prediction

pn_flag_total=[]; % Determine positive or negetive zero crossing

pn_flag=[]; % Determine positive or negetive zero crossing for only

even prediction

num=1; % Variable for first zero crossing index for each horizon

started from 2nd counter

ep=0;

lnp_odd=0; % Variable for zero crossing number for odd prediction

lnp_even=0; % Variable for zero crossing number for even prediction

64

iteration_number=(Data_for_iteration); % Iteration go on in second while loop until

total_data cross this value

wq=4;

qw=4;

%% For y_test/ actual data, the number of zero crossing and their half cycle duration

determination

truth_zero_crossing=[]; % Array contains time when zero crossing occurs.

number_of_true_zero_crossing=[]; % total number of zero crossing in actual data

truth_data_zero=[]; % Array contains time when zero crossing occurs.

truth_half_cycle_duration=[]; % Array contains the duration between two zero

crossings.

tr_lnp=0; % Initialize number of zero crossing

tr_ep=0;

for truth_index=1:(length(y_test)-1)

 t_index=truth_index ; % Index number

 if (y_test(t_index)<0 && y_test(t_index+1)>0)|| (y_test(t_index)>0 && y_test(t_index+1)<0)

% Positive & Negetive zero crossing condition

 truth_data_zero=[truth_data_zero,t_index+1]; % Array contains

index when zero crossing occurs.

 truth_zero_crossing=[truth_zero_crossing,t(t_index+1)]; % Array

contains time when zero crossing occurs.

 number_of_true_zero_crossing=[number_of_true_zero_crossing length(

truth_zero_crossing)];

65

 tr_lnp=length(number_of_true_zero_crossing); % Number of

zero crossings

 end

 %% truth half cycle duration determine

 if tr_lnp >=2 && tr_lnp>tr_ep

 truth_half_cycle_duration=[truth_half_cycle_duration,(truth_zero_crossing(end)-

truth_zero_crossing(end-1))]; % Array contains the duration between two zero crossings.

 end

 tr_ep=tr_lnp;

end

%% Starting of while loop until at the end of prediction

while total_data<(iteration_number) % Loop will be continue until

total_data<Data_for_iteration

 counter=counter+1;

 switch counter

 case {1,2}

 if counter==1 % This if loop ultimately for storing the ar coeeficient

based on counter

 f=0; % Initialize the index of the predicted array, see 148 line

 y_train = y(1+(counter-1)*aN:yN+(counter-1)*aN); % Train data , for counter=1;

y_train=y(1:yn); five cycles to train

 model = ar(y_train, N); % ar filter model

 k=model.Structure.a.Value(1:end); % ar filter coefficient

66

 else

 %Prediction starts from the index point z.

 %Where, z= every first zero crossing of odd prediction cycle – a cushion length

 if bN<0 % if the first zero crossing occurs before the var value

 var=ceil(0.01*55);

 bN=YH_data_zero_odd(1)-var;

 aN=bN;

 end

 y_train = y(1+bN:yN+bN); % Training window shifting and starts from the

point where we start our predicttion.

 model = ar(y_train, N); % ar filter model

 k=model.Structure.a.Value(1:end); % ar filter coefficient

 f=YH_data_zero_odd(1)-var; % Prediction horizon starting point index

 end

 temp_b=b; % Actual predicted data + filter order

 %% implement filter equation

 if counter==1

 for j=1:d % Loop to cover each prediction horizon limit (Predifined 2

cycles) until two zero crossings

 sum=0;

 p=j-1; % Predicted data index when i<j

 for i=2:N+1 % loop to use the AR filter co-efficients

 if i>j % Condition to choose actual data in filter equation

67

 c=-((k(i)*y_train(end-(i-j-1))));% filter equation for MATLAB:a(1)*y(n) =

b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb) - a(2)*y(n-1) - ... - a(na+1)*y(n-na)

 g=0;

 else % Condition to choose predicted data in filter equation

 g=-(k(i)*YH_data(p)); % filter equation for MATLAB when i<j

 p=p-1;

 c=0;

 end

 sum=sum+c+g; % Sum all N data value for one predicted data, when

N=7 OR 10 OR 15

 YH_data(f+1)=sum; % predicted data array

 end

 %% start finding zero crossing after predicting every data for first prediction window

 if f>0

 e_index=f;

 if (YH_data(e_index)<0 && YH_data(e_index+1)>0)|| (YH_data(e_index)>0 &&

YH_data(e_index+1)<0) % Positive & Negetive zero crossing condition

 YH_data_zero_odd=[YH_data_zero_odd,(e_index+1)];

% Array to store zero crossing index of odd prediction

 estimate_zero_crossing_odd=[estimate_zero_crossing_odd,t(e_index+1)];

% Array to store zero crossing time of odd prediction

68

estimate_number_of_zero_crossing_odd=[estimate_number_of_zero_crossing_odd

length(estimate_zero_crossing_odd)];% Array for zero crossing length of odd prediction

 lnp_odd=length(estimate_number_of_zero_crossing_odd);

% Number of zero crossing in odd prediction

 end

 if lnp_odd>=2 && lnp_odd>ep % Condition when half cycle dration needs

to be calculated

estimate_half_cycle_duration_odd=[estimate_half_cycle_duration_odd,(estimate_zero_crossing

_odd(end)-estimate_zero_crossing_odd(end-1))]; % Half cycle duration of odd prediction

 end

 ep=lnp_odd;

 end

 b=temp_b+j;

 f=f+1; % Increment the index

 if lnp_odd==2 % Condition to stop the iteration for the ongoing

prediction horizon (two zero crossings)

 aN=YH_data_zero_odd(1)-var; % Calculating the index value to start to

predict the second zero crossing once again

 bN=aN;

 break % Stop iteration for current prediction horizon limit

which starts from 131 line (for j=1:d)

 end

69

 end

 else % Else condition for counter 2

 for j=1:d % Loop to cover each prediction horizon limit until two

zero crossings

 sum=0;

 p=aN+(j-1); % Predicted data index started from the second

horizon starting point and used where i<j

 for i=2:N+1 % loop to use the AR filter co-efficients

 if i>j % Condition to choose actual data in filter equation

 c=-((k(i)*y_train(end-(i-j-1)))); % filter equation for MATLAB

 g=0;

 else % Condition to choose predicted data in filter equation

 g=-(k(i)*YH_data(p)); % filter equation for MATLAB

 p=p-1;

 c=0;

 end

 sum=sum+c+g; % Sum all N data value for one predicted data,

when N=7,10,15

 YH_data(f+1)=sum; % predicted data array for even prediction

 end

 %% start finding zero crossing after predicting every data for first prediction window

 if f>0

 e_index=f;

70

 if (YH_data(e_index)<0 && YH_data(e_index+1)>0)|| (YH_data(e_index)>0 &&

YH_data(e_index+1)<0) % Positive & Negetive zero crossing condition

 if YH_data(e_index)<0 && YH_data(e_index+1)>0

 flag=1; % Positive zero crossing

 pn_flag_total=[pn_flag_total, flag]; % Total Flag array

 else

 flag=0; % Negetive zero crossing

 pn_flag_total=[pn_flag_total, flag]; % Total Flag array

 end

 YH_data_zero_even=[YH_data_zero_even,(e_index+1)];

% Array to store zero crossing index of even prediction

 estimate_zero_crossing_even=[estimate_zero_crossing_even,t(e_index+1)];

% Array to store zero crossing time of even prediction

estimate_number_of_zero_crossing_even=[estimate_number_of_zero_crossing_even

length(estimate_zero_crossing_even)];% Array for zero crossing length of even prediction

 lnp_even=length(estimate_number_of_zero_crossing_even);

% Number of zero crossing in even prediction

 end

 if lnp_even>=2 && lnp_even>ep %

Condition when half cycle dration needs to be calculated

 Zero_crossing_array=[Zero_crossing_array, YH_data_zero_even(num)];

% Array to store zero crossing index of even prediction

71

 T1_s=[T1_s, estimate_zero_crossing_even(num)]; %

Array to store final zero crossing time of even prediction

% T_s=[T_s,(estimate_zero_crossing_even(end)-

estimate_zero_crossing_even(end-1))]; % Half cycle duration of even prediction

 pn_flag=[pn_flag,pn_flag_total(num)]; %

Ultimate positive or negetive zero crossing for only even prediction

 num=num+2;

 end

 ep=lnp_even;

 end

 b=temp_b+j; % Actual predicted data + filter order

 f=f+1; % Increment the index

 if lnp_even==2 % Condition to stop the iteration for the ongoing prediction

horizon (two zero crossings)

 bN=YH_data_zero_even(end)-var; %

Calculating the index value to start to predict the second zero crossing once again

 break % Stop iteration for

current prediction horizon limit which starts from 174 line counter 2 case (for j=1:d)

 end

 end

 end % End of filter

equation prediction and zero crossing detection section if-else condition of counter=1 or 2, starts

from if counter==1 (134 line)

72

 total_data=bN; % Total data already predicted with the var

 otherwise % Condition when the counter starts from 3

 y_train = y(1+bN:yN+bN); % Training

window shifting and starts from the point where we start our predicttion from counter 3.

 f=bN; % Starting index value for the prediction horizon

 model = ar(y_train, N); % ar filter model

 k=model.Structure.a.Value(1:end); % ar filter coefficient

 temp_b=b;

 %% implement filter equation

 for j=1:d % Loop to cover each prediction horizon size until two zero crossings

 sum=0;

 p=bN+(j-1); % Predicted data index

 for i=2:N+1 % loop to use the AR filter co-efficients

 if i>j % Condition to choose actual data in filter equation

 c=-((k(i)*y_train(end-(i-j-1)))); % filter equation for MATLAB

 g=0;

 else % Condition to choose predicted data in filter equation

 g=-(k(i)*YH_data(p)); % filter equation for MATLAB

 p=p-1;

 c=0;

 end

 sum=sum+c+g; % Sum all N data value for one predicted data, when N=7,10,15

 YH_data(f+1)=sum; % predicted data array

73

 end

 %% start finding zero crossing after predicting every data for first prediction window

 if f>0

 e_index=f;

 if (YH_data(e_index)<0 && YH_data(e_index+1)>0)|| (YH_data(e_index)>0 &&

YH_data(e_index+1)<0) % Positive & Negetive zero crossing condition

 if YH_data(e_index)<0 && YH_data(e_index+1)>0

 flag=1;

 pn_flag_total=[pn_flag_total, flag];

 else

 flag=0;

 pn_flag_total=[pn_flag_total, flag];

 end

 YH_data_zero_even=[YH_data_zero_even,(e_index+1)];

% Array to store zero crossing index of odd prediction

 estimate_zero_crossing_even=[estimate_zero_crossing_even,t(e_index+1)];

% Array to store zero crossing time of odd prediction

estimate_number_of_zero_crossing_even=[estimate_number_of_zero_crossing_even

length(estimate_zero_crossing_even)];% Array for zero crossing length of odd prediction

 lnp_even=length(estimate_number_of_zero_crossing_even);

% Number of zero crossing in odd prediction

 end

 % estimate half cycle duration determine

74

 % 1st positive zero crossing occurs

 if lnp_even==qw % Condition

when half cycle dration needs to be calculated

 Zero_crossing_array=[Zero_crossing_array, YH_data_zero_even(num)];

 T1_s=[T1_s, estimate_zero_crossing_even(num)];

 T_s=[T_s,(estimate_zero_crossing_even(end-1)-estimate_zero_crossing_even(end-

3))]; % Half cycle duration of odd prediction

 pn_flag=[pn_flag,pn_flag_total(num)];

 num=num+2;

 end

% ep=lnp_even;

 end

 b=temp_b+j;

 f=f+1;

 if lnp_even==qw % Condition to

stop the iteration for the ongoing prediction horizon (two zero crossings)

 zi1=estimate_zero_crossing_even(end)-estimate_zero_crossing_even(end-1);

 if zi1<=0.55

 bbN=ceil(0.1*55);

 bN=YH_data_zero_even(end)-bbN;

 qw=qw+2;

 break % Stop iteration

 else

75

 bN=YH_data_zero_even(end)-var;

 qw=qw+2;

 break

 end

 end

 end

 total_data=bN; % Total data

already predicted with var

 end % End of switch

statement

end

%% Error: difference between actual and predicted half cycle duration

% min_length_error=min([length(truth_half_cycle_duration) length(T_s)]);

% half_period_prediction_even_error=(truth_half_cycle_duration(1:min_length_error)-

T_s(1:min_length_error));

% mean_error=mean(half_period_prediction_even_error)

% max_error=max(abs(half_period_prediction_even_error))

% st_deviation_error=std(half_period_prediction_even_error)

% histogram(truth_half_cycle_duration(1:min_length_error)-T_s(1:min_length_error),

min_length_error)

sq1=1;

sse=0;

min_length_error=min([length(truth_half_cycle_duration) length(T_s)]);

76

while sq1<=min_length_error

 half_period_prediction_even_error=(truth_half_cycle_duration(sq1)-T_s(sq1));

 sse=sse+(half_period_prediction_even_error)^2;

 sq1=sq1+1;

end

sum_sq_error=sse; % Sum

square error

norm_sum_sq_error=sse/min_length_error %

Normalizing the error to produce apples to apples comparison

length(truth_zero_crossing)

length(Zero_crossing_array)

77

%% Simulation code for truth “half_period_calc_for_truth.m”

clear all;

close all;

clc;

load Ocean_Wave_AccP_10_3

%% 10 ms sampling

t = Ocean_Wave_AccP.time;

% x = Ocean_Wave_AccP.signals.waves; % wave elevation

y = Ocean_Wave_AccP.signals.values; % excitation force

%% Collecting data until ten zero crossing to train

f_ori=0; % Variable initialize to store the original value

lnp_ori=0; % Variable for zero crossing number

b_ori=1; % Variable to loop the actual value index

Y_data_zero=[]; % Array for zero crossing index of actual data

actual_zero_crossing_ori=[]; % Array for zero crossing time of actual data

actual_number_of_zero_crossing_ori=[]; % Array contains number of zero crossing in

actual data

init_zeroc = 10; % Initial number of zero crossings to be detected

while lnp_ori<init_zeroc % Condition to run the loop until four zero crossing

 yN_first(f_ori+1)=y(b_ori); % Store the original value to yN_first

 if f_ori>0 % Condition to check the zero crossing of actual data

 e_index_ori=f_ori;

78

 if (y(e_index_ori)<0 && y(e_index_ori+1)>0)|| (y(e_index_ori)>0 &&

y(e_index_ori+1)<0) % Positive & Negetive zero crossing condition

 Y_data_zero=[Y_data_zero,(e_index_ori+1)]; % Array

to store zero crossing index

 actual_zero_crossing_ori=[actual_zero_crossing_ori,t(e_index_ori+1)]; %

Array to store zero crossing time

 actual_number_of_zero_crossing_ori=[actual_number_of_zero_crossing_ori

length(actual_zero_crossing_ori)]; % Array for zero crossing length

 lnp_ori=length(actual_number_of_zero_crossing_ori); %

Number of zero crossing

 end

 end

 f_ori=f_ori+1;

 b_ori=b_ori+1;

end

Ocean_Wave_AccP.time = t(f_ori:end)-t(f_ori);

Ocean_Wave_AccP.signals.values = y(f_ori:end);

Irregular_Wave_Force_Prediction

%% Irregular_Wave_Force_Prediction.m

%==%

%Callback for the simulink model

Ts=20e-6; % Sampling time

T_d=1e-3; % Discrete Sampling time

79

Wm_s=5e-4;

%%% setting 1 %%%

gr=110; % Gear ratio

%======================

aa=20e-6/(.5+20e-6);

%==%

%Slider-Crank initialization

global r % Radius of crank. used again in the rk4sys_step function and slider crank

function.

global l % Length of rod, used again in the slider crank function.

global dr_dsb % (Used to be r+A) Distance between the lowest edge of the crank and

the reference water surface

r=.5; % Radius of crank. used again in the rk4sys_step function and slider crank

function.

l=1; % Length of rod, used again in the slider crank function.

lambda=r/l; % used again in the slider crank function.

dr_dsb=l; % (Used to be r+A) Distance between the lowest edge of the crank and the

reference water surface

mcrp=10; % Total of mass of piston (or slider) and connecting rod respectively.

a=5; % buoy radius

80

g=9.81; % gravity acceleration

rho=1020;% water density

mm=rho*(2*pi/3)*a^3;

Sb=rho*g*pi*a^2;

%======================

% save ExFcC1 Ocean_Wave_AccP

Theta_Initial=Initial_Angle_Solver();

[bs,as]=RadiationKomega(a,T_d);

%load as

%load bs

Wave_Analysis_Prediction; %Replace this with Rakib's prediction algorithm

%Calculate initial position in case of complex conjugate control

%init_z=-max((Fe(t)/(4*R*pi*f)))

81

%% Simulation code for prediction “half_period_calc_for_prediction.m”

%modify for different prediction parameters

half_period_even_updated_statss

%%after running half_period_even_updated_stats

T_s_pred=T_s;

T1_s_pred=T1_s;

pn_flag_pred=pn_flag;

Irregular_Wave_Force_Prediction

%%after running Irregular_Wave_Force_Prediction

T_s=[0 T_s_pred(1:end-1)];

T1_s=T1_s_pred;

pn_flag=pn_flag_pred;

%Then run simulation

%zb1.Data(end)/500/1000

