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ABSTRACT

SUBSTITUENT EFFECTS ON THE LUMINESCENT PROPERTIES OF EUROPIUM β-

DIKETONATE COMPLEXES WITH DIPYRIDOPHENAZINE LIGANDS: A DENSITY

FUNCTIONAL THEORY STUDY

Christian Jensen

Western Carolina University (April 2017)

Advisor: Dr. Channa De Silva

A great deal of attention is devoted to creating and characterizing new and novel luminescent

lanthanide complexes due to their impressive luminescent characteristics. Unique properties

include line like emission bands, long luminescent life times, and large Stokes shifts, making

lanthanides ideal for applications such as organic light emitting diodes, sensor technology,

biomedical assays, biomedical imaging, and LASER technology. Lanthanides by themselves,

though, suffer from low molar absorptivities as a result of quantum mechanically forbidden

electric dipole transitions. To overcome these limitations, ‘antenna’ ligands are coordinated

to the Ln(III) ion in order to sensitize lanthanide absorption by a series of energy transfer

processes. Factors essential in controlling the efficiency of ligand sensitization are the lig-

and based singlet S1 and triplet T1 state energies. By controlling the substituents of the

neutral donor ligand, we can effectively tune these energy levels. This study uses density

functional theory (DFT) and time-dependent density functional theory (TD-DFT) to inves-

tigate the electronic properties of a series of Eu(TTA)DPPZ-R (R = H, NH2, Br, CO2H,

CO2CH2CH3, CO2CH3, OCH3, CH3, and NO2) complexes where TTA = thenoyltrifluo-

roacetone, DPPZ = dipryrido[3,2-a:2′,3′-c] phenazine. DFT-optimized molecular structures

agree within the experimental values. The results of the computational study reveal that
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the electron withdrawing substituent groups decrease the intersystem crossing ∆EISC and

energy transfer ∆EET energy gap with respect to unsubstituted DPPZ. Electron donating

substituent groups will increase the ∆EISC and ∆EET energy gaps. Absorption spectra cal-

culations show good agreement with available experimental absorption data. Luminescent

quantum yield measurements of the complexes decreases with decreasing ∆EISC and ∆EET .
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CHAPTER 1: INTRODUCTION

The properties of the lanthanides impart unique spectroscopic properties that can be ex-

ploited for use in a multitude of technologies. In the review article by Bünzli and Piguet5 the

authors layout a comprehensive accounting of the uses in which luminescent lanthanide com-

plexes have been utilized. Examples of which are many different types of sensors6, organic

light emitting diodes7, bioassays8,9, solar cells10, and imaging technology11. A combined ap-

proach of experiment and theory to aid in understanding the underlying electronic properties

of these types of systems helps to facilitate continued improvement in current technologies

and development of novel complexes with improved optical properties.

Luminescent europium complexes generally have octa-cordination geometry, and the type

of ligands that surround the europium ion can affect the luminescent properties of the com-

plex. One of the most widely studied systems is Eu(III) with ternary β-diketonate (β-DK)

ligands and a conjugated heterocyclic chromophore coordinated around the europium ion.

The β-DK ligands deprotonate an alpha hydrogen and act as Lewis bases while the chro-

mophore ligand forms a dative bond between the metal center and two lone pairs of electrons

of a nitrogen atom such as in phenanthroline derivatives. The ligands chosen for this project

are the β-DK thenoyltrifluoroacetone (TTA) and the phenanthroline derivative dipryrido[3,2-

a:2′,3′-c] phenazine (DPPZ).

(a) Molecular structure of TTA

(b) Molecular structure of DPPZ

Figure 1: Structure of thenoyltrifluoroacetone and dipryrido[3,2-a:2′,3′-c] phenazine.
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The use of β-DK ligands has received a good deal of attention because they posses

desirable luminescent properties especially in the use of optoelectronic devices, but also

because of their ability to transfer energy to other ligands particularly the neutral donor

ligand. In the study by Freund et al.12 the authors modified the β-diketone TTA by making

substitutions to the thiophene part of the molecule. The substituent groups used to modify

TTA were bromine (Br-TTA), 1-bromo octyl (BrC8-TTA), and methyl thiophene (MeT-

TTA). The authors also made the modification of replacing the trifluoro methyl group with

a second thiophene group (DTDK). These series of modified TTA ligands were coordinated

to europium with phenanthroline as the neutral donor ligand with reported thin films and

solution phase photoluminescence quantum yields.

Table 1: Reported photoluminescent quantum yields reported in Freund.

Complex Thin Film Solution

Eu(TTA)3Phen 0.72 0.48
Eu(TTA)3Phen 0.34 0.37
Eu(TTA)2(Br-TTA)Phen 0.41 0.43
Eu(BrC8-TTA)3Phen 0.41 043
Eu(MeT-TTA)3Phen > 0.01 > 0.01
Eu(DTDK)3Phen > 0.01 > 0.01

The results reported by Freund show that the unmodified TTA ligand gives the highest

phtoluminescent quantum yields.

The choice of the neutral donor ligand such as phenanthroline derivatives is equally

important to the function and luminescent properties of these complexes. Not only does

the chromophore ligand need to have resonant energy levels that are able to accept charge

transfer from the β-DK ligands but the accepting state (typically a triplet state) must have

good resonance with europium’s excited states. In addition to good resonant energy levels, an

ideal neutral donor ligand would also minimize the amount of energy that is lost through non-

radiative processes such as molecular vibrations. Furthermore, certain applications demand

4



the use of these conjugated phenanthroline derivatives. For example, Dasari and Patra13

found that terbium and europium complexes of DPPZ, upon partial intercalation into DNA,

both increased emission intensity and formed reactive oxygen species. These reactive oxygen

species are known to actively damage DNA so that these complexes could potentially be

used in therapeutic cancer treatments.

Europium β-diketonate phenanthroline complexes have experimentally demonstrated fa-

vorable light conversion capabilities. Regardless, experimental design can be costly in both

specialized equipment and time often yeilding minimal results. The use of computational

methods to determine ground and excited state properties can help guide project direction.

The use of computational methods has been successfully utilized in determining the ground

state properties of luminescent lanthanide complexes including vibrational frequencies, ra-

man spectra, and absorption predictions.

In Greco et.al.14 density functional techniques were used to investigate a series of eu-

ropium thiophene based β-DK complexes (TTA, DTDK, Br-TTA, and MeT-TTA) phenan-

throline complexes. Their study revolved around how specific dependence of the β-DK

ligands affects these complexes structural and electronic properties. Their study used hy-

brid PBE1PBE and CAM-B3LYP exchange-correlation functionals and the 6-31G* basis

set. The europium ion used the Stuttgart-Dresden15 large-core quasi-relativistic effective

core potential (ECP) with the related [5s4p3d]-GTO valence basis set. Excitation energies

were found by the ∆SCF method. The authors found that of the four thiophene based β-DK

ligands and spectroscopic properties of TTA, DTDK, and Br-TTA are well reproduced when

comparing their results with experimentally available crystal structures and absorption data.

The authors faced difficulty in their comparison with MeT-TTA stemming from experimen-

tal inconsistencies. Greco et al. concluded that their computational methods reproduced

well the triplet state energy levels these complexes.

In Li et al.16 DFT techniques were used to investigate the effect that variation on lig-
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and size of substituted phenanthroline complexes has on the luminescent properties of the

corresponding Eu(III) complexes. Calculations were performed using the B3LYP exchange-

correlation functional with the 6-31G basis set for C and H and the 6-31G* basis set for N, O,

S, and F. Europium is modeled using the Stuttgart-Dresden large-core ECPs with an opti-

mized [7s6p5d][5s4p3d]-GTO valence basis set. Li found that the highest occupied molecular

orbital (HOMO) energy, and the lowest unoccupied molecular orbital (LUMO) energy would

increases as a result of increasing the number of methyl groups. Li also found in that same

study that a significant decrease in the LUMO energy occurs with increased conjugation.

The increase conjugation had negligible effect on the HOMO energy. The authors also found

that the larger neutral donor ligands DPPZ, 11-methylpyrazino[3,2a:2′3′c]phenazine, 11,12-

dimethylpyrazino[3,2a:2′3′c]phenazine, and benzo [i]dipyrido[3,2-a:2′3′-c]phenazine lead to

incomplete energy transfer from the ligand based triplet state to the 5D0 level of Eu(III).

In Nolasco et al.10 density functional methods were used to model a series of Eu(III)

complexes by varying the substitutions on the phenanthroline ligand. The authors use

the B3LYP exchange-correlation functional and the 6-31G and 6-31G*basis sets. For the

Eu(III) ion the Stuttgart-Dresden large-core ECPs were employed. Time-dependent DFT

calculations were performed on the optimized geometries. All calculations were done in the

gas phase. The authors found that absorption band position and transition characteristics

is affected by different ligand substituents. The authors also reported that the substituents

influence through the conjugation of the phenanthroline ligand effectively tune the triplet

state.

In the project presented in this thesis, a systematic computational study is conducted

on Eu(TTA)3DPPZ-R (R = Br-, CH3-, CH3O-, CH3CH2COOC-, CH3COOC-, NH2-, NO2-)

complexes to see how the addition of substituent groups with varying electron donating and

electron withdrawing capabilities modify the molecular orbital, excited state structure, and

luminescent properties of the overall complexes. Ground state geometries are determined
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and compared with crystal structure geometries where available. Ground state geometries

are used in excited state calculations to determine lowest singlet and triplet energies of the

complexes to compare with experimental absorption data where available. A final comparison

of calculated data and quantum yield data will help give insight on how the substituents

affect the luminescent properties of these complexes.
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CHAPTER 2: BACKGROUND

2.1 Lanthanide Luminescence

The goal of this project is to help guide experimental design of europium based luminescent

complexes using theoretical and computational techniques. Knowledge of the lanthanides,

and their luminescent properties have been known of for a long time. Also known for some

time is their unique spectroscopic properties such as narrow emission band widths, large

Stokes shifts, and long luminescent lifetimes. These properties make them ideal for a plethora

of applications especially in the fields of engineering and biology.

The electronic ground state of the lanthanides have the form [Xe]4fn6s2, where n =

0−14, except for lanthanum, cerium, gadolinium, and lutetium which have a [Xe]4fn−15d16s2

electronic configuration. The most common oxidation state for the lanthanides is Ln(III)

with ground state electronic configuration of [Xe]4fn−1. For Eu(III) the electronic ground

state [Xe]4f 6 giving Eu(III) a less than half filled 4f shell. As a result of the poor shielding

of the core electrons the 4f orbitals, which are the valence orbitals, have a radial distribution

which is less than the filled 5s and 5p orbitals. It is this particular feature of the lanthanides

which impart such unique luminescent and spectroscopic properties.

Moving from the overall electronic structure of the lanthanides, a discussion of the finer

internal structure of the electrons or the microstates is necessary. A microstate is the par-

ticular arrangements of the electrons within any valence orbital. Mathematically it can be

thought of as a permutation but with the caveat that certain states are allowed and certain

states are not. Considering the Eu(III) ion with it’s six valence electrons, the number of

states attainable according to the combinatorial formula where m is the number of spin
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orbitals and n is the number of electrons is

m!

n!(m− n)!
=

14!

6!(14− 6)!
= 3003 (1)

microstates. The work of Friedrich Hund developed a series of rules for finding the ground

state term of a multi electron system. These rules are17,

1. The ground state term has the largest spin multiplicity

2. The ground state term has the largest orbital multiplicity

3. If n < (2l + 1), then J = Jmin; else if n > (2l + 1), then J = Jmax

Certain approximations for the coupling of orbital and spin angular momentum make it

possible to identify the ground state electronic structure of Eu(III) ions.

The are several schemes in which the spin and orbital angular momenta couple which

include LS coupling, jj coupling, or coupling schemes utilizing group theory of symmetric

molecules17. In LS or Russell-Saunders coupling the total angular momentum J is formed

from the sum of the total spin angular momentum S and the total orbital angular momentum

L

J = L + S (2)

where S is the sum of individual spin angular momenta

S =
∑
i

si. (3)

and L is the sum of individual orbital angular momenta

L =
∑
i

li. (4)
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This coupling scheme is useful for lighter elements where individual couplings to do not have

as great of an effect due to the size and charge on the nucleus.

For heavier elements the jj coupling scheme is utilized. In the jj coupling scheme there is

more emphasis on how the individual spin and orbital angular momentum couple. The total

angular momentum J is formed from the individual total angular momenta

J =
∑
i

ji (5)

where each individual total angular momentum is formed from individual combinations of

spin and orbital angular momenta

ji =
∑
i

(li + si). (6)

For the Eu(III) ion, the ground state term symbol is formed as follows. For the 4f orbitals

the principle quantum number n = 4 means that the orbital angular momentum can take

the values l = 0, 1, 2, 3. Since the 4f orbitals are shielded from the outside by the inner

5s and 5p orbitals crystal field splitting of the 4f orbitals is minimized to virtually nothing

which implies that the ion is in a high spin state with six unpaired electrons giving a total

spin angular momentum of S = 3. The degeneracy of the 4f orbitals is lifted by Coulombic

effects, the crystal field to a lesser extent, and spin-orbit coupling to the greatest extent. A

spectroscopic term describing a atomic state takes the form

2S+1LJ

where 2S+1 is the spin multiplicity, L is the total orbital angular momentum in spectroscopic

notation, and J is values for the total angular momentum. Given these details and the fact

that J = 0, 1, 2, 3, 4, 5, 6 the atomic ground state for Eu(III) is split into the following terms
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in Figure 2.

7F0,
7 F1,

7 F2,
7 F3,

7 F4,
7 F5,

7 F6

Figure 2: Term symbols for Eu(III)’s ground state, who’s degeneracy is broken by spin-orbit
interacttions.

All of these terms are able to be observed experimentally.

The excitation of the lanthanides in the gas phase are primarily the result of j-j induced

dipole transitions. Note that the topology of the 4f orbitals has spherical symmetry which

means that under inversion parity does not change. The electric dipole tensor operator,

however, transforms with odd parity therefore these particular excitations are forbidden

under the Laporte selection rule. This rule asserts that within a molecule or atom whose

orbitals have an inversion center (spherical symmetry has an inversion center) electronic

excitation must conserve parity. In terms of a group theoretic argument where g is even

parity and u is odd parity, under excitation a g → g and u → u transitions are forbidden

and g → u and u→ g transitions are allowed.

In the table below are transitions from the 5D0 excited state to the various levels of

europium’s ground state together with the transition type of electric dipole (ED) or magnetic

dipole (MD) and the energy range of those transitions. As can be seen from Table 2 the

predominant type of transition is an electric dipole transition which must conserve parity.

Table 2: Excited state transitions of Eu(III) ion, the transition character, and the energy
range to the transition1.

Transition Transition Character Energy Range (nm)

5D0 →7 F0 ED 570 - 585
5D0 →7 F1 MD 585 - 600
5D0 →7 F2 ED 600 - 630
5D0 →7 F3 ED 640 - 660
5D0 →7 F4 ED 680 - 710
5D0 →7 F5 ED 740 - 770
5D0 →7 F6 ED 810 - 840
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The strong electric dipole 5D0 →7 F2 transition for the Eu(III) ion is what is known as

a hypersensitive transition. The intensity of this band is dependent upon the site symmetry

and induced by the lack of inversion symmetry at the Eu(III) site18. Figure 3 shows the

5D0 →7 FJ=0,1,2,3 transitions.

Figure 3: Luminescence of Eu(TTA)3DPPZ displaying the 5D0 →7 FJ=0,1,2,3 transitions.
The 5D0 →7 FJ=5,6 transitions are usually not observed primarily due to detection limits.

Lanthanide ions by themselves have particularly low molar absorptivities owing to the

above discussion on the nature of the 4f orbitals, and its interaction with an applied elec-

tric field. Relaxing of the selection rules can be accomplished by changing the coordination

environment to one that is not spherically symmetric so that mixing of the total angular

momentum occurs via crystal field interactions19,20. By controlling the the coordination envi-

ronment the efficiency with which light may be absorbed and re-emitted can be manipulated.
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Quantifying that process, which is the topic of the next section, involves an understanding

of the pathways in which energy may be transferred.

2.2 Luminescent Quantum Yields

Lanthanide metals have unique spectroscopic properties due to their shielding of the 4f or-

bitals as was explained in the previous section. Ligand resonance with europium’s excited

states help to populate europium’s 5D1 and 5D0 excited states. As a means to quantify the

efficiency of energy conversion, quantum yield experiments are performed. The quantum

yield of a luminescent metal or complex is defined as the ratio of the amount of light emitted

to the amount of light absorbed. The efficiency with which this process occurs is a bal-

ance between radiative and non-radiative pathways and the mechanisms that dictate these

processes. For a generalized europium complex the process is illustrated in the following

figure.

Ligand based S0 Ligand based S0

R

NR

Ligand based S1

∆EISC

R

NR

Ligand based T1

∆EET

Eu(III)’s 7FJ=0,1,2,3,4,5,6

5D1

5D0 Eu(III) excited state

Figure 4: Energy pathway of ligand excitation showing possible routs of radiative (R) and
non-radiative (NR) de-excitation and energy back transfer.

13



For ligand sensitized europium complexes, there are two main processes that contribute

to the degree to which lanthanide emission will occur. The first process to be discussed is

what is refered to as ligand sensitization ηsens.

This process is initiated by initial absorption of ultraviolet light into a ligand based singlet

state. The ligand based singlet state may then transfer energy in several different pathways.

The singlet state may undergo emission of photon in a fluorescence event. In general any

kind of emission event is referred to as radiative deactivation. The ligand may also deactivate

the excited state by bond vibrations as well as molecular collisions. These types of processes

are referred to as non-radiative processes in order to contrast it with the aforementioned

process. The last pathway for deactivation comes in the form an intersystem crossing where

charge is transferred from a ligand based singlet state to a ligand based triplet state due to

resonance between the two states. These two states can show greater or lesser coupling with

careful choice of coordinated ligands.

Intersystem crossing places energy into the ligand based triplet state. Because the charge

is still primarily centered on the ligands similar radiative and non-radiative deactivation

processes may still occur. There is now one very distinct difference between this state and

the singlet state. This difference arises from two new pathways in the form of charge back

transfer to the previously occupied singlet state or charge transfer into europium’s 5D0 or

5D1 excited states, commonly referred to as a ligand to metal charge transfer (LMCT).

Charge transfer into europium’s 5D0 or 5D1 excited states can be deactivated in one of

two ways. There is the probability of energy back-transfer into the ligand based triplet state

if europium’s excited states and the ligand based triplet state are closely matched in energy.

The second deactivation pathway is by the characteristic europium emission at 614 nm due to

the 5D0 →7 F2 transition. This transition is associated with an electric dipole transition and

is the most dominant in europium’s emission spectrum. There are other weaker contributions

to europium’s emission spectrum from weak magnetic dipole transitions, but the primary
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contribution to the luminescence of these complexes comes from the 5D0 →7 F2 transition.

The overall process of ligand sensitization promoting europium luminescence is commonly

referred to as the ‘antenna’ effect. The antenna effect is a the phenomenon of increased

photoluminescence as a result of the resonance between ligand electronic states and europium

excited states. This with the intrinsic europium emission constitutes the overall quantum

yield for the complex

Φtotal = ηsensΦLn (7)

The overall quantum yield, Φtotal due to ligand sensitization is the probability of emission

given a photon was absorbed. This problem is described mathematically as the product

of emission from ligand absorption, ηsens and the intrinsic quantum yield of the trivalent

europium ion, ΦLn.

There are two methods in which to determine the quantum yield of an emitting com-

pound. Absolute quantum yields are a direct measure of quantum efficiency using an inte-

grating sphere. This setup can be costly since integrating spheres are generally not standard

laboratory equipment. Quantum yield measurements by reference, on the other hand, needs

only a UV-Vis and fluorescence spectrometer. These measurements compare the absorption

and fluorescence emission of a sample and reference fluorophore by equation 8

Φ = Φref
ArefIsη

2
s

AsIrefη2ref
(8)

where Φref is the quantum yield of the known standard, Aref and As are the absorption

measurements of the reference and sample respectively, Iref and Is is the integrated emission

area of the reference and sample respectively, and ηref and ηs is the refractive index of the

reference and sample solvent respectively.
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2.3 Density Functional Theory

The beginning of the twentieth century bore witness to the quantum revolution in physics.

The secrets of the atom were being unraveled and new ideas in physics were necessary.

The result was the inception of the wave function of Erwin Schrödinger and the eigenvalue

equation that bears his name. In the most general exposition of his formulation time is

considered and is usually represented as:

− ~
i

∂

∂t
Ψ(x, t) = HΨ(x, t) (9)

where Ψ(x, t) is the wave function, a function of spatial and time variables, ~ is Dirac’s

constant, and H is Hamiltonian. Understanding of what the wave function is was not so

intuitive as the wave function has no physical meaning, has no physical observable. And so

working independently Llewellyn Thomas21 and Enrico Fermi22 developed a theory using the

concept of the charge density, ρ(r) = Q
V

(the amount of charge per unit volume). The charge

density was intuitive and had physical meaning. Furthermore, since charge is quantized, an

integration over all space of electron density will yield the total number of electrons

∫
ρ(r)dr = N. (10)

The Born-Oppenheimer23 approximation calculates the energy of a system with fixed nuclear

coordinates. Looking at the energy of the system as a function of nuclear positions (the

potential energy surface) the nuclei would correspond to local maxima. The implication of

which is that analysis of the potential energy surface of the electron density can be used to

form the Hamiltonian, which can be used to solve the Schrödinger equation to determine the

wave functions and the energy eigenvalues.

Their method relied upon separating the kinetic and potential energies. The simplest
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approximation of which comes from classical mechanics where the potential energies are

relatively straightforward in determining using Coulomb’s law. The potential energy due to

interactions between the nuclei and the electron density is attractive and is represented by:

Vne[ρ(r)] =
N∑
k

∫
Zk

|r− rk|
ρ(r)dr (11)

where Zk is the charge on the nucleus, rk is the nuclear spatial coordinates, integration is

performed over all space and the sum runs from the kth nucleus over all electrons N . The

potential energy from self-repulsion of a classical charge distribution is represented as:

Vee[ρ(r)] =
1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2. (12)

The above term is indicative of the repulsion potential experienced by two particles of the

same charge. Having addressed the two typed of potential energy associated with this

formulation only the kinetic energy term is left to be determined. What is left is to determine

the kinetic energy term of a continuous charge distribution. The model assumes a uniformly

distributed positive charge in an infinite volume of space occupied by an infinite number of

electrons and has a constant non-zero electron density. This assumption is what is known

as the uniform electron gas (UEG). Then, following from fermion statistical mechanics, the

kinetic energy term for a UEG is:

TUEG[ρ(r)] =
3

10
(3π2)2/3

∫
ρ5/3(r)dr (13)

The total energy equation can now be written as:

E[ρ(r)] = Vne[ρ(r)] + Vee[ρ(r)] + TUEG[ρ(r)] (14)

17



and, along with an assumed variational principle, represents a first attempt at formulating a

quantum theory using the density as the basic variable or rather a density functional theory

(DFT).

It would be nice if the theory was complete as it is but there are some major flaws

associated with some of the assumptions that were used. The electron-electron repulsion

potential is only an approximation as a result of the omission of exchange and correlation

terms. The correlation energy arises from treating each electron in an average field of all other

electrons, and the exchange energy arises from the antisymmetric properties of fermionic

particles such as electrons. Introducing a ‘hole’ function, h(r1; r2) is one way of accounting

for errors associated with exchange and correlation written:

〈
Ψ
∣∣∣ N∑
i<j

1

rij

∣∣∣Ψ〉 =
1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 +

1

2

∫ ∫
ρ(r1)h(r1; r2)

|r1 − r2|
dr1dr2 (15)

where the left hand side is the exact quantum mechanical inter electronic repulsion and the

second term on the right hand side is a correction for the errors associated with classical

treatment of electron repulsion. J.C. Slater later determined that the exchange energy is

orders of magnitude greater than the correlation energy. Slater started with the assumption

that the exchange hole around any position could be approximated by a sphere of constant

potential whos radius is the magnitude of the density at that point24. Prior to that and

working within the regime of a uniform electron gas, Bloch25 and Dirac26 were able to

formulate an approximation to the exchange energy as well

Ex[ρ(r)] = −9α

8

(
3

π

)1/3 ∫
ρ4/3(r)dr. (16)

Both derivations of the exchange energy were essentially identical except that in Slater’s case

α = 1 and in Block/Dirac’s case α = 2
3
, and incorporation of this term into the Thomas-Fermi
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equations is referred to as Thomas-Fermi-Dirac theory.

Even with Thomas-Fermi-Dirac theory, results were still too inaccurate and still lacked an

adequate way of accounting for molecular bonding. Nevertheless, the simplicity of Thomas-

Fermi-Dirac theory over wave function based methods made it entirely too enticing to com-

pletely abandon despite lacking any formal mathematical foundation especially the estab-

lishment of a variational principle (as opposed to an assumed one). It would be several

decades later when the next major advance but in 1964 Hohenberg and Kohn27 published

their famous paper in which they proved two theorems solidifying density functional theory

as a legitimate (semi-classical) quantum theory with firm mathematical footing.

Thomas-Fermi-Dirac theory established that electrons interact with some external po-

tential, which for a uniform electron gas is some uniformly distributed positive potential and

for a molecule is the attraction to the positively charged nuclei. Hohenberg and Kohn’s first

theorem states:

Theorem 1. For any system of interacting particles in an external potential Vext(r), the

potential Vext(r) is determined uniquely, except for a constant, by the ground state particle

density ρ0(r).

In order to establish the dependance of the energy on the density it is necessary to con-

sider the ground state electron density. The proof of theorem (1) proceeds via reductio ad

absurdum. Assume that the non degenerate ground state density, ρ0, is determined by two

different external potentials, va and vb. The two Hamiltonians in which va and vb appear are

denoted by Ha and Hb respectively and are associated with a ground-state wave function,

Ψ0 and it’s associated eigenvalue, E0. Referring back to the variational principle, the ex-

pectation value of Hamiltonian a over the wave function b must be greater than the ground

state energy of a.

E0,a < 〈Ψ0,b|Ha|Ψ0,b〉 (17)
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Noting that −Hb +Hb = 0 we may rewrite the previous expression as

E0,a < 〈Ψ0,b|Ha −Hb +Hb|Ψ0,b〉

< 〈Ψ0,b|Ha −Hb|Ψ0,b〉+ 〈Ψ0,b|Hb|Ψ0,b〉

< 〈Ψ0,b|va − vb|Ψ0,b〉+ E0,b

(18)

Since va and vb are one electron potentials we can write

E0,a < 〈Ψ0,b|va − vb|Ψ0,b〉+ E0,b =

∫
[va − vb]ρ0dr + E0,b (19)

and since the argument is symmetric in a and b we also have

E0,b < 〈Ψ0,b|vb − va|Ψ0,b〉+ E0,a =

∫
[vb − va]ρ0dr + E0,a (20)

Adding the inequalities for E0,a and E0,b we arrive at

E0,a + E0,b <

∫
[va − vb]ρ0dr +

∫
[vb − va]ρ0dr + E0,a + E0,b (21)

We observe that the integrals in the above expression sum to zero since

∫
[va − vb]ρ0dr +

∫
[vb − va]ρ0dr =

∫
[va − vb]ρ0dr−

∫
[va − vb]ρ0dr = 0 (22)

And so we arrive at the contradiction that

E0,a + E0,b < E0,a + E0,b (23)

The following result shows that the original assumption is incorrect which implies that the

nondegenerate ground state density uniquely determines the external potential which, then

20



determines the Hamiltonian and the wave function and ultimately the ground state energy.

In the second Hohenberg-Kohn theorem they provide a proof for a variational method.

Theorem 2. A universal functional for the energy E[ρ] in terms of the density ρ(r) can be

defined, valid for any external potential Vext(r). For any particular Vext(r), the exact ground

state energy of the system is the global minimum value of this functional, and the density

ρ(r) that minimizes the functional is the exact ground state density ρ0(r).

The first Hohenberg-Kohn theorem establishes the existence of some unique external

potential determined by the ground state electron density. This in turn determines the

Hamiltonian and wave function. With the wave function in hand all ground state observables

of the system may also be determined.

E0 = E[ρ0(r)] = 〈Ψ0|H0|Ψ0〉 (24)

By variational principle

E0 = E[ρ0(r)] = 〈Ψ0|H0|Ψ0〉 < 〈Ψ′|H ′|Ψ′〉 = E ′ (25)

The functional for the energy is written in terms of the electron density. And so minimizing

with respect to the electron density, i.e. find the global minimum, gives the true ground

state density ρ0(r). And so with the proof of the second theorem Hohenberg and Kohn

showed that density functional methods did indeed have a variational principle associated

with it. What was still lacking was some characteristic variational equation in which to

systematically converge to the ground state density. That problem was addressed a year

later in 1965 by Kohn and Sham28.

Hohenberg and Kohn showed that the density determines the external potential, which

determines the Hamiltonian, which determines the wave function and finally the energy
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eigenvalues. As it stands, simplicity over Hartree-Fock theory is not so apparent because

of the interelectronic term. One of the main insights of Kohn and Sham is that simplifica-

tion could be achieved by assuming a Hamiltonian operator for a system of non-interacting

electrons expressed as a series of one-electron operators. These operators have eigenfunc-

tions that are Slater determinants of individual one-electron eigenfunctions, and eigenvalues

that are the sum of all one-electron eigenvalues. The next important insight is to take as

your starting point a fictitious system of non-interacting electrons that has for their overall

ground-state density a one-to-one correspondence with a ground-state density of some real

system in which the electrons do interact. The flow chart below illustrates schematically the

results of Kohn and Sham.

⇐⇒
KS

ρ0(r)ρ0(r) =⇒⇐= VKS(r)Vext(r)

⇓

ψi(r)⇐=ψi=1,...,Ne(r)

⇑⇓

Ψi({r}) =⇒ Ψ0({r})

⇑

HK HK0

Figure 5: Schematic representation of the results of Kohn and Sham extending the results of
Hohenberg and Kohn’s density functional theory recreated from Martin3. The arrow labeled
KS is the Kohn-Sham theorem and HK0 is the Hohenberg-Kohn theorem applied to the
system of non-interacting electrons. ψi(r) is the independent particle wave function, which
is formed from the non-interacting Kohn-Sham potential VKS(r). Once the non-interacting
wave function ψi=1,...,Ne(r) is found the non-interacting density, which is also the interacting
density n0(r) can be calculated. Applying the HK theorems and the interacting potential
Vext(r) the ground state density Ψ0({r}) may be found.

Figure 5 represents the work of Kohn and Sham where the right hand side of the KS arrow

is the system of non-interacting electrons and the left hand side is the system of interacting

electrons. The prior work of Hohenberg and Kohn (HK) is represented by the labeled arrow

where they proved rigorously that a unique ground state density uniquely determines the

unique external potential, and thereby all of the ground state properties of the system. This

is true for both the interacting and non-interacting system. The work of Kohn and Sham
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is represented by the arrow labeled KS whereby they showed that the same density for a

system of interacting electrons is the same as the density for some non-interacting system.

Facilitation of their analysis requires that the energy functional be further split

E[ρ(r)] = Tni[ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)] (26)

where the right hand side contains terms for the kinetic and potential energies of the non-

interacting system as well as correction terms for the kinetic energy (∆T [ρ(r)]) representing

the interacting nature of the electrons and nonclassical corrections to the electron repulsion

energy (∆Vee[ρ(r)]).

The kinetic energy for non-interacting electrons is the sum of individual electron kinetic

energies. By reintroducing orbitals the expression for the energy in terms of the density may

be rewritten

E[ρ(r)] =
N∑
i

(
〈χi|−

1

2
∇2
i |χi〉 − 〈χi|

nuc∑
i

Zk
|ri − rk|

|χi〉

)
+

N∑
i

〈χi|
1

2

∫
ρ(r′)

|ri − r′
dr′|χi〉+ Exc[ρ(r)]

(27)

where the density of a slater determinant wave function is

ρ(r) =
N∑
i=1

〈χi|χi〉 (28)

and the exchange-correlation energy is

Exc[ρ(r)] = ∆T [ρ(r)] + ∆Vee[ρ(r)] (29)

Within the exchange and correlation functional is encapsulated effects for quantum me-

chanical exchange and correlation, correction for classical self-interaction, and differences in
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kinetic and potenttial energies between the interacting and non-interacting systems.

Reintroducing orbitals, χ, and varying to minimize E gives the pseudoeigenvalue equation

hKSi χi = εiχi (30)

where hKSi is the Khon-Sham one-electron Hamiltonian defined as

hi = −1

2
∇2
i −

nun∑
i

Zk
|ri − rk|

+

∫
ρ(r′)

|ri − r′|
dr′ + Vxc. (31)

In the Kohn-Sham one-electron Hamiltonian the term for the exchange-correlation potential,

VXC , is the functional derivative of the exchange-correlation energy with respect to the

density

Vxc =
δExc
δρ

. (32)

The functional derivative is part of variational calculus that generalizes the concept of the

derivative for use in function spaces. Having defined the approach of Kohn and Sham

determination of the orbitals are expressed within a basis set of functions, φ, where individual

orbital coefficients are found by solution of a secular equation

Kµν =
〈
φµ

∣∣∣− 1

2
∇2

nuclei∑
k

Zk
|r− rk|

+

∫
ρ(r′)

|r− r′|
dr′ + VXC

∣∣∣φν〉. (33)

It is important to note that the density is required in order to compute the matrix elements

of the secular equation, but the density itself is determined by using the orbitals found by

solution of the secular equation. This implies that the process of Kohn and Sham must be

carried out in an iterative self-consistent process. The numerical process for solving these

equations is illustrated in the following flow chart.
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Choose basis set(s)

Choose a molecular geometry q(0)

Compute and store all overlap
and one-electron integrals Guess initial density matrix P(0)

Construct and solve Kohn-
Sham secular equation

Construct density matrix
from occupied KS MOs

Is new density matrix P(n)

sufficiently similar to old
density matrix P(n−1)

Replace P(n) with P(n−1)

Optimized molecular geometry?

Choose new geom-
etry according to

optimization algorithm

Does the current
geometry satisfy the
optimization criteria?

Output data for
unoptimized geometryOutput data for

optimized geometry

no

yes

yes

no

no

yes

Figure 6: Flow chart recreated from Cramer4 of the numerical process in solving the Kohn-
Sham system.

The flow chart illustrates the process that the equations are solved in to determine the

25



optimized ground state geometry. When the difference in the old density and the new density

reach a certain threshold value the system has attained self-consistency and the calculations

will terminate and output the optimized geometry. The outputted geometry is then able to

be used to determine all of the ground state properties of the system including excitation

energies found from a time-dependent DFT calculation.

2.4 Time-Dependent Density Functional Theory

The work of Hohenberg and Kohn established density functional theory as a legitimate

rigorously founded ground-state quantum theory. By extension of it being a ground state

theory is able to resolve all the properties of the ground state, including in theory electron

excitations. Kohn and Sham provided the tools to solve these systems in a self consistent

way. What was still needed was a formal way to investigate the dynamics a system under

some time-varying potential. It was Runge and Gross29 in 1985 who much in the same way

Hohenberg and Kohn gave foundation to DFT they gave a formal mathematical foundation

for a time-dependent density functional theory (TD-DFT). Their approach begins with a

system in the presence of some time-dependent potential with Hamiltonian

H(t) = T + Vext(t) + Vee (34)

and evolves according to the time-dependent Shrödinger equation

i
∂

∂t
Ψ(t) = H(t)Ψ(t) (35)

with initial condition

Ψ(0) = Ψ (36)
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By assuming that the external potential may be represented in a Taylor expansion and

employing continuity equations, they were able to prove the following result:

Theorem 3. In a many-body system evolving from some initial state, Ψ(~r, t), there exists

a one-to-one correspondence between some external time-dependent potential, vext(~r, t), and

the electronic density, ρ(~r, t).

The Runge-Gross theorem tells us that as some system evolves in time the time-dependent

density uniquely determines the time-dependent potential. Their result can be extended into

a Kohn-Sham formalism in which there exists a non-interacting time-dependent system with

the same time-dependent density. The task is to be able to determine the correct potential

which determines the Hamiltonian

H = T + VKS (37)

which determines the wave function. Under an orbital representation the time-dependent

Kohn-Sham equation is written as

(
−1

2
∇2 + VKS

)
φi(r, t) = i

∂

∂t
φi(r, t) (38)

with initial conditions

φi(r, 0) = φi(r). (39)

From which can be generated the time-dependent density of a non-interacting system

ρ0(r, t) =
N∑
i

|φi(r, t)|2. (40)

This density is the same density of the interacting system. What remains is determining the

form of the potential for the non-interacting system either exactly or approximately. The
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Kohn-Sham potential decomposed into kinetic, Coulombic, and exchange-correlation terms

is

VKS(r, t) = Vext(r, t) + VJ(r, t) + VXC(r, t). (41)

Runge and Gross developed their proof starting with the quantum mechanical action. The

action of a system A describes the evolution of that system over some time period. It takes

as its argument a function called the Lagrangian L(x, ẋ, t), which summarizes the dynamics

of the entire system. The action is an integral of the Lagrangian over some time period. The

principle of stationary action states that the true path of a system is the one for which the

action is stationary (or minimized) over small variations of the action δA = 0. Runge and

Gross use the quantum mechanical action

A =

∫ t1

t0

dt
〈
ψ(t)

∣∣∣i d
dt
−H(t)

∣∣∣ψ(t)
〉

(42)

The quantum mechanical action calculates the probability amplitudes for all possible out-

comes of a system where the most probable path has the greatest probability amplitude.

The minimization constraint of the action in the Runge-Gross formulation is with respect to

the time-dependent density.

δA

δρ(r, t)
= 0 (43)

Returning to the idea of Kohn and Sham of a non-interacting system of independent particles

leads to a time-dependent Schrödinger like equation

i~
dψi(t)

dt
= H(t)ψi(t) (44)

with an effective Hamiltonian

Heff (t) = −1

2
∇2 + Vext(r, t) +

∫
dr

ρ(r, t)

|r− r′|
+ Vxc[ρ](r, t) (45)
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The most common way in which excitation energies are found from TD-DFT is via a

perturbative approximation by linear response and Green’s function type methods. These

methods can be imagined as a system evolving in time and then is ’hit’ by some external

field. The system evolves using the ground state density until such time the time dependent

perturbation is ’switched on’ by some linear response function. Considering an external

potential vext that at some time t0 a time-dependent perturbation is ’switched on’

vext = v0 + δv. (46)

And since the Hohenberg-Kohn theorem establishes a one-to-one correspondence between

the external potential and the density, another perturbation series can be given in terms of

the density

ρ(r, t) = ρ(0)(r) + δρ(r, t) + · · · (47)

where the zeroth order term is the ground state density and the first order term is the

time dependent perturbation. By taking the Fourier transform of δρ(r, t) the density is

represented then in terms of the frequency δρ(r, ω) and can be written as

δρ(r, ω) =

∫
d3r′χ(r, r′, ω)δvext(r

′, ω) (48)

The key to linear response theory for TD-DFT is the form of the response function χ(r, r′, ω)

for the system of interacting electrons. Construction of the interacting response function is

complicated, but the Kohn-Sham theorem makes it possible to form the response function for

the non-interacting χKS(r, r′, ω), which have poles at the excitation frequencies and relate

that back to the system of interacting electrons. Please refer to the book by Carsten Ullrich30

for a more in depth discussion of linear response TD-DFT.
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2.5 Effective Core Potentials (Pseudopotentials)

As one moves down the periodic table to heavier and heavier elements the number of elec-

trons associated with each atom also increases to balance the increase in positive nuclear

charge. For each electron added there is the added burden of needing to do more and more

calculations in order to converge to the proper ground state density. Heavier atoms con-

sist mostly of core electrons greatly outnumbering valence electrons. Added to that is that

the core electrons have fundamentaly no role in chemical reactions. This problem was ad-

dressed by Hellmann in 1935, where his solution consisted of replacing the core electrons

with analytic functions that would reasonably approximate the combined nucleus-electron

core. Since the core is replaced by some effective potential they became known as effective

core potentials. And so only the valence electrons need be treated within a basis set approx-

imation with the rest of the electrons being treated by the ECPs taking into account all the

necessary requirements of electron interactions such as correlation, the Pauli principle, and

even relativistic effects.

For the heavy elements it is essential to include relativistic effects. Electrons are not

massless particles, and the level to which relativity affects the energy of the electron depends

on its velocity. For an electron orbiting a nucleus the larger the nucleus implies the greater

velocity of the electron.

Another important question that can be posed is how many electrons to include in the

ECP. Should it be all the core electrons or should core electrons be left out of the ECP?

ECPs can be of two varieties, large and small core. In large core ECPs all of the electrons

except for the valence electrons are included in the ECP. For small core ECPs, all electrons

except for the valence electrons and the next lower shell electrons are included in the ECP.

This project utilizes the Stuttgart-Dresden large core relativistic ECPs developed by Dolg et

al. Not only do these ECPs incorporate relativistic effects but they are also so called ’in-core’
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ECPs meaning that the 4f valence electrons are included in the ECP. This is appropriate

for the lanthanides as a result of the 5s and 5p orbitals having a larger radial distribution

than the 4f orbitals.

2.6 Basis Sets

In ab initio calculations the exact form of the wave function used is not known. To address

this particular issue the most common technique is to represent the wave function as a series

expansion of basis functions. The choice of functions used can be anything from exponentials,

Gaussians, polynomials, or even plane waves. The choice decided on the functions must also

represent to the physical characteristics of the electrons being modeled. For example it would

be improper to uses functions who’s energy increases quadratically for an electron infinitely

far away from the nucleus because we know that at some point equal to the ionization energy

the electron will no longer be attached to the atom.

Two of the most common types of basis sets used in electronic structure theory are the

Slater type orbitals and Gaussian type orbitals. Slater type orbitals have a general functional

form of

χζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)rn−1e−ζr. (49)

Where N is a normalization constant and Yl,m(θ, ϕ) represents spherical harmonic functions

and rn−1e−ζr represent the radial expansion of the function. Gaussian type orbitals on the

other hand have the general functional form of

χζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r2n−2−le−ζr
2

(50)

where N is a normalization constant, Yl,m(θ, ϕ) are the spherical harmonics, and r2n−2−le−ζr
2

are the radial expansion terms. The radial expansion terms dictate the behavior of the

electron as a function of distance from the nucleus. The difference between Slater type
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orbitals and Gaussian type orbitals may appear to be slight but has significant implications.

In general Slater, type orbitals give a better representation of the behavior of the electron near

the nucleus than do Gaussian type orbitals but Gaussian type orbitals are computationally

more efficient and so in many cases are used more frequently than Slater type orbitals.

It was stated that a basis set is a series expansion used to represent a wave function and for

an infinitely large basis set the representation is exact. This is theoretically unfeasible since

there is no way of summing an infinite number of functions. This approximation now has the

question of how many functions do you use to fully describe the system? A minimum basis

set consists of just enough functions to contain all of the electrons. For example a hydrogen

and helium atom means a single s-function. The second row would require two s-functions

and a set of p-functions. And the trend continues for the remaining rows.

And so having described the minimum case the next improvement is a doubling or tripling

of the number of functions used. These are referred to as Double and Triple Zeta type basis

sets respectively. There are also Quadruple and higher zeta type basis sets. It is common

to have molecular bonding where there is not an even distribution of charge. In these cases

basis sets can include functions of higher angular momentum to accommodate this type of

behavior. Diffuse functions are ’shallow’ gaussian functions that augment the tail portion

of the basis set. These functions are useful when considering systems with anions or with

’softer’ atoms whos electrons are more loosely bound.

Another aspect of calculations with basis sets is the concept of the basis set contraction.

Each function used in the basis has associated with it expansion coefficients which are energy

optimized through a variational procedure. This procedure optimizes the core electrons more

efficiently over the valence electrons since the core electrons are more energetically important

where as the valence electrons are more important chemically. By making the coefficients for

the inner basis functions constant so that they need to be determined by a variational method,

it is then possible, for example, to represent the 1s-orbital as a fixed linear combination of six
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basis functions. To combine the set of primitive type orbitals into a smaller set of contracted

functions by fixing the coefficient and forming linear combinations is known as basis set

contraction.

The basis set used in the experiments conducted in this thesis are the Pople style split

valence basis sets of John Pople, who was also instrumental in the development of the

Gaussian software package which was used in this study. A split valence basis set splits the

number of primitive gaussian type orbitals (GTO) used for the core and valence electrons

and has the form k-nlmG. The k indicates the number of primitive GTOs that are used to

represent the core orbitals. The nlm terms indicate the number of functions the valence

orbitals are split into and how many primitive GTOs are used to represent them. The two

nl values represent a split valence were as nlm represent a triple split valence. In this project

the basis set choice is 6-31+G**. Following the naming convention of Pople type basis sets,

6-31+G** is a split valence basis set with a contraction of six primitive GTOs, the inner

part of the valence orbitals are a contraction of three primitive GTOs, and the outer part

is represented by one primitive GTO. The addition of ‘+’ represents the inclusion of diffuse

functions and the ** represents the inclusion of polarization functions.
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CHAPTER 3: EXPERIMENTAL

3.1 Computational Methods

All calculations were done using the Gaussian 0931 computational chemistry software on

the Stampede supercomputer at the Texas Advanced Computing Center (TACC) at the

University of Texas at Austin in Austin, Texas with a grant through the Extreme Science

and Engineering Discovery Environment (XSEDE).

Geometry Optimization

All geometry optimizations were done in the gas phase without constraints on the symme-

try, bond distances, or bond angles. The 6-31+G**32–41 basis set was used for all atoms ex-

cept bromine which used the 6-311+G** basis set and europium which utilized the Stuttgart-

Dresden large core (53 electrons in the core and 10 electrons in the valence shell) effective

core potential (ECP) and basis set developed by Dolg, et al. The B3LYP42 hybrid exchange

correlation functional was used for all ground state geometry optimizations. Gaussview

was used to construct the initial structures using XYZ cartesian coordinates from an ex-

perimentally determined single crystal X-ray structure. The Mercury software package was

used to extract the structural information using .cif file. Optimized geometry parameters

and molecular orbital energies were extracted from the gaussian .log files using Chemcraft

software package. Orbital energies were plotted using a MATLAB program written by the

author and provided in the supporting information.

Excited State Calculations

Singlet state and triplet state calculations were done using time-dependent density func-

tional theory (TD-DFT) as implemented by Gaussian 09. All excited state calculations were

done in the gas phase without symmetry constraints using the same basis sets and exchange

correlation functional that was employed for the ground state geometry optimisation. Ver-
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tical excitation energies and oscillator strengths of the singlet states were calculated using

time-dependent density functional theory (TD-DFT) to compare with the experimental UV-

visible absorption data. The TD-DFT method was also employed to determine the lowest

lying triplet state energy and orbital characteristics. Excited states and oscillator strengths

were extracted using Chemcraft software package. Chemcraft was also used to generate TD-

DFT plots of excited state orbitals. Excited states were plotted using a MATLAB program

written by the author and provided in the supporting information.

3.2 Synthetic Methods

EuCl3·6H2O, thenoyltrifluoroacetone, dichloromethane, acetone, and tetrahydrofuran were

purchased from Fischer Scientific and used without any further purification. 18 Ω nano

pure water was used for all synthetic procedures. All of the DPPZ substituted ligands were

synthesized by Dr. Brian Dinkelmyer’s research group at Western Carolina University.

Synthesis of Eu(TTA)3(H2O)2

The synthesis of Eu(TTA)3(H2O)2 complex requires a 3:1 molar ratio of TTA to EuCl3·6H2O.

A solution of TTA was made by dissolving NaOH (3 mmol, 0.12 g) in nano pure water (20

mL) to which TTA (3 mmol, 0.67 g) was added and stirred until dissolved. In a separate

container, EuCl3·6H2O (1 mmol, 0.37 g) was dissolved in nano pure water (10 mL). The

two solutions were combined and stirred under an inert argon atmosphere at 60 oC for 30

minutes. At the end of the thirty minute heating period, the solution was stirred at room

temperature for 2.5 to 3 hours. The white precipitate was collected via vacuum filtration

and washed with nano pure water (500 mL) and hexane (50 mL).

Synthesis of Eu(TTA)3DPPz-R

The synthesis of Eu(TTA)3DPPz-R requires a one to one molar ratio of Eu(TTA)3(H2O)2

complex to substituted DPPZ ligand. Eu(TTA)3(H2O)2 (0.1 mmol, 0.085g) was dissolved

in HPLC grade acetone (10mL). DPPZ (0.1mmol, -H = 0.028g, -NO2 = 0.033g, -C3H5O2 =
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0.035g, -C2H3O2 = 0.034g, -Br = 0.036g) ligand was dissolved in HPLC grade dichloromethane

(15mL). Once both complex and ligand were dissolved, the two solutions were combined in

a round bottom flask which was then capped, with a vent, and allowed to react for 12 to 24

hours while being stirred. At the conclusion of the stirring period,the reaction mixture was

allowed to slowly evaporate for possible formation of crystals.

3.3 Instrumental Characterization

UV-Vis and Fluorescence Spectroscopy

UV-visible absorption spectroscopy was performed using an Agilent 8453 UV-Vis spec-

trophotometer equipped with a deuterium discharge lamp as the ultra-violet source and a

tungsten-halogen filament lamp as the visible source. The detector was a photodiode array

operating in absorbance mode. Fluorescent spectroscopy was done on a Perkin-Elmer LS-55

fluorescence spectrophotometer using a xenon arc lamp source and a photomultiplier tube

detector operating in emission mode with 5 nm slit width and excitation wavelength of 340

nm.

Luminescent Quantum Yield Measurements

Luminescent quantum yield measurements were carried out to evaluate the efficiency of

ligand sensitization. A detailed description of overall quantum yield, intrinsic quantum yield,

ligand sensitization, and the processes associated with each is given in chapter one. This

project used a reference of Eu(TTA)3Phen in tetrahydrofuran (with a reported luminescent

quantum yield of 0.3643) to find the overall luminescent quantum yields of the synthesized

complexes. The overall quantum yield was calculated by reference method using the following

equation44:

ΦS = ΦR
IS
IR

AR
AS

η2S
η2R
. (51)

Where I is the integrated area of Eu(III) emission, A is the absorbance value at the excitation

36



wavelength, η is the refractive index of the solvent, and Φ is the overall luminescent quantum

yield. The subscripts R and S denote reference and sample, respectively.

Overall photoluminescent quantum yields were determined for complexes that have been

previously synthesized (Ethyl Ester, Methyl Ester, Bromine, Nitro, and unsubstituted). Ab-

sorbance and fluorescence measurements were taken over a period of three days. For each

day five absorbance and five fluorescence measurements were taken for each complex. Thus,

giving a total number of 15 data points over those three days. Absorbance values at 340

nm and the integrated europium emission were recorded. Luminescent quantum yields were

calculated for each day individually with the final reported quantum yield being the mean

of the three.
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CHAPTER 4: RESULTS AND DISCUSSION

The substituents of the neutral donor DPPZ ligand can have a significant effect on the en-

ergy transfer process with respect to the electron withdrawing or electron donating strength

of the substituent. The substituents can be group in three ways. The first group are electron

donating substituents where NH2 is the strongest and methyl is the weakest. Hydrogen is in

the middle and serves as the reference or zero for which all other substituents are compared

to. The third group is electron withdrawing where bromine is the weakest and NO2 is the

strongest.

NH2, MeO, CH3︸ ︷︷ ︸
←−Donating

, H,︸︷︷︸
0

Br, COOH, ME, EE, NO2︸ ︷︷ ︸
Withdrawing−→

Figure 7: Qualitative scale of substituents ordered from most donating (NH2) to most with-
drawing (NO2) with hydrogen in the middle serving as the reference point. The carboxylic
acid, methyl ester, and ethyl ester all have very similar electron withdrawing capabilities
with carboxylic acid being slightly strong due to its acidity.

Does a trend exist between the strength and character of the substituent that will allow

us to make informed decisions on how well a substituent will affect the luminescent properties

of these luminescent europium complexes? This question has been explored in the study by

Nolasco10 the authors use phenanthroline as the neutral donor ligand, which has been shown

to have good quantum yields45. In this study we use the dipyridophenazine ligand, which is

a more conjugated system with respect to phenanthroline. In Li16 the authors found that

a more conjugated system lowered both the S1 and T1 energies, thus making the system

less effective at energy transfer. The following sections details the results of our study, and

attempts to answer the question of if these substituents are capable of increasing the energy

transfer efficiency.
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4.1 Ground State Geometry

Density functional theory (DFT) is a ground state theory. Hence, we can use DFT to deter-

mine the excited state properties since all of the properties of a system can be be uniquely

determined by the ground state configuration. As a means to validate theoretical calcula-

tions comparison of the optimized ground state geometry can be compared to experimental

geometric parameters. Figure 8 is the DFT-optimized structure of Eu(TTA)3DPPZ with

atom labels for the oxygen and nitrogen that are bonded to europium.

Figure 8: DFT-optimized structure of Eu(TTA)3DPPZ with labels for the oxygens of the
anion TTA that are bonded to europium and the nitrogens of the pheasanthroline part of
the DPPZ ligand that are coordinated to europium.

Table 3 contains the calculated optimized bond length data for Eu NH2, Eu Br, Eu COOH,

Eu H, Eu EE, Eu ME, Eu MeO, Eu CH3, and Eu NO2. X-ray crystal structural data for

Eu EE is included in parenthesis.
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Table 3: DFT-calculated bond length data (Å) for all Eu(TTA)3DPPZ-R complexes.

Atom 1 Atom 2 Eu NH2 Eu MeO Eu CH3 Eu H EU Br

Eu1 O5 2.417 2.417 2.417 2.416 2.416
Eu1 O6 2.414 2.414 2.413 2.412 2.412
Eu1 O8 2.391 2.390 2.390 2.389 2.388
Eu1 O9 2.423 2.423 2.422 2.422 2.422
Eu1 N17 2.672 2.675 2.676 2.677 2.679
Eu1 O20 2.423 2.422 2.421 2.421 2.420
Eu1 O25 2.414 2.413 2.413 2.412 2.411
Eu1 N34 2.680 2.681 2.682 2.684 2.685

Eu COOH Eu ME Eu EE (exp) Eu NO2

Eu1 O5 2.416 2.416 2.416 (2.365) 2.415
Eu1 O6 2.411 2.412 2.412 (2.355) 2.410
Eu1 O8 2.387 2.388 2.388 (2.365) 2.385
Eu1 O9 2.421 2.422 2.422 (2.361) 2.421
Eu1 N17 2.680 2.679 2.679 (2.595) 2.685
Eu1 O20 2.420 2.420 2.420 (2.353) 2.418
Eu1 O25 2.410 2.411 2.411 (2.370) 2.407
Eu1 N34 2.688 2.687 2.685 (2.637) 2.691

DFT optimized structures show octa-coordination to europium with six europium-oxygen

bonds (two from each TTA ligand) and two europium-nitrogen bonds from the DPPZ ligand

with C1 symmetry. The average Eu-O bond length was found to be 2.412 Å, and the average

Eu-N bond length was found to be 2.681 Å. The average Eu-O and Eu-N bond lengths from

the X-ray crystal structure of Eu EE are 2.362 Å and 2.616 Å respectively. Comparison of

calculated and experimentally determined average Eu-O bond lengths show a difference of

0.050 Å. The difference between calculated and experimental Eu-N bond lengths are 0.065

Å. These results indicate good agreement between the DFT optimized geometry and the

experimentally determined X-ray crystal structure.

In Li et al.16 the authors used density functional theory (computational parameters are

mentioned in the introduction chapter) to investigate how the neutral donor ligand’s energy

transfer process is affected by the secondary ligand size. In that study they calculated the
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ground state and excited state properties for Eu H and Eu CH3. The average Eu-O bond

lengths in Li was found to be 2.405 and the average Eu-N bond lengths were found to be

2.682. When comparing the Eu-O and Eu-N bond lengths in this study of 2.412 Å and

2.681 Å to the results of Li, we find there is a difference of 0.007 Å and 0.001 Å for Eu-O

and Eu-N bond lengths respectively. In Nolasco10 the average Eu-O and Eu-N bond length

reported was 2.406 Å and 2.631 Å respectively for a series of substituted phenanthroline

complexes. Furthermore, the paper by De Silva et al.46 looks at the luminescence of Tb(III)

complexes. In their study terbium’s coordination sphere consisted of six oxygen atoms from

three negatively charged 2,4-pentanedione (acac) ligands and two nitrogen from the neutral

N-donor 2.2′-bipyridine (bipy) that has substituent modifications at the p, p′ position. The

average experimental and calculated bond length between Tb(III) and oxygen was reported

to be 2.345 Å and 2.366 Å respectively. The average experimental and calculated bond

length between Tb(III) and nitrogen was reported to be 2.566 Å and 2.681 Å respectively.

Noting that the difference in ionic radius between Tb(III) and Eu(III) is only 0.024 Å the

similarity between De Silva and this study is significant. The agreement between the results

from Table 3, Li, Nolasco, and De Silva suggest that the 4f orbitals have little involvement

in the bonding of the ligands, which validates the use of large core ECPs in which the valence

electrons are included in the ECP.
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Figure 9: The HOMO-15 to LUMO+15 molecular orbitals of the europium complexes with
different substituents

Looking at the distribution of molecular orbital energies in Figure 9, there are some

immediate features that can be seen. The first such feature is the way in which the HOMO

orbitals are only slightly affected by the substitutions. Second, is the significant gap in energy

between the H-3 and H-4 orbitals. The LUMO orbitals show being significantly affected by

the ligand substituents, but the L+1 orbitals remain only marginally affected except for

Eu NO2. Given the fact that the only difference between each complex is the substituent

on the DPPZ ligand this would suggest that the LUMO orbital is located primarily on the

DPPZ ligand and the HOMO and L+1 orbitals are located on the TTA ligands.
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Table 4: HOMO-LUMO energy gap for all Eu complexes.

Substitution HOMO (eV) LUMO (eV) ∆E (eV)

Eu NH2 -6.115 -2.882 3.233
Eu MeO -6.155 -2.969 3.186
Eu CH3 -6.167 -3.029 3.138
Eu H -6.190 -3.123 3.067
Eu Br -6.232 -3.288 2.944
Eu COOH -6.252 -3.416 2.836
Eu ME -6.233 -3.335 2.898
Eu EE -6.227 -3.313 2.913
Eu NO2 -6.326 -3.798 2.528

Amines are strong aromatic electron donating groups as a result of resonance stabilized

distribution of the lone pair of electrons on the nitrogen. This compared to only a hydrogen

on the unsubstituted DPPZ ligand results in an increase in energy of the LUMO orbital

relative to DPPZ’s LUMO orbital.

Halogens are weak aromatic withdrawing groups as a result of inductive effects. Relative

to the hydrogen of the DPPZ ligand, the LUMO energy of the bromine substitution is lower

than the LUMO energy of the unsubstituted ligand.

Carboxylic acid, methyl ester, and ethyl ester were speculated to have relatively identical

effects as aromatic electron withdrawing groups. In comparison to the hydrogen of the

DPPZ, ligand resonance stabilization of positive charge lowers the energy of the LUMO

orbitals. Hence, the LUMO energy of the carboxylic acid, methyl ester, and ethyl ester

substituted complexes is lower relative to the unsubstituted complex.

Ether groups act as aromatic electron donating groups resulting from resonance stabiliza-

tion of oxygen lone pairs. The effect that the methoxy group has on the electronic properties

of the substituted DPPZ ligand is an overall lowering of the LUMO energy relative to the

unsubstituted DPPZ ligand.

Nitro groups act as strong aromatic electron withdrawing groups resulting from resonance
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stabilized positive charge. The effect that nitro groups have on the substituted DPPZ ligand

is a drastic decrease in the energy of the LUMO orbital relative to the LUMO orbital energy

of the unsubstituted DPPZ ligand.

Methyl groups inductively donate electron density to aromatic systems. For the methyl

substituted DPPZ ligand there is very slight increase in the LUMO orbital energy relative

to the LUMO orbital energy of the unsubstituted DPPZ ligand.

The trend shows that for electron donating groups (amine, methoxy, methyl) there is an

increase in the LUMO orbital energy relative to unsubstituted DPPZ ligands. For electron

withdrawing groups (bromo, ethyl ester, methyl ester, carboxylic acid, and nitro groups)

there is a decrease in the LUMO orbital energy relative to unsubstituted DPPZ ligand.

These trends are illustrated in Figure 9 with the calculated HOMO-LUMO energies and

gaps presented in Table 4. In addition to the effect on the energy of the LUMO orbitals

there is a trend associated with the HOMO to LUMO energy gap. For the aromatic electron

donating substituents there is a calculated increase in the energy gap between the HOMO

and LUMO orbitals relative to the unsubstituted HOMO-LUMO energy gap. For groups that

are aromatic electron withdrawing groups there is an apparent decrease in the energy gap

between the HOMO and LUMO orbitals relative to the energy gap between the unsubstituted

complex.
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DFT Optimized Ground State Geometries

Figure 10: DFT optimized geometry of Eu EE

Figure 11: X-ray crystal structure of Eu EE
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Figure 12: DFT optimized geometry of Eu NH2

Figure 13: DFT optimized geometry of Eu MeO
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Figure 14: DFT optimized geometry of Eu CH3

Figure 15: DFT optimized geometry of Eu H
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Figure 16: DFT optimized geometry of Eu Br

Figure 17: DFT optimized geometry of Eu COOH
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Figure 18: DFT optimized geometry of Eu ME

Figure 19: DFT optimized geometry of Eu NO2
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4.2 Absorption Spectra

Time-dependent DFT (TD-DFT) is performed on the optimized ground state geometries to

determine the energy of the S1 and T1 states, ∆EISC , and the energy gap between the T1

state and Eu(III)’s 5D0 excited state, ∆EET . There are an infinite number of states that

can be solved for in a TD-DFT calculation. Therefore, it is important for the experimenter

to decide at the beginning of a calculation to define how many states are to be solved for by

the program. The number of states chosen should be enough to capture all of the relevant

information that is desired such as the correct energy ranges, the λmax’s, and band shape

after Gaussian broadening. The number of states solved for should also not be to many to

make the calculation intractable for the machine that the calculation is being performed on.

The lowest energy λmax is chosen to determine the orbital characteristics and to compare

to experimental absorbance spectra. The lowest energy λmax is chosen because photolumines-

cence is greater for excitation around the 340 nm band from excitation of the TTA ligands.

Figure 20 shows the absorption spectra of the free bromine substituted DPPZ ligand, the

free TTA ligand, and the Eu Br complex all dissolved in dichloromethane. In Figure 20 the

complex shows two absorption bands.
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Figure 20: Normalized UV-Vis absorption spectra of the TTA and DPPZ-Br ligands.

There is a lower energy band located at around 350 nm and a higher intentsity band

located at around 270 nm. When compared to the absorption bands of the free ligands the

lower energy band can be attributed primarily to absorption by the TTA ligands. The higher

intensity band can be attributed to absorption by the DPPZ ligand. The calculated oscillator

strengths plotted with experimentally determined absorbance spectra when available are

given in Figures 21 through 38.
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Figure 21: DFT calculated singlet excited states for Eu NH2. Oscillator strengths are plotted
versus wavelength (nm)

Figure 22: DFT calculated singlet excited states for Eu NH2. Oscillator strengths are plotted
versus energy (eV).

52



Figure 23: DFT calculated singlet excited states for Eu MeO. Oscillator strengths are plotted
versus wavelength (nm)

Figure 24: DFT calculated singlet excited states for Eu MeO. Oscillator strengths are plotted
versus energy (eV).
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Figure 25: DFT calculated singlet excited states for Eu CH3. Oscillator strengths are plotted
versus wavelength (nm)

Figure 26: DFT calculated singlet excited states for Eu CH3. Oscillator strengths are plotted
versus energy (eV).
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Figure 27: DFT calculated singlet excited states for Eu H. Oscillator strengths are plotted
versus wavelength (nm)

Figure 28: DFT calculated singlet excited states for Eu H. Oscillator strengths are plotted
versus energy (eV).
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Figure 29: DFT calculated singlet excited states for Eu Br. Oscillator strengths are plotted
versus wavelength (nm)

Figure 30: DFT calculated singlet excited states for Eu Br. Oscillator strengths are plotted
versus energy (eV).
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Figure 31: DFT calculated singlet excited states for Eu COOH. Oscillator strengths are
plotted versus wavelength (nm)

Figure 32: DFT calculated singlet excited states for Eu COOH. Oscillator strengths are
plotted versus energy (eV).
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Figure 33: DFT calculated singlet excited states for Eu ME. Oscillator strengths are plotted
versus wavelength (nm)

Figure 34: DFT calculated singlet excited states for Eu ME. Oscillator strengths are plotted
versus energy (eV).

58



Figure 35: DFT calculated singlet excited states for Eu EE. Oscillator strengths are plotted
versus wavelength (nm)

Figure 36: DFT calculated singlet excited states for Eu EE. Oscillator strengths are plotted
versus energy (eV).
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Figure 37: DFT calculated singlet excited states for Eu NO2. Oscillator strengths are plotted
versus wavelength (nm)

Figure 38: DFT calculated singlet excited states for Eu NO2. Oscillator strengths are plotted
versus energy (eV).
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Table 5 lists the oscillator strengths and calculated λmax values for all nine complexes, and

the λmax values of the experimental absorption spectrum of Eu(TTA)3DPPZ-Br, Eu(TTA)3DPPZ,

Eu(TTA)3DPPZ-EE, Eu(TTA)3DPPZ-ME, and Eu(TTA)3DPPZ-NO2. The oscillator strengths

represent the probability of absorption at that wavelength.

Table 5: Calculated and experimentally determined λmax values with the calculated oscillator
strengths.

Complex Exp. λmax (nm) Calc. λmax (nm) Oscillator Strength (f)

Eu NH2 297.42 0.2388
321.59 0.4812

Eu Br 278 281.09 0.3679
354 323.26 0.6270

Eu COOH 280.49 0.6306
323.19 0.5607

Eu H 274 277.52 0.5540
349 323.21 0.6253

Eu EE 280 282.76 0.3445
353 323.25 0.5637

Eu ME 280 281.01 0.3102
363 323.25 0.5506

Eu MeO 288.24 0.5080
322.95 0.8168

Eu CH3 280.98 0.5027
323.22 0.4941

Eu NO2 300 307.97 0.3225
353 323.14 0.6387

The calculated higher energy bands have λmax values ranging between 277 nm and 307

nm corresponding to absorption by DPPZ. These absorption bands correspond very well to

the experimentally determined absorption band maximums, which are summarized in Table

5. The calculated lower energy λmax absorption values for all nine complexes are around

323 nm which, according to Figure 20, is indicative of absorption by TTA. The calculated
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lowest energy λmax’s are blue shifted by about 30 to 40 nm of the experimental lowest energy

absorption maximum. Much of the discrepancy between the calculated and experimentally

determined absorption band maximums can be attributed to solvatochromic effects as a

result of the calculations being performed in the gas phase. More agreeable results are

expected by including a dichloromethane solvation model into the calculation.

From the calculated oscillator strengths in Figures 21 to 38 ligand substitution has the

greatest effect on where the higher intensity band at around 270 nm is located. Referring

back to Figure 20 this absorption band is primarily due to the DPPZ ligand. Qualitatively it

would be expected that changes in excited state energies would occur with ligand substitution

because of the various substituents attached to the DPPZ ligand. Though there does not

seem to be any trend between electron donating or electron withdrawing effects. The band

position for the lower energy oscillators is relatively unaffected as a result of absorption by

TTA. Similar λmax values are seen in the study by Sun et al.47 for Eu H and Eu CH3 where

the authors report λmax values of 274 nm and 342 nm for Eu H and 278 nm and 342 nm

for Eu CH3. These values show good agreement with the experimentally determined and

calculated values in Table 5.
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4.3 Energy Transfer Analysis

Eu(TTA)3DPPZ-NH2

Figure 39: Structure of Eu NH2

The following section highlights the calculated results for the amine substitution to the

DPPZ ligand (DPPZ-NH2). At the time of the writing of this thesis, synthesis of the

Eu(TTA)3DPPZ-NH2 (Eu NH2) complex has not yet been done. Since there is no experi-

mental data, results will be presented as is and without comparison to experiment. Excited

state details are provided in Table 6 and plots of the primary orbitals involved in the excited

state are presented in Figure 40.

Table 6: The orbital transitions and contribution to the λmax = 321.59 nm excited state of
Eu NH2.

HOMO Orbital LUMO Orbital % Contribution

H - 3 → L + 2 5.65
H - 3 → L + 3 58.5
H - 3 → L + 4 3.25
H - 1 → L + 2 6.91

HOMO → L + 4 8.77
HOMO → L + 5 6.24
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(a) H-3 (b) L+3

Figure 40: The dominant transition for this excited state is from the H-3 (a) orbital to the
L+3 (b) orbital (58.5 %). Analysis of the the orbitals for this transition presents [π(DPPZ-
NH2, TTA) → π*(TTA)] character implying a LLCT and some intra-ligand charge transfer
(ILCT).

The energy of the S1 state was calculated to be 2.8868 eV. Triplet state calculations were

performed in order to ascertain the orbitals involved as well as determining the energy of

intersystem crossing (∆EISC) and the energy transfer gap between the ligand based T1 and

the 5D0 excited state of Eu(III) (∆EET ). The lowest energy triplet state (T1) was calculated

to be 2.1065 eV. This T1 excited state is attributed electronic excitations of DPPZ localized

π − π* transitions.

Figure 41: Lowest T1 orbital of Eu NH2.
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Based on the calculated values of the lowest S1 and T1 states and based on a value of

2.0193 eV 5D0 →7 F2 energy, the ∆EISC and ∆EET can be calculated for Eu NH2. The

energy of intersystem crossing ∆EISC was calculated to be 0.7803 eV. The energy transfer

gap ∆EET was calculated to be 0.0872 eV.

Eu(TTA)3DPPZ-MeO

Figure 42: Structure of Eu MeO.

In this section calculated singlet state and triplet state results for the methoxy substituted

DPPZ (DPPZ-MeO) are presented for the Eu(TTA)3DPPZ-MeO (Eu MeO) complex. At

the time of the writing of this thesis synthesis of the Eu CH3 complex has not yet been done.

Since there is no experimental data, results will be presented as is and without comparison

to experiment. Excited state details are provided in Table 7 and plots of the primary orbitals

involved in the excited state are presented in Figure 43 and Figure 44.

Table 7: The orbital transitions and contribution to the λmax = 322.95 nm excited state of
Eu MeO.

HOMO Orbital LUMO Orbital % Contribution

H - 2 → L + 2 11.1
H - 2 → L + 3 29.3
H - 1 → L + 2 10.8

HOMO → L + 5 31.4
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(a) H-1 (b) L+3

Figure 43: The first dominant transition is the H-1 (a) to L+3 (b) transition, which is
(ILCT)[π(TTA) → π*(TTA)] in character.

(a) HOMO (b) L+5

Figure 44: The second dominant transition is the HOMO (a) to L+5 (b) transition which is
(ILCT)[π(TTA) → π*(TTA)] in character.

The energy of the S1 state was calculated to be 2.8412 eV, and the T1 energy was

calculated to be 2.3256 eV. The T1 state is attributed to DPPZ-MeO localized π → π*

transition.
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Figure 45: Lowest T1 orbital of Eu MeO.

Based on the calculated values of the lowest S1 and T1 states and based on a value of

2.0193 eV for the 5D0 →7 F2 energy, the ∆EISC and ∆EET can be calculated for Eu MeO.

The energy of intersystem crossing ∆EISC was calculated to be 0.5156 eV. The energy

transfer gap ∆EET was calculated to be 0.3063 eV.

Eu(TTA)3DPPZ-CH3

Figure 46: Structure of Eu CH3

In this section calculated singlet state and triplet state results for the methyl substituted

DPPZ (DPPZ-CH3) are presented for the Eu(TTA)3DPPZ-CH3 (Eu CH3) complex. At the

time of the writing of this thesis synthesis of the Eu CH3 complex has not yet been done.
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Since there is no experimental data, results will be presented as is and without comparison

to experiment. Excited state details are provided in Table 8 and plots for the two primary

orbital transitions involved in the excited state are presented in Figure 47 and Figure 48.

Table 8: The orbital transitions and contribution to the λmax = 323.22 nm excited state of
Eu CH3

HOMO Orbital LUMO Orbital % Contribution

H - 13 → L + 3 3.24
H - 11 → LUMO 3.53
H - 10 → LUMO 9.64
H - 9 → L + 2 3.07
H - 4 → L + 1 4.67
H - 2 → L + 2 7.41
H - 2 → L + 3 21.6
H - 1 → L + 2 7.21

HOMO → L + 5 22.5

(a) H-2 (b) L+3

Figure 47: The first primary transition is the H-2 (a) to L+3 (b) transition, which is
(ILCT)[π(TTA) → π*(TTA)] in character.
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(a) HOMO (b) L+5

Figure 48: The second primary transition is the HOMO (a) to L+5 (b) transition, which is
(ILCT)[π(TTA) → π*(TTA)] in character

The lowest energy S1 state was calculated to be 2.7911 eV. The T1 energy was calculated

to be 2.3183 eV. The T1 state is attributed to DPPZ-CH3 localized π → π* transition.

Figure 49: Lowest T1 orbital of Eu CH3.

Based on the calculated values of the lowest S1 and T1 states and based on a value of

2.0193 eV for the 5D0 →7 F2 energy, ∆EISC and ∆EET can be calculated for Eu CH3. The

energy of intersystem crossing ∆EISC was calculated to be 0.4728 eV. The energy transfer

gap ∆EET was calculated to be 0.2990 eV.
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Eu(TTA)3DPPZ

Figure 50: Structure of Eu H

In this section calculated singlet state and triplet state results for the unsubstituted

DPPZ are presented and compared with experimentally determined absorption data. The

orbital contributions to the excited state at 323.21 nm is presented in the Table 9. The two

primary orbital transitions are visualized in Figure 51 and Figure 52.

Table 9: The orbital transitions and contribution to the λmax = 323.21 nm for Eu H

HOMO Orbital LUMO Orbital % Contribution

H - 12 → LUMO 2.85
H - 10 → LUMO 5.83
H - 5 → L + 1 2.22
H - 2 → L + 2 8.21
H - 2 → L + 3 3.37
H - 2 → L + 4 24.3
H - 1 → L + 2 7.76
H - 1 → L + 3 2.43

HOMO → L + 5 28.1
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(a) HOMO-2 (b) LUMO+4

Figure 51: The first primary transition is the H-2 (a) orbital to the L+4 (b) orbital, which
is (ILCT)[π(TTA) → π*(TTA)] in character.

(a) HOMO (b) LUMO+5

Figure 52: The second primary transition is the HOMO (a) orbital to the L+5 (b) orbital,
which is (ILCT)[π(TTA) → π*(TTA)] in character.

The S1 energy was calculated to be 2.7205 eV. The T1 energy was determined to be

2.3033 eV. The T1 state is attributed to DPPZ localized π → π* transition.
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Figure 53: Eu H triplet orbital.

Based on the calculated values of the lowest S1 and T1 states and based on a value of

2.0193 eV for the 5D0 →7 F2 energy, ∆EISC and ∆EET can be calculated for Eu H. The

energy of intersystem crossing ∆EISC was calculated to be 0.4172 eV. The energy transfer

gap ∆EET to Eu H’s excited state is calculated to be 0.2840 eV.

Eu(TTA)3DPPZ-Br

Figure 54: Structure of Eu Br

The following section highlights the calculated results for the bromine substitution to the

DPPZ ligand europium complex Eu(TTA)3DPPZ-Br (Eu Br). TD-DFT calculations were
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performed to determine the electronic structure of the singlet and triplet states as well as to

compare to experimental absorption spectra. Orbital contributions to the excited state at

323.26 nm is presented in Table 10. There are two dominant transitions that contribute to

this excited state, which are visualized in Figure 55 and in Figure 56.

Table 10: The orbital transitions and contribution to the λmax = 323.26 nm of Eu Br.

HOMO Orbital LUMO Orbital % Contribution

H - 15 → LUMO 5.23
H - 13 → L + 3 2.17
H - 13 → L + 4 2.63
H - 10 → L + 4 2.79
H - 8 → L + 4 2.29
H - 5 → L + 1 3.48
H - 2 → L + 3 8.87
H - 2 → L + 4 25.3
H - 1 → L + 3 10.2

HOMO → L + 5 27.0

(a) (b)

Figure 55: The first dominant transition is the H-2 (a) orbital to the L+4 (b) orbital, which
is (ILCT)[π(TTA) → π*(TTA)] in character.
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(a) (b)

Figure 56: The second dominant transition is the HOMO (a) orbital to the L+5 (b) orbital,
which is (ILCT)[π(TTA) → π*(TTA)] in character.

The S1 energy was calculated to be 2.6008 eV. The calculated T1 energy was calculated

to be 2.2868 eV. The T1 excited state is attributed to π → π* excitations localized on the

DPPZ-Br ligand.

Figure 57: Eu Br T1 orbital

Based on the calculated values of the lowest S1 and T1 states, and based on a value of

2.0193 eV for the 5D0 →7 F2 energy, ∆EISC and ∆EET can be calculated for Eu Br. The

energy of intersystem crossing ∆EISC was calculated to be 0.314 eV. The energy transfer to

gap ∆EET was calculated to be 0.2675 eV.
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Eu(TTA)3DPPZ-COOH

Figure 58: Structure of Eu COOH.

In this section calculated singlet state and triplet state results for the carboxylic acid sub-

stituted DPPZ (DPPZ-COOH) are presented for the Eu(TTA)3DPPZ-COOH (Eu COOH)

complex. At the time of the writing of this thesis synthesis of the Eu COOH complex has

not yet been done. Since there is no experimental data, results will be presented as is and

without comparison to experiment. The orbital transitions involved in the excited are listed

in Table 11. There are two dominant transitions that contribute to the excited state, which

are visualized in Figure 59 and in Figure 60.

Table 11: The orbital transitions and contribution to the λmax = 323.19 nm for Eu COOH.

HOMO Orbital LUMO Orbital % Contribution

H - 15 → LUMO 13.6
H - 6 → L + 1 2.83
H - 2 → L + 3 8.84
H - 2 → L + 4 23.3
H - 1 → L + 3 9.49

HOMO → L + 5 25.7
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(a) H-2 (b) L+4

Figure 59: The first dominant transition is the H-2 (a) orbital to the L+4 (b) orbital, which
is (ILCT)[π(TTA) → π*(TTA)] in character.

(a) HOMO (b) L+5

Figure 60: The second dominant transition is the HOMO (a) orbital to the L+5 (b) orbital,
which is (ILCT)[π(TTA) → π*(TTA)] in character.

The energy for the S1 state was calculated to be 2.5000 eV. The T1 energy was calculated

to be 2.2722 eV. The T1 state is attributed to DPPZ-COOH localized π → π* transition.
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Figure 61: Lowest T1 orbital of Eu COOH.

Based on the calculated values of the lowest S1 and T1 states and based on a value of

2.0193 eV for the 5D0 →7 F2 energy, ∆EISC and ∆EET can be calculated for Eu NH2. The

energy of intersystem crossing ∆EISC was calculated to be 0.2278 eV. The energy transfer

gap ∆EET was calculated to be 0.2529 eV.

Eu(TTA)3DPPZ-ME

In this section calculated singlet state and triplet state results for the methyl ester substi-

tuted DDPZ (DPPZ-ME) of the Eu(TTA)3DPPZ-ME (Eu ME) are presented and compared

with experimentally determined absorption data. The orbital transitions involved in the ex-
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cited state at 323.25 nm is presented in Table 12. There are two dominant transitions that

contribute to the excited state, which are visualized in Figure 62 and in Figure 63.

Table 12: The orbital transitions and contribution to the λmax = 323.25 nm of Eu ME.

HOMO Orbital LUMO Orbital % Contribution

H - 15 → LUMO 13.7
H - 6 → L + 1 3.64
H - 2 → L + 3 9.29
H - 2 → L + 4 22.5
H - 1 → L + 3 9.06

HOMO → L + 5 25.1

(a) H-2 (b) L+4

Figure 62: The first dominant transition is the H-2 (a) orbital to the L+4 (b) orbital, which
is (ILCT)[π(TTA) → π*(TTA)] in character.
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(a) HOMO (b) L+5

Figure 63: The second dominant transition is the HOMO (a) orbital to the L+5 (b) orbital,
which is (ILCT)[π(TTA) → π*(TTA)] in character.

The energy of the S1 state was calculated to be 2.5607 eV. The T1 energy was calculated

to be 2.2680 eV. The T1 state is attributed to DPPZ localized π → π* transition.

Figure 64: Lowest T1 orbital of Eu ME.

Based on the calculated values of the lowest S1 and T1 states and based on a value of

2.0193 eV for the 5D0 →7 F2 energy, ∆EISC and ∆EET can be calculated for Eu ME. The

energy of intersystem crossing ∆EISC was calculated to be 0.2927 eV. The energy transfer

to gap ∆EET was calculated to be 0.2487 eV.
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Eu(TTA)3DPPZ-EE

Figure 65: Structure of Eu(TTA)3DPPZ-EE

In this section calculated singlet state and triplet state results for the ethyl ester substi-

tuted DPPZ ligand are presented and compared with experimentally determined absorption

data for the Eu(TTA)3DPPZ-EE (Eu EE) complex. The orbital transitions involved in the

excited state at 323.25 nm is presented in Table 13. There are two dominant transitions that

contribute to the excited state, which are visualized in Figure 66 and in Figure 67.

Table 13: The orbital transitions and contribution to the λmax = 323.25 nm excited state of
Eu EE.

HOMO Orbital LUMO Orbital % Contribution

H - 15 → LUMO 11.7
H - 6 → L + 1 3.43
H - 2 → L + 3 9.50
H - 2 → L + 4 22.9
H - 1 → L + 3 9.27

HOMO → L + 5 25.6
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(a) H-2 (b) L+4

Figure 66: The first dominant transition is the H-2 (a) orbital to the L+4 (b) orbital, which
is (ILCT)[π(TTA) → π*(TTA)] in character.

(a) HOMO (b) L+5

Figure 67: The second dominant transition is the HOMO (a) orbital to the L+5 (b) orbital,
which is (ILCT)[π(TTA) → π*(TTA)] in character.

The energy for the S1 state was calculated to be 2.5753 eV. The T1 energy was calculated

to be 2.2675 eV. The T1 state is attributed to DPPZ-EE localized π → π* transition.
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Figure 68: Ethyl ester triplet orbital.

Based on the calculated values of the lowest S1 and T1 states and based on a value of

2.0193 eV for the 5D0 →7 F2 energy, ∆EISC and ∆EET can be calculated for Eu EE. The

energy of intersystem crossing ∆EISC was calculated to be 0.3078 eV. The energy transfer

to gap ∆EET was calculated to be 0.2482 eV.

Eu(TTA)3DPPZ-NO2

Figure 69: Structure of Eu NO2

In this section calculated singlet state and triplet state results for the nitro substituted

DPPZ (DPPZ-NO2) are presented for the Eu(TTA)3DPPZ-NO2 (Eu NO2) complex and

compared with experimentally determined absorption data. The orbital transitions involved
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in the excited state at 323.14 nm are presented in Table 14. There are two dominant

transitions that contribute to the excited state, which are visualized in Figure 70 and in

Figure 71.

Table 14: The orbital transitions and contribution to the λmax = 323.14 nm excited state of
Eu NO2.

HOMO Orbital LUMO Orbital % Contribution

H - 12 → L + 3 3.83
H - 12 → L + 5 5.82
H - 9 → L + 3 3.00
H - 9 → L + 5 6.39
H - 7 → L + 3 2.57
H - 7 → L + 5 4.79
H - 2 → L + 3 5.37
H - 2 → L + 4 4.69
H - 2 → L + 5 20.2
H - 1 → L + 3 8.05

HOMO → L + 6 24.0

(a) H-2 (b) L+5

Figure 70: The first dominant transition is the H-2 (a) orbital to the L+5 (b) orbital, which
has (ILCT)[π(TTA) → π*(TTA)] character as well as (LLCT)[π(TTA) → π*(DPPZ)] due
to a minimal amount of charge density on the DPPZ ligand.
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(a) HOMO (b) L+6

Figure 71: The second dominant transition is the HOMO (a) orbital to the L+5 (b) orbital,
which is (ILCT)[π(TTA) → π*(TTA)] in character.

The energy of the S1 state was calculated to be 2.2178 eV. The T1 energy was calculated

to be 2.2147 eV. The T1 state is attributed to DPPZ-NO2 localized π → π* transition.

Figure 72: EU NO2 triplet orbital.

Based on the calculated values of the lowest S1 and T1 states and based on a value of

2.0193 eV for the 5D0 →7 F2 energy, ∆EISC and ∆EET can be calculated for Eu NO2. The

energy of intersystem crossing ∆EISC was calculated to be 0.0031 eV. The energy transfer

gap ∆EET to Eu NO2’s excited state is calculated to be 0.1954 eV.

For all nine complexes the S0 → S1 transition is π → π* where the HOMO orbital
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is located on the TTA ligands and the LUMO orbital is located on the DPPZ ligand (see

Appendix E). This indicates that the substituents do not have any great affect on the locality

of the S1 state. The oscillator strength for the S0 → S1 is considerably low indicating that

this transition does not play any major role in the absorption spectra.

According to the singlet state and triplet state data initial excitation is from the HOMO,

H-1, and H-2 orbitals located on the TTA ligands to the L+3, L+4, and L+5 orbitals also

located on the TTA ligands. Referring back to Figure 9 the HOMO, H-1, and H-2 orbitals

are all relatively close in energy and unaffected by the ligand substituents. On the other

hand there is a large gap in energy between the LUMO and L+1 orbitals. As previously

mentioned the energy of the LUMO orbital shows significant dependence on the ligand

substituents while the L+1 orbital energy remain relatively unaffected. A notable exception

being the Eu NO2 complex. The effect that the substituents have on the LUMO orbitals

and the L+1 and orbitals is not surprising given that the locality of the L+1 orbitals are

located on TTA and the LUMO orbital is located on DPPZ.

CALCULATED ∆EISC AND ∆EET

Effective sensitization is dependent on several factors. It has been shown that the triplet

state energy plays an important role in the efficiency of ligand sensitization48. In trying to

determine whether intersystem crossing and energy transfer gaps, which depend on the T1

energy, are effective at sensitizing europium’s excited state we must turn to the studies of

Latva48 and Reinhoudt49, referred to as Latva’s empirical rule and Reinhoudt’s empirical

rule. Based off of trends of luminescent lanthanide complexes with different sensitizer ligands

a range of energies were proposed for ideal ∆EISC , ∆EET energy gaps. The Reinhoudt

empirical rule states that effective sensitization occurs when ∆EISC is greater than 0.62 eV.

The Latva empirical rule states that effective sensitization occurs when ∆EET is within the

range of 0.25 - 0.43 eV. Table 15 summarizes the S1, T1, ∆EISC , and ∆EET energies.
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Table 15: Calculated lowest S1 and T1 state energies and ∆EISC and ∆EET energy gaps.
The 5D0 → 7F2 transition is used as reference at 2.0193 eV2. (Blue text indicate quantum
yield data available.)

Complex S1 (eV) T1 (eV) ∆EISC (eV) ∆EET (eV)

Eu NH2 2.8868 2.1065 0.7803 0.0872
Eu MeO 2.8417 2.3256 0.5161 0.3063
Eu CH3 2.7911 2.3183 0.4728 0.2990
Eu H 2.7205 2.3033 0.4172 0.2840
Eu Br 2.6008 2.2868 0.3140 0.2675
Eu COOH 2.5000 2.2722 0.2278 0.2529
Eu ME 2.5607 2.2680 0.2927 0.2487
Eu EE 2.5753 2.2675 0.3078 0.2482
Eu NO2 2.2178 2.2147 0.0031 0.1954

Figure 73 illustrates the S1, T1, ∆EISC , and ∆EET energies with reference to the 5D0

→ 7F2 energy of Eu(III). For a reference complex with a good quantum yield we look at

Eu(TTA)3Phen. In the paper by Nockemann et al.45 the authors used a direct measurement

method with an integrating sphere. With Eu(TTA)3Phen being dissolved in dimethylfor-

mamide the authors measured a quantum yield of 36.5 %. In the paper by Nolasco10 the

authors calculated the Eu(TTA)3Phen S1 and T1 energy of 3.2457 eV and 2.3393 eV respec-

tively, which gives ∆EISC and ∆EET of 0.9063 eV and 0.2068 eV respectively.
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Figure 73: S1 and T1 energies of each complex.

The ∆EISC energy gap for all the complexes fall between 0.78 - 0.003 eV as illustrated in

Table 15. The ∆EISC of 0.9063 eV for Eu(TTA)3Phen and the empirical threshold value of

0.62 eV suggest that there will be an increase of energy back transfer for all of the complexes

except for Eu NH2 with a ∆EISC value of 0.7803 eV. This suggests that effective energy

transfer will not occur resulting in a decrease in luminescence quantum yield. The ∆EET

energy gap for the complexes all fall within the threshold of 0.25 - 0.43 eV to have effective

energy transfer except for Eu NH2 and Eu NO2, which are below the acceptable threshold

value. The ∆EET energy gap for Eu(TTA)3Phen is also below the threshold value with a

∆EET of 0.2068. In comparing the results in this study to the results in Nockemann and

Nolasco it appears as though the ∆EISC has the greatest effect on the complexes ability to
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sensitize Eu(III)’s excited states. This can be seen by how the ligand substiuents affect the

S1 energy in Figure 73

According to the Latva empirical rule the calculated ∆EET energies suggest that all of the

complexs would have effective charge transfer, with some exceptions. The first exception is

Eu NH2 which has a ∆EET of 0.0872 eV. Because the ∆EET is so small it is expected to have

significant energy back transfer, suggesting emission from T1 or non-radiative deactivation.

The other potential exception would be Eu NO2. With a ∆EET of 0.1954 eV the energy

gap is slightly below the threshold suggested by Latva, suggesting decreased luminescent

quantum yields due to energy back transfer.

There are some interesting trends that are revealed when considering ∆EISC and ∆EET

in regards to the electron withdrawing and electron donating characteristics of the various

ligand substituents. Figure 73 clearly shows that the greatest effect that the substituents

have is on the S1 energy levels with the greatest effect on the S1 occurring with Eu NO2.

The T1 energy is only marginally affected except for Eu NH2 who’s triplet state energy is

greatly affected by the substituent. Eu NO2 also has a more modest effect on the T1 energy

but not to the extent that Eu NH2 does. The common factor relating these two substituents

is the presence of the nitrogen atom with the main difference being the oxygen atoms as

opposed to the hydrogen atoms. It is possible that the shift affecting the S1 and T1 states is

indicative of the differences between resonance and inductive effects of the substituents. The

electron donating effect of an amine group is through resonance of its lone pair of electrons,

and the electron withdrawing effects of the nitro group are primarily inductive due to the

positive charge on the nitrogen and to a lesser extent some resonance effects.

Figure 73 also illustrates how ∆EISC is lower with respect to Eu H for the electron

withdrawing groups (Eu Br, Eu COOH, Eu EE, Eu Me, and Eu NO2), and there is an

increase of ∆EISC with respect to Eu H for the electron donating groups (Eu MeO and

Eu CH3). The trend for the ∆EET follows a similar pattern as ∆EISC , though the effect
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is marginalized owing to the T1 energy being relatively unaffected by the substituents. The

∆EET is lower with respect to Eu H for the electron withdrawing groups (Eu Br, Eu COOH,

Eu EE, Eu Me, and Eu NO2). Contrasting this trend is an increase in ∆EET with respect

to Eu H for the electron donating groups (Eu MeO, and Eu CH3) except for Eu NO2, which

shows a dramatic decrease in T1 energy as illustrated in Figure 73. This increase in ∆EET

as a result of the increase in the T1 energy can explained by a resonance and inductive (in

the case of Eu CH3) stabilization of the T1 orbital.

4.4 Luminescent Quantum Yield

Luminescent quantum yield measurements were done for the five complexes that had been

synthesized with Eu(TTA)3Phen as the reference standard. The mean quantum yield mea-

surements and their standard deviations are summarized in the Table 16.

Table 16: Experimental quantum yield measurements.

Complex Quantum Yield (%) Std. Dev.

Eu Br 6.84 0.90
Eu H 6.84 2.8
Eu EE 3.76 0.90
Eu ME 3.38 0.58
Eu NO2 9.27 3.7

All of the ligands that have had their quantum yield measured have electron withdrawing

substituents. Electron withdrawing groups decrease the ∆EISC and ∆EET energy gaps

as explained above and illustrated in Figure 73. This points to the expectation that the

quantum yields will decrease with respect to Eu H especially when compared to the ∆EISC

and ∆EET of Eu(TTA)3Phen detailed in Nolasco and Nockemann primarily due to energy

back transfer from low ∆EISC .

The results of quantum yield measurements confirm this trend. This is also reflected

in the Figure 73 where there is a clear decrease in S1 energy relative to Eu H. A notable
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exception is the quantum yield of Eu NO2. Despite being an electron withdrawing group

Eu NO2 presents a comparable quantum yield to Eu H. A plausible reason is that since the

S1 and T1 energies are only separated by 0.0031 eV intersystem crossing is bypassed and a

direct energy transfer from the S1 state to europium’s 5D0 excited state could occur.

Figure 74: Normalized luminescence

In Figure 74 the luminescence spectra are normalized and plotted against each other.

Regarding the S1 energies of the complexes in reference to Eu H we see that the S1 energy

decreases in the order of Eu H > Eu Br > Eu EE > Eu ME > Eu NO2. The decrease in

S1 energy corresponds to an increase in the redshift of the ligand based luminescence where

Eu NO2 has the greatest redshift when compared to the ligand based emission λmax.

There is also an increase in the amount of ligand based luminescence that also follows the
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trend of decreased S1 energy up to Eu ME. The Eu NO2 complex, however, shows a decrease

in overall ligand based luminescence. The overall increase in ligand based luminescence is

attributed to increased energy back-transfer promoted by a decrease in the ∆EISC gap

primarily due to the effect that the substituents have on the S1 state. The decrease in

overall ligand based luminescence for Eu NO2 as previously stated is thought to be from an

alternate energy transfer pathway. This pathway is thought to be facilitated by the narrow

energy gap between the S1 state and the T1 state as a result of the nitro group’s effect on

the singlet state energy. The increased quantum yield of Eu NO2 and the decrease in ligand

based luminescence combined with the value of the ∆EISC energy gap are strong indicators

supporting an alternate energy transfer process.
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CHAPTER 5: CONCLUSIONS

DFT calculations have been used to investigate the electronic properties of a series of

Eu(TTA)3DPPZ-R complexes where R is a series of substituents with various electron do-

nating/withdrawing characteristics. Optimized ground state geometries were performed.

Comparison of the calculated molecular geometry of Eu EE to the X-ray crystal structure

showed good agreement. Good agreement was also seen between calculated structures of

Eu H and Eu CH3 from Li16. Incorporation of electron donating groups (NH2, MeO, and

CH3) increased the energy of the HOMO orbital, LUMO orbital, and increased the HOMO-

LUMO energy gap. Incorporation of electron withdrawing groups (Br, COOH, EE, ME,

NO2) decreased the HOMO and LUMO energy as well as decreasing the HOMO-LUMO

energy gap.

TD-DFT calculations have been done to determine excited state properties. Excited

state oscillator strengths have been plotted in nm and eV. Normalized experimental absorp-

tion spectra are plotted with singlet state oscillator strengths. The calculated lowest energy

λmax shows good agreement with the experimental lowest energy λmax. The dominant or-

bital transitions for the lowest energy λmax are almost exclusively [π(TTA) → π*(TTA)]

transitions indicative of intra-ligand charge transfer. The dominant transition for Eu NH2

lowest energy λmax is [π(DPPZ-NH2, TTA) → π*(TTA)] making it ligand-to-ligand charge

transfer in character with some intra-ligand charge transfer.

Lowest energy S1 and T1 were determined by TD-DFT calculations. Within the context

of Reinhoudt’s empirical rule the only complex that meets this criteria is Eu NH2 with a

∆EISC of 0.7803 eV. The Latva empirical rule shows that there is a sufficiently large ∆EET

for all the complexes, except for Eu NH2, for effective energy transfer. Results also show

that for electron withdrawing groups the ∆EISC and ∆EET energies decrease with respect

to Eu H. For the electron donating groups the ∆EISC and ∆EET will increase with respect
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to Eu H, the only exception being Eu NH2. The substituents have the greatest effect on the

S1 energy levels. The electron donating groups have higher S1 energies than Eu H while the

electron withdrawing groups have lower S1 energies than Eu H. These lower energies increase

the probability of energy back transfer from the T1 state, which stays relatively unaffected

to the substituent effect except for Eu NH2 and Eu NO2 to a lesser extent. The lack of

energy transfer efficiency can be seen in the lower quantum yields relative to Eu H as well

as the amount of ligand based emission as illustrated in Figure 74 which also corresponds

to a redshifting of the ligand based emission. The Eu NO2 complex shows a decrease in

ligand based emission and a comparable quantum yield measurement to Eu H. Considering

the S1 energy level of Eu NO2 with the reduction in its ligand based emission it is very likely

that energy transfer is occurring through some alternate path such as direct sensitization of

Eu(III)’s 5D0 from the ligand based S0 state.
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CHAPTER 6: FUTURE WORK

We need to collect more data. In order to fully understand how the electron withdraw-

ing/donating characteristics affect the luminescent quantum yield of DPPZ more electron

withdrawing groups and electron donating groups should be synthesized, particularlly elec-

tron donating groups to get a better balance of substituent characteristics. In addition to

collecting quantum yield data on any new complexes, effort should be devoted to getting

better more reproducible quantum yield measurements for the complexes that are currently

available.
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CHAPTER 7: APPENDIX

A Geometry Optimization Input File

Sample Gaussian 09 input file for a DFT geometry optimization.

1 %nprocshared=16

2 %mem=14GB

3 %chk=<user defined checkpoint file>.chk

4 #p opt=(maxcycle=250) b3lyp/gen pseudo=read nosymm geom=connectivity

5 integral=(ultrafinegrid,acc2e=12) ...

scf=(novaracc,xqc,maxconventionalcycle=300)

6

7 <user defined calculation title>

8

9 0 1

10

11 <XYZ coordinates of the molecule>

12

13 <Bond connectivity and order>

14

15 S O C N F H 0

16 6-31+G**

17 ****

18 Eu 0

19 MWB52

20 ****

21

22 Eu 0

23 MWB52
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B Example Geometry Optimization Output

Example of output for a successful geometry optimization.

1 Item Value Threshold Converged?

2 Maximum Force 0.000007 0.000450 YES

3 RMS Force 0.000001 0.000300 YES

4 Maximum Displacement 0.001221 0.001800 YES

5 RMS Displacement 0.000260 0.001200 YES

6 Predicted change in Energy=-5.291874D-09

7 Optimization completed.

8 -- Stationary point found.

9 ----------------------------

10 ! Optimized Parameters !

11 ! (Angstroms and Degrees) !

12 -------------------------- ...

--------------------------

13 ! Name Definition Value Derivative Info. ...

!

14 --------------------------------------------------------------------

15 ! R1 R(1,5) 2.4163 -DE/DX = 0.0 ...

!

16 ! R2 R(1,6) 2.4124 -DE/DX = 0.0 ...

!

17 ! R3 R(1,8) 2.389 -DE/DX = 0.0 ...

!

18 ! R4 R(1,9) 2.4221 -DE/DX = 0.0 ...

!

19 ! R5 R(1,17) 2.6769 -DE/DX = 0.0 ...

!
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The program will then write to file all of the geometric parameters including bond lengths,

bond angles, dihedral angles, cartesian coordinates of each atom, orbital energy eigenvalues,

Mulliken charges, and dipole moment. Programs such as GaussView or ChemCraft can be

used to parse the out .log and .chk files to extract the computational data. The checkpoint

file (.chk) is used in the TD-DFT calculations for the excited state geometry.
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C Excited State Input File

Sample Gaussian 09 input file for a singlet state calculation. The singlet state calculation

reads the basis set and geometry (line 5) from the checkpoint file of the geometry optimization

(line 3). To calculate the triplet states simply amend line 5 with td=(triplet). The default

number of states that Gaussian will search for is three, so it is not necessary to specify the

number of states since we are only interested in the lowest T1 state.

1 %nprocshared=16

2 %mem=14GB

3 %oldchk=eu dppz singlet2.chk

4 %chk=eu dppz singlet3.chk

5 #p td=(singlet,nstates=150) b3lyp/checkbasis pseudo=read

6 nosymm geom=checkpoint integral=(ultrafinegrid,acc2e=12)

7 scf=(novaracc,xqc,maxconventionalcycle=300)

8

9 eu dppz singlet

10

11 0 1
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D Excited State Output

1 Excited state symmetry could not be determined.

2 Excited State 29: Singlet-?Sym 3.8335 eV 323.42 nm f=0.0445 ...

<S**2>=0.000

3 232 -> 246 -0.14060

4 233 -> 246 -0.24792

5 234 -> 246 0.26631

6 235 -> 246 0.51308

7 236 -> 246 0.12951

8 238 -> 246 0.14571

9 243 -> 250 -0.10125

10 245 -> 251 0.10788

11

12 Excited state symmetry could not be determined.

13 Excited State 30: Singlet-?Sym 3.8361 eV 323.21 nm f=0.6253 ...

<S**2>=0.000

14 233 -> 246 0.11941

15 235 -> 246 -0.17070

16 240 -> 247 0.10527

17 243 -> 248 -0.20264

18 243 -> 249 0.12972

19 243 -> 250 -0.34869

20 244 -> 248 -0.19693

21 244 -> 249 0.11031

22 245 -> 251 0.37499

The example singlet state output is from Eu H. There are two states displayed (S29 and S30).

Since the symmetry of the molecule was not considered in the calculation (Gaussian keyword:

nosymm) symmetry data is not displayed. The excited state energy is displayed in eV along
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with wavelength responsible for the excitation. The oscillator strength f is the probability of

the absorption occurring. The <S**2>=0.000 value is the spin contamination of the state,

since this is a singlet state there is no spin contamination. Next are displayed the orbitals

involved in the excited state along with configuration interaction expansion coefficients.
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E Sample Stampede Batch File

1 #!/bin/bash

2 #SBATCH -J dppz # Job Name

3 #SBATCH -o job dppz.%j # Output file name (%j expands to jobID)

4 #SBATCH -e error dppz.%j # Error file name (%j expands to jobid)

5 #SBATCH -N 1 # Gaussian only uses one node

6 #SBATCH -n 16 # Number of MPI tasks requested

7 #SBATCH -p normal # Queue name -- normal, development, etc.

8 #SBATCH -t 48:00:00 # Run time (hh:mm:ss)

9 #SBATCH -A TG-CHE150032 # You can remove this line if you only have one ...

allocation

10

11 # make sure we have the module loaded:

12 module load gaussian

13

14

15 # timestamps are helpful

16 echo "job started on $(date)"

17

18 export GAUSS SCRDIR=$SCRATCH/gaussianTmp/

19

20 # now run Gaussian:

21 g09 < eu dppz.gjf > eu dppz.log

22

23 echo "job finished on $(date)"
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F MATLAB Code

Custom MATLAB program used to make Figures 9 and 73.

1 load('MOenergyALL');
2 ev = MOenergyALL;
3 [x,y] = size(ev);
4

5 set(gca,'xtick',[])
6 set(gca,'xcolor',[1 1 1])
7

8 subs = {'Amine' 'Bromo' 'COOH' 'DPPZ' 'EthEster' 'MeEster' 'MeO' ...
'Nitro' 'Methyl'};

9 k = 0;
10

11 for i = 1:y
12

13 if ev(1,i) == 0
14

15 plot([i (i+1)],[0 0],'w')
16

17 else
18

19 k = k + 1;
20

21 for j = 1:x
22

23 plot([i (i+1)],[ev(j,i) ev(j,i)],'k')
24

25 end
26

27 xval = (i);
28 yval = .25;
29 text(xval,yval,subs(k),'FontSize',10)
30

31 end
32

33 end
34

35 axis tight
36 xlabel('Molecular Orbitals','Color','Black','Fontsize',12)
37 ylabel('Orbital Energy / eV','Color','Black','Fontsize',12)
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