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ABSTRACT 

SEARCHING FOR THE WHITE FRINGELESS ORCHID, PLATANTHERA INTEGRILABIA, 

IN WESTERN NORTH CAROLINA 

 

Maria “Mitzi” Harding 

Western Carolina University (December 2023) 

Director: Dr. Katherine Mathews 

 

Rare species conservation has taken on an urgency in the face of unprecedented environmental 

degradation and biodiversity loss, and tools such as species distribution modeling are needed to 

increase the efficiency and efficacy of conservation efforts. Platanthera integrilabia (White 

Fringeless Orchid) is a rare orchid endemic to southern Appalachia and the surrounding area 

occupying a relatively narrow niche: non-alluvial sphagnum wetlands. The species was 

historically documented in North Carolina but has not been observed in the state since 1992. I 

hypothesized that some undiscovered populations may persist in western North Carolina in 

under-surveyed areas of suitable habitat. I used a weighted ensemble method to develop the first 

range-wide species distribution model (SDM) for P. integrilabia and performed targeted surveys 

based on model results. The SDM predicted approximately 6% of the species’ range to be 

suitable habitat, including approximately 3% (788km2) of the study area within western North 

Carolina (AUC-PR=0.991). Surveys did not yield any new occurrences of P. integrilabia, but 

seven of the 25 sites contained vestigial patches of suitable habitat, one of which is 

recommended for incorporation into the reintroduction efforts currently underway in Henderson 

County, NC. The results of this study do not rule out the possibility that P. integrilabia may still 

persist in North Carolina. Results do indicate that patches of suitable habitat still remain and can 
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be predicted using a species distribution model. I also provide a framework for future iterations 

of the model intended to enhance the accuracy of predictions to more precisely direct future 

targeted surveys for P. integrilabia, and to aid in the conservation and restoration of this 

threatened orchid in its historical range.
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CHAPTER 1: INTRODUCTION 

 Effective rare species conservation planning depends on reliable and comprehensive 

knowledge of the distribution and abundance of the species of concern. The only way to directly 

protect in situ populations is to know where they exist. The very characteristics qualifying a 

species as rare (narrow geographic ranges, habitat specificity, low population numbers) can lead 

to low detectability preventing thorough documentation of occurrences and adequate protection 

of populations (Lomba et al. 2010). However, the habitat specificity of rare species can offer an 

opportunity to target searches in areas containing the restricted niches the species inhabit. 

Species distribution models can be used to direct targeted searches for new populations of rare 

species by analyzing the unique values of environmental parameters correlated with known 

occurrences to then predict areas of suitable habitat. The use of species distribution modeling 

(SDM) to predict suitable habitat and target area 

searches has often led to the discovery of previously 

undocumented occurrences of rare species (McCune 

et al. 2020, Lawson et al. 2022, McCune 2016, 

Lomba et al. 2010). 

 The White Fringeless Orchid, Platanthera 

integrilabia (Correll) Luer, is a rare terrestrial orchid 

(Fig. 1) occurring within the Appalachian Plateaus, 

Coastal Plain, Piedmont, Blue Ridge, Valley and 

Ridge, and Interior Low Plateaus physiographic 

regions.  It occurs in sandy acidic soils of partially 

shaded sphagnum bogs and other non-alluvial 

Figure 1. Platanthera integrilabia 

inflorescence. (photo: M. Harding) 
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(mainly precipitation fed) wetlands, generally found near level headwaters of small streams or 

seepage slopes (Shea 1992). Platanthera integrilabia was listed under the Endangered Species 

Act as a federally threatened plant in 2016 (81 FR 62826). The rare orchid has a relatively broad 

range in the southeast United States, but is patchily distributed throughout southeast Kentucky, 

eastern Tennessee, northern Georgia, northern Alabama, and northern Mississippi, and is 

historically known to occur in western North Carolina and northern South Carolina (Fig. 2). The 

majority of occurrences are concentrated on the Cumberland Plateau of Tennessee. Platanthera 

integrilabia is currently considered extirpated in North Carolina, as it has not been observed in 

the state since 1992 (USFWS 2021). Thorough surveys of the single documented occurrence in 

South Carolina (Greenville County) in August 2022 by myself and NHP botanist, Dr. Samantha 

Tessel, yielded no flowering individuals nor basal leaves of the species or commonly associated 

congeners.  

Figure 2. Range and element occurrence status of P. integrilabia. Possibly extirpated indicates no 

individuals were detected during the most recent survey, but suitable habitat remains. Unknown refers 

to sites where only vegetative Platanthera have been observed upon recent visits (species 

unconfirmed), or geographic locality of initial observation was too obscure to verify persistence. 

(ALNHP 2022, GDNR 2022, MDWFP 2022, NCDENR 2022, OKNP 2022, SCDNR 2022, TDEC 

2022, USFWS 2021).  

 

 

Figure 3. Infructescence of Platanthera integrilabia, at Starr Mountain, TN. Long nectar spurs persist 

distinguishing the species from other congeners into the fall. November 2, 2022 (photo: Ian 

Sabo)Figure 3. Range and element occurrence status of P. integrilabia. Possibly extirpated indicates 
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The patchy distribution of P. integrilabia is likely a function of the inherently rare 

mountain wetlands which it inhabits (Spira 2011). The wet and nearly flat headwaters within the 

southern Appalachian Mountains that P. integrilabia occupies are scarce to begin with, and land 

use changes due to development and agriculture are causing further decline (Murdock 1994). 

Historic records indicate approximately 122 known occurrences of P. integrilabia, only 86 of 

which distributed among 56 populations are now considered extant (USFWS 2023). The number 

of P. integrilabia individuals observed per occurrence ranges from 1 to just over 6000, the 

majority of which are reported to have low numbers of individuals. At the time of listing, 64% of 

known occurrences had fewer than 50 individuals ever observed, and 37% had fewer than 10 

individuals (USFWS 2016).  This high percentage of small and isolated populations could 

contribute to overall species decline due to Allee effects and the low seed viability found to be 

associated with small populations (USFWS 2021, Zettler and McInnis 1992). In the recent 

Species Status Assessment by USFWS, only 22% of 50 assessed populations were considered to 

have high or very high resilience (2021).  

  Low population numbers and declining occurrences of P. integrilabia may be due to a 

number of threats, both direct and indirect. The most pressing direct threats to P. integrilabia 

include land use changes, altered hydrology, poaching, herbivory by white tailed deer, feral hog 

activity, and native and non-native plant encroachment (USFWS 2021). In addition, like most 

orchid species, coexistence with specific obligate symbionts is required for survival and 

reproduction. Threats to these symbionts may pose an indirect threat to P. integrilabia 

populations, further increasing the orchid’s sensitivity to environmental degradation. Platanthera 

integrilabia is mycotrophic, dependent on a highly specialized mutualism with the mycorrhizal 

fungus symbiont, Epulorhiza inquilinia, for seed germination and protocorm development 
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(Currah et al. 1997). Flowers of P. integrilabia have a long nectar spur, white color, strong 

evening fragrance, and wide-set pollinia suggesting specialized co-adaptation with nocturnal 

sphingid moths for pollination (Zettler et al. 1996). Although P. integrilabia is self-compatible, 

fruit set and seed germination are significantly greater in large populations where out-crossing is 

more frequent (Zettler & McInnis 1992). Therefore, inbreeding depression could account for low 

seed germination in small populations. In addition, the hydrologic balance of the headwater 

wetlands where P. integrilabia occur could be vulnerable to increased climate variability 

associated with global climate change (Levison et al. 2013).  

 Platanthera integrilabia can be difficult to 

detect considering its brief emergence and bloom 

period. During winter plants persist as a pair of 

subterranean protocorms, one large tuber from last 

season’s growth and one small tuber which will 

lead to the coming season’s growth (Shea 1993). A 

large strap-shaped basal leaf emerges in late spring, 

approximately 20 cm long and 3 cm wide. Based on 

morphology alone, the basal leaves are nearly 

indistinguishable from other closely associated 

congeners, adding to the orchid’s low detectability. 

However, recent advancements in DNA barcoding 

have allowed researchers to distinguish the species 

from other congeners using leaf material (Aaron 

Floden, pers. comm.). Platanthera integrilabia is 

Figure 3. Infructescence of Platanthera 

integrilabia, at Starr Mountain, TN. Long 

nectar spurs persist distinguishing the 

species from other congeners into the fall. 

November 2, 2022 (photo: Ian Sabo) 

 

Figure 4. Location of eight element 

occurrences of P. integrilabia visited in 

2022 for initial habitat observations. 

Extant populations were observed at Starr 

Mountain (McMinn County, TN), 
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most readily distinguished from other Platanthera species in the field once an elongated stem, up 

to 60 cm tall, produces an inflorescence with few-20 flowers in late July through mid-August. 

After approximately six weeks, flowers senesce and develop into capsule fruits containing 

thousands of dust-like seeds, maturing in October (Shea 1993, USFWS 2016).   

It is only during the brief late summer bloom period that P. integrilabia is easily 

distinguished from co-occurring congeners by its large white flowers with an elongated nectar 

spur and entire labellum. The nectar spur persists through the fruiting phenophase prolonging 

window of detection into early fall, but only if the individual produces an inflorescence that year 

(Fig. 3). Inconspicuous phenology through most of the year, low numbers of individuals per 

occurrence, and inconsistent flowering frequency all contribute to low detectability of 

populations, further warranting targeted surveys for P. integrilabia in suitable habitat during its 

bloom period. 

Species distribution models aim to detect patterns of correlation between environmental 

predictor variables and known species occurrences to then spatially project those patterns over a 

given geographic area. SDMs have been used to predict habitat suitability and direct targeted 

surveys for rare species, often resulting in the discovery of previously undocumented populations 

(McCune et al. 2020, Lawson et al. 2022, McCune 2016, Lomba et al. 2010). Lomba et al. 

(2010) introduce the idea of the “rare species modelling paradox”. Small sample sizes, patchy or 

uneven distributions throughout their range, and lack of true absence locations for rare species 

can pose challenges to accurate predictive habitat modeling. However, the small number of 

occurrences across relatively small geographic ranges pose an opportunity to accurately capture 

and describe the restricted niches the rare species inhabit. They also point out that rare species 

with restricted niches that are uniquely adapted to highly fragmented habitat types are the ones 
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most in need of predictive habitat suitability modelling. Given P. integrilabia’s restricted niche, 

relatively large number of known occurrences throughout its range, and evidence of declining 

populations and habitat loss, it appears to be an excellent candidate for habitat suitability 

modelling.  

 Platanthera integrilabia was historically documented in North Carolina from two sites in 

Henderson County and two sites in Cherokee County but has not been observed in the state since 

1992 (USFWS 2021). However, the species was recently reintroduced to one historic location in 

North Carolina, Bat Fork Bog in Henderson County, in the winter of 2022 through a partnership 

between Atlanta Botanic Gardens and the US Fish and Wildlife Service. It has been suggested 

that some undiscovered populations may persist in western North Carolina in under-surveyed 

areas of suitable habitat. Thorough ground surveys on both public and private land in western 

North Carolina are lacking, and given the brief period of time when P. integrilabia is detectable, 

targeted surveys during the bloom period may indeed uncover undocumented occurrences (W. 

Knapp, personal communication 2023). Performing targeted surveys for new populations has 

been listed as a priority action in a USFWS draft recovery plan for P. integrilabia (USFWS 

2023). Previous studies have demonstrated the usefulness of using species distribution models to 

locate new populations of P. integrilabia in other portions of its range (Lawson et al. 2022, 

Alabama; Crabtree 2014, Tennessee). However, there have been no range-wide or Blue Ridge-

specific species distribution models (SDMs) developed for the species thus far.  

Two SDMs have been developed for subsets of P. integrilabia’s range; one for the 

Cumberland Plateau in eastern Tennessee and one for northern Alabama. In an unpublished 

study, Todd Crabtree of the Tennessee Natural Heritage Program developed a simple model 

using only geology, topographic curvature, and slope as environmental parameters. Despite its 
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simple nature, this model has been used to discover many new occurrences in the Cumberland 

Plateau since its development in 2006. The TN model was also used to locate candidate receptor 

sites for a successful P. integrilabia translocation project in 2018 (Wooten et al. 2020). A more 

recent model was developed for northern Alabama using ten environmental parameters 

describing various climate, watershed, topography, and soil characteristics to predict suitable 

habitat and direct surveys. Targeted surveys of areas predicted to have suitable habitat by the 

SDM yielded three new occurrences of P. integrilabia in Alabama (Lawson et al. 2022). These 

studies demonstrate that species distribution modeling and targeted surveys can be an effective 

tool for discovering new populations of P. integrilabia within subsets of its geographic range. I 

hypothesize that by correlating environmental predictor variables with known presence points 

throughout the species range, we can predict where suitable habitat for P. integrilabia occurs in 

North Carolina.  

 The objective of this study was to develop and evaluate the performance of a range-wide 

species distribution model for P. integrilabia and to perform targeted surveys for the species in 

western North Carolina within predicted habitat patches. Results from this model were used to 

build a framework for future iterations of the model to further refine the prediction of suitable 

habitat. My goal is to enable the discovery of unknown populations of P. integrilabia in western 

North Carolina, and throughout its range, and to help identify suitable locations for 

reintroduction and translocation of the species. 
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CHAPTER 2: METHODS 

 This research project included observing P. integrilabia and its habitat, developing and 

analyzing a predictive species distribution model (SDM), and performing targeted field surveys 

throughout western North Carolina.  

Initial habitat characterization 

 In August 2022, to familiarize myself with the target species and its habitat within the 

Blue Ridge Physiographic region, I visited eight Element Occurrences (EOs) previously 

documented by state Natural Heritage Programs (NHPs) (Fig. 4).  Three of the eight EOs are 

considered extirpated: Bat Fork Bog, Laurel Branch (Henderson County, North Carolina) and Oil 

Camp Creek (Greenville County, South Carolina). Through herbarium collections, previous 

status reports, and conversations with collectors I was able to navigate to the places where the 

species was once documented in the extirpated locations. Extant populations were observed at 

Starr Mountain (McMinn County, TN), Sawmill Branch (Polk County, TN), Pine Log Mountain 

WMA (Bartow County, GA), Big Canoe (Pickens County, GA), and Lee Mountain (Stephens 

County, GA). I made on-site observations of the common topography, soil moisture, canopy 

cover and associated species. These site visits were important in training myself to recognize the 

target species, associated species and abiotic characteristics of actual suitable habitat.  
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Species Distribution Model 

  I developed a range wide species distribution model for P. integrilabia evaluating 

correlations between environmental predictor variables and occurrence point locations to predict 

habitat suitability throughout the range of the species. The final model output is available for 

download at https://doi.org/10.5281/zenodo.10280442 (Harding 2023). Many different 

Figure 4. Location of eight element occurrences of P. integrilabia visited in 2022 for initial habitat 

observations. Extant populations were observed at Starr Mountain (McMinn County, TN), Sawmill 

Branch (Polk County, TN), Pine Log Mountain WMA (Bartow County, GA), Big Canoe (Pickens 

County, GA), and Lee Mountain (Stephens County, GA). Three of the 8 EOs are considered extirpated: 

Bat Fork Bog, Laurel Branch (Henderson County, North Carolina) and Oil Camp Creek (Greenville 

County, South Carolina). 

 

 

Figure 5. Study area and presence-pseudoabsence data used to train the range-wide ensemble SDM for 

P. integrilabia. Study area was arbitrarily selected to encompass the range of available presence 

locations, resulting in a 201,634km2 area encompassing 7 states and 6 physiographic regions. 

Pseudoabsence points (N=500) were randomly generated throughout the study area in order to 

characterize the background environmental parameters for comparison to presence point 

locations.Figure 4. Location of eight element occurrences of P. integrilabia visited in 2022 for initial 

habitat observations. Extant populations were observed at Starr Mountain (McMinn County, TN), 

Sawmill Branch (Polk County, TN), Pine Log Mountain WMA (Bartow County, GA), Big Canoe 

(Pickens County, GA), and Lee Mountain (Stephens County, GA). Three of the 8 EOs are considered 

extirpated: Bat Fork Bog, Laurel Branch (Henderson County, North Carolina) and Oil Camp Creek 

(Greenville County, South Carolina). 

 

https://doi.org/10.5281/zenodo.10280442
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algorithms have been evaluated for use in species distribution modeling, each with its own 

respective strengths and limitations dependent on sample size, study area, absence data, and 

species prevalence (Elith et al. 2006). Ensemble models combine multiple algorithms into one 

weighted output and have been shown to be more robust and accurate in predicting species 

distributions compared to using a single algorithm (Marmion et al. 2009, Breiner et al. 2015). In 

a recent review of the predictive performance of 21 common species distribution modeling 

approaches across 225 datasets of varying spatial extent and sample size, ensemble models 

consistently yielded the most accurate results (Valavi et al. 2022).  

Ramirez-Reyes et al. (2021) recently published a comparison of four modeling 

approaches using occurrence data for four at-risk species. They compared three individual 

algorithms and an ensemble model which combined the three individual algorithms using a 

weighted average based on their relative performance. For all four species, the ensemble model 

consistently showed reduced uncertainty and improved predictive accuracy compared to the 

individual models based on cross-validation results. The author aimed to provide an easily 

repeatable modelling approach to benefit rare species conservation through optimizing surveys, 

identifying sites for relocation or reintroduction, and supporting habitat conservation planning. 

Considering this alignment with my own research goals, I chose to apply the same ensemble 

modelling technique as the author, with a few modifications, by adapting the provided R code to 

the P. integrilabia presence data and predictor variables. The ensemble model combines three 

commonly used algorithms: a generalized additive model (GAM; Hastie and Tibshirani 1986), a 

generalized boosted model (GBM; Friedman et al. 2000), and a maximum entropy model 

(MaxEnt; Phillips et al. 2006). GAM is a multiple regression algorithm, while GBM and MaxEnt 

are machine-learning methods. I processed occurrence point data, prepared environmental 
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predictor variable rasters, and generated pseudoabsence points using ArcPro 3.1.0 (ESRI 2022). 

Model fitting, projection, and cross-validation was done using RStudio (R Core Team 2021). 

Study Area 

 I delineated an arbitrary modelling extent representing P. integrilabia’s recorded historic 

range throughout southern Appalachia. The 201,634 km2 study area includes northeast 

Mississippi, northern Alabama, northern Georgia, northwest South Carolina, western North 

Carolina, southwest Virginia, southeast Kentucky, and eastern Tennessee (Fig. 5). The portion of 

the study area falling within western North Carolina is 26,619 km2.  

 

Figure 5. Study area and presence-pseudoabsence data used to train the range-wide ensemble SDM 

for P. integrilabia. Study area was arbitrarily selected to encompass the range of available presence 

locations, resulting in a 201,634km2 area encompassing 7 states and 6 physiographic regions. 

Pseudoabsence points (N=500) were randomly generated throughout the study area in order to 

characterize the background environmental parameters for comparison to presence point locations. 

 

 

Figure 5. Study area and presence-pseudoabsence data used to train the range-wide ensemble SDM 

for P. integrilabia. Study area was arbitrarily selected to encompass the range of available presence 

locations, resulting in a 201,634km2 area encompassing 7 states and 6 physiographic regions. 

Pseudoabsence points (N=500) were randomly generated throughout the study area in order to 



 

12 
 

Presence and Absence Points 

 The presence points used to inform the model were generated from EO data for P. 

integrilabia provided by state NHPs across the species’ range (ALNHP 2022, GDNR 2022, 

MDWFP 2022, NCDENR 2022, OKNP 2022, SCDNR 2022, TDEC 2022) (Fig. 5). Though the 

focus of this study was to model suitable habitat within the Blue Ridge physiographic region, 

there are only 11 documented occurrences points within this portion of the species’ range, three 

of which are based on historic collections with obscure location records. Hence, the modeled 

study area was expanded to the entire range to increase the sample size of presence locations 

used to inform a general model. The total number of NHP EO polygons representing all known 

P. integrilabia occurrences is 124 across 7 states. These EOs represent approximately 89 

populations, only 50 of which are considered extant according to the latest species status 

assessment in 2021 (USFWS 2021).  

 Using information available from the USFWS enabling legislation designating P. 

integrilabia as a threatened species, subsequent USFWS species status assessments, and NHP 

metadata for each EO, I determined which polygons had enough geospatial accuracy (+/- 30m) 

to be used in the model (USFWS 2016). Considering environmental predictor variables have (or 

were resampled to) a 30m resolution, this was the preferred accuracy level of each presence 

location. Of the 124 presence records provided by NHPs, 85 were chosen to have enough spatial 

accuracy to be used in the model.  

 To maximize the sample size of presence locations, historic occurrences were included in 

the analysis as long as the location information was detailed enough to meet the 30m accuracy 

threshold. The 85 EOs chosen to be used as presence locations for the model comprised 61 

extant and 5 extirpated occurrences, and another 17 occurrences of unknown status. There can be 



 

13 
 

a tradeoff in sensitivity (proportion of accurately predicted presence points) and specificity 

(proportion of correctly predicted absences) of the model when using historic locations, 

especially when the environmental variables include potentially impersistent conditions 

(temperature, precipitation, and land use) (Bracken et al. 2022). Three of the historic presence 

points used to train the model represented extirpated populations within the Blue Ridge 

physiographic region. Considering the main goal of this study was to discover undocumented 

populations within this region, I chose to include these and other historic populations to capture 

the entire range of preferred environmental conditions (achieving maximum sensitivity). 

However, this comes with the potential cost of specificity leading to over-prediction of suitable 

habitat as it relates to impersistent environmental variables such as land use changes in areas 

historically inhabited by the target species (Bracken et al. 2022).  

 Original EO data from NHPs are represented by polygons outlining an occurrence, but 

presence points must be in XY format for the model. To best represent the habitat of the entire 

occurrence, presence points were generated throughout each polygon of interest. To avoid 

overfitting, points had a minimum distance of 30m from any other point (considering the 30-m 

resolution of the environmental predictor variables). This resulted in n=158 presence points 

generated within 85 EO polygons chosen to represent habitat where P. integrilabia either occurs 

or has been known to occur within 30m.   

Random pseudoabsence points were generated in ArcPro to train the model on 

background environmental conditions to be contrasted with presence points (Phillips et al. 2009). 

I created a ‘background’ polygon bounded by the study area and a 2km buffer around any 

presence points to be used in the model and randomly generated 500 points within the polygon. 

This number of background pseudoabsences were generated based on the methods of Ramirez-



 

14 
 

Reyes et al. (2021) and Lawson et al (2022).  Both presence and pseudoabsence point locations 

were exported as XY coordinates in a .csv file containing a dataset of n=654 presence and 

absence response variables to be used in training the model on specific environmental conditions 

at each point (Fig. 5). 

Environmental Predictor Variables 

 Environmental predictor variables were chosen based on observed habitat conditions, 

variables used in previously developed SDMs for the species which proved effective for subsets 

of the species range, and the availability of geospatial data for the entire study area (see Table 3 

in Results).  Average annual temperature and precipitation from 1991-2020 were acquired 

through the PRISM Climate Group online repository (PRISM Climate Group 2020). The best 

available spatial resolution of 800m was resampled to a 30m resolution. The National Elevation 

Dataset (NED 30) was used to calculate slope, curvature, and elevation at a 30m resolution 

(USGS 2019). The National Hydrography Dataset (specifically NHD Flowline selected for 

streams and rivers) was downloaded by state across the study area and combined in ArcPro to 

calculate the Euclidian distance to streams at a 30m resolution (USGS 2018).  

 Environmental Protection Agency Stream Catchment (StreamCat) repository was used to 

download stream catchment-based metrics across the study area (Hill et al. 2016; 

https://www.epa.gov/national-aquatic-resource-surveys/streamcat-dataset). StreamCat variables 

summarize metrics for the nearby landscape that flows directly into a stream segment. Indexes 

are special metrics available through the StreamCat database which model or combine multiple 

metrics to describe catchment features such as baseflow, catchment integrity and wetness. I 

chose the following metrics to describe soil characteristics and substrate moisture within P. 

integrilabia habitat patches: baseflow index, catchment integrity, wetness index, soil 



 

15 
 

permeability, percent organic matter, and percent sand. Variables were downloaded for each of 

the 6 hydro-regions across the study area, then combined and reprojected to an equal area 

projection in ArcPro. Metrics were averaged across catchment basins ranging from 0.0009 to 

79.1226 km2 across the study area and were resampled to a 30m resolution.     

 Baseflow is the component of streamflow that can be attributed to ground-water 

discharge into streams (Wolock 2003) and can be particularly important in maintaining stream 

flow in the absence of precipitation events. The baseflow index is the ratio of baseflow to total 

flow, expressed as a percentage. Catchment integrity is a metric that evaluates the “capacity of a 

watershed to support and maintain the full range of ecological processes and functions essential 

to the sustainability of biodiversity and of the watershed resources and services provided to 

society” (Thornbrugh et al. 2018, page 1144). It is derived from an analysis of 22 StreamCat 

metrics representing anthropogenic features thought to negatively affect a watersheds ability to 

maintain six key functions: hydrologic connectivity, temperature regulation, habitat provision, 

hydrologic regulation, regulation of water chemistry, and sediment regulation. Baseflow index 

and catchment integrity were shown to have a high percent contribution in an Alabama-only 

SDM for P. integrilabia which led to the discovery of three new occurrences during targeted 

surveys (Lawson et al. 2022). The Wetness Index metric is a Compound Topographic Index 

which identifies areas with the potential to be wet enough to create wetlands. It uses the 30m 

NED to assess the upstream area and slope as it relates to overland flow and potential 

accumulation of water in a catchment basin (Bryce and Horvath 2019).  

 The mean permeability (cm/hour), mean percent organic matter, and mean percent sand 

soil metrics are characteristics of mapped soil associations averaged within a catchment basin, 

and are based on the Natural Resource Conservation Service’s State Soil Geographic database 
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(STATSGO; https://catalog.data.gov/dataset/u-s-general-soil-map-statsgo2). The STATSGO 

database is a generalized version of the more detailed SSURGO soil survey maps and offer soil 

characteristics for use on a multistate or regional scale (Mednick et al. 2006). These soil metrics 

were chosen to capture common soil characteristics among mapped soil associations where P. 

integrilabia is known to occur. Soil permeability is known to affect important hydrologic 

functions of wetlands such as hydroperiod and ground water infiltration thus affecting vegetation 

composition (Correa-Araneda et al. 2012). Considering P. integrilabia is known to inhabit sandy 

acidic soils with little organic matter (USFWS 2021), the mean percent sand and mean percent 

organic matter metrics were intended to detect this correlation among presence locations.  

 Once the geospatial layers describing environmental predictor variables were 

downloaded, they were post-processed and prepared for modeling using ArcPro, and evaluated 

for correlation using the cor() function in the base R package (R Core Team 2021). StreamCat 

metrics were sourced as vector data. Each catchment was represented by a polygon with a mean 

value for each metric. Catchment polygons were rasterized into 30m pixels and aligned to match 

DEM derivative rasters (slope and curvature) using the ‘Mosaic to Raster’ function. All raster 

layers then were then clipped to the study area and aligned using the ‘Extract by Mask’ function 

in ArcPro, resulting in identical extents, projections, and pixel alignment (exact numbers of 

columns and rows) for all variables. Presence points, absence points, and predictor variables 

were projected to North America Albers Equal Area Conic (NAD 1983 Geographic Coordinate 

System), an equal-area projection, to maintain pixel size and shape considering the large multi-

state extent of the study area (Ramirez-Reyes et al. 2021). Values of environmental predictor 

variables were extracted for each presence and pseudoabsence point, and were evaluated for 
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correlation using the cor() function in base R (R Core Team 2021). Elevation and mean annual 

temperature had a correlation coefficient of 0.87, so elevation was removed from the analysis. 

Running the model and cross validation 

 The georeferenced presence points, pseudoabsence points, and environmental predictor 

variables were analyzed for empirical correlations which were then projected across the study 

area to highlight areas of suitable habitat using an ensemble SDM method described by Ramirez-

Reyes et al. (2021). The R code published by Ramirez-Reyes (2021) was adapted to run, cross-

validate, and combine the three models to produce the final ensemble output (Appendix A). The 

code employs the mgcv package for running the GAM (Wood 2018), gbm for running the GBM 

(Greenwell et al. 2018), and the dismo package for running the MaxEnt model (Hijmans et al. 

2017). For generating performance metrics, the package ROCR was used for area under the 

receiver operator characteristic curve (Sing et al. 2005) and MLmetrics for calculating the area 

under the precision recall curve (Yachen 2016).  

 Each unique algorithm created a different predictive output based on differences in their 

fitted functions, which were then projected onto the study area, assigning each 30x30m pixel a 

relative Habitat Suitability Index (HSI) from 0 (low suitability) to 1 (high suitability). Results 

were then cross-validated using a leave-one-out approach to generate test values (Hastie et al 

2009). The model was run 654 times (154 presence points + 500 pseudoabsence points), each 

time withholding one observation and using n-1 observations to train the model and generate a 

test value to compare to the withheld observation. This process generated a set of 654 ‘test 

values’ which were then compared to the actual ‘observed values’ to generate model 

performance metrics. Each model algorithm calculates own contribution index describing the 

relative importance of each predictor variable to habitat suitability predictions. Contribution 
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indices were calculated as p-values for GAM (generalized additive model), relative influence for 

GBM (generalized boosted model), and percent contribution for MaxEnt (maximum entropy 

model).   

Performance metrics were calculated for each individual model, then used to create the 

final weighted ensemble output. The area under the receiver operator characteristic curve (AUC-

ROC, or simply AUC) is the most common performance metric used to evaluate the accuracy of 

species distribution models (Hijmans and Elith 2019). The AUC-ROC is the area under the curve 

of the plot of sensitivity (correctly predicting presences) versus 1-specificity (correctly predicting 

absences) (Sofaer et al. 2019). AUC-ROC represents the ability of the model to discriminate 

between presence and absence, or probability that a randomly selected presence will have a 

higher suitability prediction than a randomly selected absence across all thresholds. This metric 

has been criticized as overstating model accuracy for species with low prevalence over a large 

geographic range, especially in models using pseudoabsences (Lobo et al. 2008). Therefore, the 

area under the precision recall curve (AUC-PR) was also generated (Ramirez-Reyes et al. 2021). 

This approach plots precision versus sensitivity, is independent of specificity or true absence 

predictions, and is not affected by study area extent or the use of pseudoabsences (Sofaer et al. 

2019). Lastly, the Pearson Correlation Coefficient (COR) compared the ‘test values’ for each 

presence and pseudoabsence point to the actual ‘observed values’ at each point as an additional 

robustness check (Ramirez-Reyes et al. 2021).  

The predicted HSI output from the three individual models were weighted and combined 

to produce the final ensemble output. Individual model HSI scores were multiplied by their 

relative model performance (weight=individual AUC-PR/sum of the three AUC-PR) then 

summed to create the final ensemble model HSI predictions (Ramirez-Reyes et al 2021). As in 
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the three individual model outputs, the result was a projection of predicted suitable habitat, with 

each 30x30m pixel within the study area assigned a relative HSI from 0 to 1 based on the 

combined results of the three individual models. Results were cross-validated using the same 

leave-one-out approach as individual models and AUC-PR, AUC-ROC and the correlation 

coefficient (COR) performance metrics were calculated for the ensemble model.  

Model output analysis 

The ensemble model output created a predictive surface assigning a habitat suitability 

index (0-1) to each 30m pixel within the study area. To accurately analyze proportions of the 

study area predicted to be suitable habitat, 3,804 km2 designated as ‘open water’ in the NLCD 

layer were removed from the output dataset. The remaining predictive surface of the raster 

output was 197,830km2, 26,395km2 falling within western North Carolina. Next, I reclassified 

the continuous model output raster into HSI bins and created a vector file in order to calculate 

the area within each bin. 

For further analysis of the model output, such as proportion of suitable habitat within a 

given area, it is common practice to transform the probability of suitable habitat to a binary 

output of suitable versus unsuitable habitat (Liu et al. 2005). This requires setting a threshold 

HSI value above which will be considered suitable habitat, and below which will be considered 

unsuitable habitat. A threshold value of 0.4 was chosen based on where sensitivity was equal to 

specificity (Freeman and Moisen 2008). The threshold value was determined using the R 

package PresenceAbsence to analyze predicted habitat suitability scores of presence points and 

pseudoabsence points (Freeman and Moisen 2008b). Areas assigned a habitat suitability score 

less than 0.4 were considered unsuitable, and areas assigned an HSI greater than 0.4 were 

considered to be suitable habitat.  
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After thresholding the model output, binary analyses by physiographic region and 

conservation status were performed using the Tabulate Area and Intersection tools in ArcPro. I 

determined the proportions of predicted suitable habitat in each physiographic region throughout 

the study area using the province classes designated by the Physiographic Regions of the 

Conterminous United States shapefile downloaded from USGS sciencebase.gov (Fenneman and 

Johnson 1946).  For land ownership and conservation status of the predicted suitable habitat in 

western North Carolina, I used the NC NHP Managed Areas shapefile which identifies fee-

simple properties and easements of conservation interest downloaded from 

https://ncnhde.natureserve.org/content/data-download (NCNHP 2023). Each of the properties 

within the Managed Areas database is assigned a GAP score from one to four which rates 

management intent to conserve biodiversity on conserved lands (USGS GAP 2022). GAP Status 

of 1 or 2 represent areas having permanent conservation of natural land cover with a mandated 

plan to manage for biodiversity. GAP Status 1 area management plans include allowing or 

mimicking natural disturbance events (for example wildfire), whereas GAP Status 2 areas do not. 

GAP 3 areas are also protected from natural land cover conversion, but are subject to extractive 

uses (for example logging or OHV use). GAP 4 represents land with no known conservation 

status or unknown management intent. For the purpose of this study, I assigned a GAP 4 status to 

any private property not included in the NC NHP Managed Areas database. Proportion of the 

predicted suitable habitat in developed versus undeveloped land was derived from the National 

Land Cover Database cover classes (NLCD 2019; Dewitz and USGS 2021). For this analysis, 

areas designated as developed (high, medium and low intensity), barren land, hay/pasture, and 

cultivated crops were designated as developed land, and all other cover classes designated as 

undeveloped land. 
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Targeted Surveys 

Areas in western North Carolina highlighted by the model as having a high suitability 

index were prioritized for targeted surveys during the peak P. integrilabia bloom period, mid-

August through early September 2023. The goals of the targeted surveys were to generate 

presence and absence points for future iterations of the model, ground truth the modeled 

prediction of suitable habitat, and to identify any areas suitable for reintroduction of the species.  

Surveys were timed to capitalize on P. integrilabia’s most conspicuous phenophase - 

flowering and early fruiting - in order to increase the chance of detection. Survey locations were 

determined based on the modeled habitat suitability index and were focused on accessible 

parcels containing undeveloped natural areas. Areas containing a high concentration of cells with 

an HSI of 0.80 and above were assessed for current land use (prioritizing undeveloped patches) 

and accessibility using the NC parcel map (NC OneMap 2019), aerial imagery, and the National 

Land Cover Database (NLCD; Dewitz and USGS 2021). After identifying parcels with relatively 

large areas of undeveloped land predicted to have highly suitable habitat, I used the NC Parcel 

map and county tax assessors’ office information to locate landowner contact information and 

request permission to survey. Some survey locations with lower than a 0.8 HSI were surveyed 

based on proximity to historic occurrences, expert recommendations of areas of suitable habitat, 

or for ease of accessibility.  

I shared the model output with regional experts and land trusts using ArcGIS online 

seeking advice on which areas to prioritize for surveys based on field experience 

(https://www.arcgis.com/apps/mapviewer/index.html?webmap=e8bb3c43b9db4fa98f802be7b15d547e). Dan 

Pittillo, Todd Crabtree, Wesley Knapp, Alan Smith, and David Lee all provided important 

information to help guide survey planning. Staff at Conserving Carolina, Foothills Conservancy, 

https://www.arcgis.com/apps/mapviewer/index.html?webmap=e8bb3c43b9db4fa98f802be7b15d547e
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and Mainspring Conservation Trust were very cooperative in granting access to all of their fee 

properties and recommending conserved sites to be surveyed. 

Although no new presence points of P. integrilabia were obtained during targeted 

surveys (see Results below), a list of true absence points was generated for inclusion in future 

iterations of the model. It has been shown that incorporating true absence points from a small 

subregion of the study area into the background pseudoabsence dataset can significantly improve 

the performance of SDMs (Koshkina et al. 2017). Track logs were imported into ArcPro as 

polylines, buffered by 30m (approximate survey area beyond track), and using the Extract by 

Polygon tool, subsamples of the ensemble raster output representing areas surveyed were 

generated. Absence points were generated by using the Raster to Point tool, which generates one 

point per 30x30m cell that was surveyed. True absence points were removed from areas I 

considered to be highly suitable habitat based on observed characteristics of the site. Coordinates 

of true absences points are available at https://doi.org/10.5281/zenodo.10280442 (Harding 2023). 

In addition to generating absence data, survey areas were assessed for actual habitat 

suitability. Each survey location was subjectively ranked as high, medium, or low actual habitat 

suitability based on observed substrate moisture, canopy cover, topography, and presence of 

target indicator species known to be associated with P. integrilabia (see Table 1 in Results). 

Target attributes were based on my observations of known Blue Ridge populations of P. 

integrilabia the previous year and detailed population descriptions published in species status 

assessments (USFWS 2021, Shea 1992). Sites ranked as ‘high’ actual habitat suitability 

contained at least some flat, partially shaded, perennially wet areas with well-developed 

Sphagnum mats, a significant Carex component in the herbaceous layer, and hosted a high 

number of plants known to be associated with the target species, especially congeners known to 

https://doi.org/10.5281/zenodo.10280442
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share a mycorrhizal symbiont with P. integrilabia. Sites ranked as medium actual habitat 

suitability contained some aspects of highly suitable habitat, but lacking others. For example, a 

site with partially shaded saturated soils and some associated species, but lacking a significant 

Sphagnum or graminoid component were ranked as having ‘medium’ actual habitat suitability. 

Sites ranked as ‘low’ actual habitat suitability lacked the correct substrate moisture and canopy 

cover, and only hosted a few if any target associated species. The observed habitat suitability 

ranks were compared to the mean predicted HSI for each survey area which was determined by 

averaging the predicted HSI score for each pixel within the survey polygon, and tested for 

significance of difference using a one-way ANOVA. Survey areas hosting highly suitable habitat 

were evaluated as receptor sites for translocation based on proximity to known occurrences and 

site conservation status. I assessed the furthest distance any known population occurs from any 

other known populations to consider the patch dynamics of natural populations. The recently 

discovered P. integrilabia population in Cumberland Gap, Kentucky (~500 individuals) is the 

most geographically isolated occurrence, at 68.42km away from any other documented 

populations. Therefore, suitable habitat patches within 68 km of known populations were 

considered for translocation. 
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CHAPTER 3: RESULTS 

Habitat characterization of known occurrences 

Bat Fork Bog, Starr Mountain, Sawmill Branch, Pine Log Mountain WMA, and Big 

Canoe habitat consisted of non-alluvial sphagnum wetlands with saturated soil located in flat 

areas near stream head waters. The Lee Mountain and Oil Camp Creek occurrence locations 

were more of a cataract bog, where small stream tributaries flow over exposed granite bedrock 

on small slopes causing permanently wet sphagnum areas. A checklist of easily identifiable 

target indicator species was generated from observed species present at the five sites (Table 1). 

The herbaceous layer in areas where P. integrilabia was observed generally had a significant 

graminoid component dominated by Carex sp. interspersed with ferns and decomposing woody 

debris. The midstory shrub layer was generally sparse, with less than ~30% cover. Overstory 

canopy cover was variable and ranged from about 25 to 90 percent.  

Scientific Name (Common name) Scientific Name (Common name) 

Acer rubrum (red maple) Nyssa sylvatica (blackgum) 

Alnus serrulata (smooth alder) Osmunda spectabilis (royal fern) 

Amauropelta novaboracensis (New York fern) Osmundastrum cinnamomeum (cinnamon fern) 

Carex intumescens (bladder sedge) Oxypolis rigidor (stiff cowbane) 

Chasmanthum laxum (slender spikegrass) Parnassia asarifolia (kidneyleaf grass-of-Parnassus) 

Eutrochium fistulosum (hollow Joe-pye-weed) Platanthera ciliaris (yellow fringed orchid) 

Liquidambar styraciflua (sweetgum) Platanthera clavellata (small green wood orchid) 

Liriodendron tulipifera (tuliptree) Platanthera cristata (crested fringed orchid) 

Lobelia cardinalis (cardinal flower) Sphagnum sp. (peat mosses) 

Lorinseria areolata (netted chain fern) Viburnum nudum (possumhaw viburnum) 

Lycopus virginicus (Virginia bugleweed)  

  

 The Laurel Branch location (population extirpated) no longer contained suitable habitat. 

The small stream located on private property was incised with four-foot banks disconnecting 

Table 1. List of associated species observed growing with P. integrilabia during initial site visits in 

2022. This list was used during 2023 targeted surveys to identify and rank habitat suitability. 

 

Figure 6. Habitat Suitability Index (HSI) predictions for P. integrilabia from three modeling 

algorithms, a) generalized additive model (GAM), b) generalized boosted model (GBM), and c) 

maximum entropy model (MaxEnt), and the final d) weighted ensemble model output. All four 

models highlighted eastern Tennessee and southeast Kentucky as highly suitable habitat. Based on 

cross-validation, the final weighted ensemble model output had the highest predictive accuracy 

compared to the three individual algorithms.Table 1. List of associated species observed growing 

with P. integrilabia during initial site visits in 2022. This list was used during 2023 targeted surveys 

to identify and rank habitat suitability. 
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water flow from the floodplain. A small patch of woods remains but is surrounded on all sides by 

agriculture fields. Although some of the vegetation suggested historical increased and prolonged 

soil saturation (Acer rubrum, Nyssa sylvatica, Lorinseria areolata, Osmunda spectabilis, Iris 

virginica) the soil was dry with no sphagnum and a negligible sedge component. Ligustrum sp., 

Microstegium vimineum, and Hedera helix were encroaching the site, further decreasing habitat 

suitability.  

 Model output 

Individual models 

Figure 6. Habitat Suitability Index (HSI) predictions for P. integrilabia from three modeling 

algorithms, a) generalized additive model (GAM), b) generalized boosted model (GBM), and c) 

maximum entropy model (MaxEnt), and the final d) weighted ensemble model output. All four models 

highlighted eastern Tennessee and southeast Kentucky as highly suitable habitat. Based on cross-

validation, the final weighted ensemble model output had the highest predictive accuracy compared to 

the three individual algorithms. 

 

 

Table 3. Estimated relative importance of predictor variables in each of three habitat suitability 

models which were averaged to create the final ensemble output. Each model algorithm has its own 

contribution index: percent contribution for MaxEnt (maximum entropy model), relative influence for 

GBM (generalized boosted model), and p-values for GAM (generalized additive model). Values 

representing the most important variables for each model are highlighted in red.Figure 6. Habitat 

Suitability Index (HSI) predictions for P. integrilabia from three modeling algorithms, a) generalized 
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All three individual models highlighted eastern Tennessee and southeast Kentucky as 

having the highest concentration of suitable habitat throughout the range (Fig. 6). The GAM 

model appeared to produce the most discriminatory output, lacking widespread mid-range values 

(symbolized as gray areas) as seen in the MaxEnt output. The Maxent model had the highest 

AUC-PR and therefore the highest relative weight (0.3434), followed by the GBM (0.3430), and 

last the GAM (0.3136) (Table 2). The relative weights were then multiplied by the individual 

models’ HSI values, which were then summed to assign a final ensemble HSI value to each pixel 

across the study area.  

Table 2. Model performance metrics for the individual models and final weighted ensemble model. Area 

under the precision-recall curve (AUC-PR), area under the receiver operating curve (AUC), and 

correlation coefficient (COR) metrics were generated through cross validation using a leave-one-out 

approach (Hastie et al 2009, code adapted from Ramirez-Reyes et al 2021).  

Model AUC-PR AUC COR Relative weight 

Generalized Additive (GAM) 0.772 0.932 0.764 0.3136 

Generalized Boosted (GBM) 0.844 0.944 0.758 0.3430 

Maximum Entropy (MaxEnt) 0.845 0.939 0.752 0.3434 

Weighted Ensemble  
 

0.991 0.999 0.952  

 

All four models had AUC scores close to one, indicating significantly better-than-random 

predictive ability. An AUC score of 0.50 would indicate the model is as good as a random guess, 

but a score close to one indicates the model consistently predicts higher HSI scores at presence 

locations, and lower HSI scores at pseudoabsence locations (Hijmans and Elith 2019). AUC-PR 

does not incorporate correctly predicted absences (specificity) and is considered a more robust 

reflection of precision than an AUC score, especially when modelling a low-prevalence species 

using pseudoabsences across a large geographic area (Sofaer et al 2019b). The ensemble AUC-

PR of 0.991 indicates very high discrimination ability of the model, or that 99% of the time a 
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randomly selected presence point will have a higher assigned HSI than a randomly selected 

absence point. The correlation coefficient of 0.952, indicates the test values and observed values 

of the presence and absence points were strongly correlated.  

The relative importance of each environmental predictor variable varied across the three 

input algorithms (Table 3). Mean permeability of mapped soils within the catchment basin and 

curvature had high relative importance across all three algorithms. Base flow index had high 

importance in the GAM and GBM outputs but was one of the lowest contributing variables in the 

MaxEnt model. Alternatively, slope was not statistically significant in the GAM output, was the 

sixth relative influence in the GBM, and the third highest percent contribution in the MaxEnt 

model. 

Variables 

GAM  

p-values 

GBM  

relative influence 

MaxEnt  

% contribution 

Soil permeabilitya <0.001 17.50 32.3 

Base flow indexa <0.001 12.80 0.7 

Curvatureb <0.001 12.73 17.3 

Catchment integritya <0.001 10.07 8.8 

Distance to streamc 0.002 9.37 2 

Slopeb 0.104 8.72 13 

Mean annual temperatured 0.246 7.04 8.1 

Wetness indexa 0.003 6.33 5.8 

Soil percent organic mattera 0.020 6.12 0.3 

Mean annual precipitationd 0.013 5.17 7.5 

Soil percent sanda 0.196 4.14 4.2 
a StreamCat database (Hill et al 2015) 
b Derived from 30m DEM (USGS 2019) 
c Derived from National Hydrography Dataset (USGS 2018) 
d PRISM Climate Group (2020) 

  

Table 3. Estimated relative importance of predictor variables in each of three habitat suitability models 

which were averaged to create the final ensemble output. Each model algorithm has its own contribution 

index: percent contribution for MaxEnt (maximum entropy model), relative influence for GBM 

(generalized boosted model), and p-values for GAM (generalized additive model). Values representing 

the most important variables for each model are highlighted in red. 

 

Figure 7. Probability surface output for range-wide ensemble species distribution model (weighted 

average of three individual algorithms). Red represents areas predicted to be suitable habitat for P. 

integrilabia. Suitable habitat is defined by areas assigned a habitat suitability index greater than 0.4. 

Approximately 6% of the study area was predicted to be suitable habitat. The Appalachian Plateaus 

physiographic region contains the highest concentration of suitable habitat, while the Valley and Ridge 

physiographic region contains the least concentration of predicted suitable habitat.Table 3. Estimated 

relative importance of predictor variables in each of three habitat suitability models which were averaged 

to create the final ensemble output. Each model algorithm has its own contribution index: percent 

contribution for MaxEnt (maximum entropy model), relative influence for GBM (generalized boosted 

model), and p-values for GAM (generalized additive model). Values representing the most important 

variables for each model are highlighted in red. 
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Ensemble model

 

Figure 7. Probability surface output for range-wide ensemble species distribution model (weighted 

average of three individual algorithms). Red represents areas predicted to be suitable habitat for P. 

integrilabia. Suitable habitat is defined by areas assigned a habitat suitability index greater than 0.4. 

Approximately 6% of the study area was predicted to be suitable habitat. The Appalachian Plateaus 

physiographic region contains the highest concentration of suitable habitat, while the Valley and 

Ridge physiographic region contains the least concentration of predicted suitable habitat. 
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 Using an HSI threshold value of 0.4, where sensitivity is equal to specificity, 11,223 km2 

of the entire study area, or approximately 6%, was predicted to be suitable habitat for P. 

integrilabia (Fig. 7). The mean predicted habitat suitability index for the presence points 

locations used to train the model was 0.83 (0.14). The AUC-PR of 0.991, and the clear bimodal 

distribution of predictions separating presence and absence indicate high model accuracy (Fig. 

8). Only approximately 1% of the study area was predicted to have a habitat suitability greater 

than 0.8 (Table 4).  

 

 

 

 

HSI km2 % study area km2 in WNC % WNC study area 

0.0-0.2 172,654 85.63 24,203 90.92 

0.2-0.4 12,664 6.28 1,404 5.27 

0.4-0.6 6,000 2.98 531 1.99 

0.6-0.8 3,753 1.86 199 0.75 

0.8-1 2,470 1.22 58 0.22 

Figure 8. Predicted probabilities (habitat 

suitability index) for presence and absence 

points used to train the Platanthera integrilabia 

ensemble model output (n=654). Only 4 of the 

presence locations occurred within areas 

predicted to be less than 0.4 HSI. The 0 bar is 

truncated to enhance detail. The double humped 

histogram with minimal overlap between 

presence and absence predictions indicates high 

model accuracy (Freeman and Moisen 2008). 

For binary analyses, a threshold value of 0.4 

was chosen to optimize sensitivity and 

specificity.  

 

 

Table 4. Proportion of the entire study area (%) 

and the proportion of the study area falling 

within western North Carolina (WNC) 

predicted in each habitat suitability index (HSI) 

bin. Red line indicates the 0.4 threshold to 

distinguish areas of suitable and unsuitable 

habitat.Figure 8. Predicted probabilities 

(habitat suitability index) for presence and 

absence points used to train the Platanthera 

integrilabia ensemble model output (n=654). 

Only 4 of the presence locations occurred 

within areas predicted to be less than 0.4 HSI. 

The 0 bar is truncated to enhance detail. The 

double humped histogram with minimal 

overlap between presence and absence 

predictions indicates high model accuracy 

(Freeman and Moisen 2008). For binary 

analyses, a threshold value of 0.4 was chosen to 

optimize sensitivity and specificity.  

 

Table 4. Proportion of the entire study area (%) and the proportion of the study area falling within 

western North Carolina (WNC) predicted in each habitat suitability index (HSI) bin. Red line 

indicates the 0.4 threshold to distinguish areas of suitable and unsuitable habitat. 

 

 

Figure 9. Predicted suitable habitat and targeted surveys for P. integrilabia within western North 

Carolina (habitat suitability index ≥ 0.4). Approximately 3% of the study area in North Carolina was 

predicted to be suitable habitat. Targeted surveys in Cherokee, Clay, Macon, Henderson, and Burke 

counties were completed in August and September 2023.Table 4. Proportion of the entire study area 

(%) and the proportion of the study area falling within western North Carolina (WNC) predicted in 

each habitat suitability index (HSI) bin. Red line indicates the 0.4 threshold to distinguish areas of 

suitable and unsuitable habitat. 
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The physiographic region containing the highest percentage of suitable habitat by area 

was the Appalachian Plateau in eastern Tennessee, which also contains the highest concentration 

of EOs used to train the model (Fig. 7, Table 5). The physiographic region containing the next 

highest proportion of suitable habitat is the Coastal Plain in northwest Alabama and northeast 

Mississippi, which was represented by 8 occurrences in the training dataset. Although only 5 

populations were included in the model presence dataset from the Blue Ridge physiographic 

region, 3.52% of the study area falling within the region was predicted to be suitable habitat 

were. The Valley and Ridge physiographic region had the smallest proportion of suitable habitat, 

as well as the fewest occurrences included in the training dataset.   

Table 5. Total area of each physiographic region included in the model study area and the proportion (%) 

of each physiographic region predicted to be suitable habitat (HSI >0.4). The number of element 

occurrences (EOs) included in the model training dataset per physiographic region indicates prevalence 

and is included for comparison.  

Physiographic Region 
suitable habitat 

(km2) 

total area 

(km2) 

% region containing 

suitable habitat 

# EOs 

represented  

Appalachian Plateaus 6,972 50,394 13.83% 53 

Coastal Plain 1,169 16,540 7.07% 8 

Piedmont 1,586 40,008 3.96% 13 

Blue Ridge 1,193 33,924 3.52% 5 

Interior Low Plateaus 630 20,288 3.10% 4 

Valley And Ridge 673 40,652 1.66% 2 
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Predicted Habitat in WNC 

 

 

Of the 26,395 km2 study area in western North Carolina, 788km2 (approximately 3%) is 

predicted to contain suitable habitat for P. integrilabia (Fig. 9, Table 4). When overlaid by the 

National Land Cover Database, 178km2 (approximately 22%) of predicted suitable habitat in 

WNC occurs on developed land (NLCD 2019). Of the remaining 610 km2 of undeveloped 

predicted suitable habitat, approximately half occur within managed lands (347km2), the other 

half occur on private land (263km2) (Fig. 10). Approximately 131km2 of undeveloped predicted 

Figure 9. Predicted suitable habitat and targeted surveys for P. integrilabia within western North 

Carolina (habitat suitability index ≥ 0.4). Approximately 3% of the study area in North Carolina was 

predicted to be suitable habitat. Targeted surveys in Cherokee, Clay, Macon, Henderson, and Burke 

counties were completed in August and September 2023.  
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suitable habitat in western North Carolina (only 0.5% of the WNC study area) has a GAP 

designation of 1 or 2, where the land is managed for biodiversity (Fig. 10; NCNHP 2023). 

 

Targeted Surveys 

A total of 259.8 hectares or 0.3% of predicted suitable habitat in western North Carolina 

was surveyed for P. integrilabia (Fig. 9). No new occurrences were located during targeted 

surveys. A total of 2,761 absence points were generated to be used in future iterations of the 

model (coordinates available upon request). Of the 25 survey locations, seven were ranked as 

‘high’ actual habitat suitability based on observed site characteristics during targeted surveys. All 

seven areas ranked as high actual suitability had average predicted HSI scores above the 

threshold value of 0.4 (Fig. 11). Five survey sites were ranked as ‘medium’ actual habitat 

suitability, and 13 of the 25 survey sites were determined to have ‘low’ actual suitability. Of the 

Figure 10. Conservation status of ensemble SDM predicted suitable habitat for P. integrilabia in 

western North Carolina (HSI>0.4). Left pie chart represents all 788km2 of predicted suitable habitat in 

WNC, and right pie chart represents the suitable habitat within undeveloped managed lands. GAP 

status indicates conservation goals of the managed land (USGS 2022). 17% of the predicted suitable 

habitat in WNC falls within land being managed for biodiversity (GAP 1&2), which are of important 

conservation value for P. integrilabia habitat. 
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sites ranked as low observed suitability, five had an average predicted HSI less than 0.4, and one 

site (Bartram Trail) had an average predicted HSI of 0.89 (Table 5, Fig. 11). Using a significance 

value of p<0.05, there was a significant difference between the average mean HSI predicted for 

low, medium, and high-quality sites (F (2,25) = 3.834, p = 0.037). 

 

 

 Targeted surveys confirmed invasive species encroachment and alteration of hydrologic 

function is a significant threat to the persistence of suitable P. integrilabia habitat in North 

Carolina. Many survey sites were heavily invaded by invasive species and were clearly affected 

by anthropogenic alterations to the local hydrology. Invasive species observed in areas predicted 

Figure 11. Average predicted habitat suitability (HSI) scores for 25 survey areas compared to the 

observed high, medium, or low quality habitat ranks based on observed characteristics during 

targeted surveys. Of the 25 survey areas, seven were ranked as high suitability, five medium, and 

13 low actual suitability. Seven of the 13 low quality sites were predicted to be suitable habitat 

(HSI >0.4), but all high and medium quality sites were also predicted to be suitable habitat. 

 

 

Figure 12. Survey site in Cherokee County with a predicted habitat suitability score of 0.96 being 

actively destroyed during targeted surveys.Figure 11. Average predicted habitat suitability (HSI) 

scores for 25 survey areas compared to the observed high, medium, or low quality habitat ranks 

based on observed characteristics during targeted surveys. Of the 25 survey areas, 7 were ranked 

as high suitability, 6 medium, and 12 low actual suitability. Seven of the 12 low quality sites were 

predicted to be suitable habitat (HSI >0.4), but all high and medium quality sites were also 

predicted to be suitable habitat. 
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to be suitable habitat include Ligustrum sp, Microstegium vimineum, Murdannia keisak, Rosa 

multiflorum, and Hedera helix. A number of sites predicted to have high habitat suitability had 

some of the right conditions for good habitat, but were altered by monocultures of invasives, 

ditching of the floodplain, removal of native species, or separation of the floodplain due to 

incised water channels. The two survey sites with an average predicted HSI above 0.8 (Clear 

Creek in Henderson County and Eller Preserve in Clay County) were heavily invaded by 

Ligustrum sp. and Microstegium vimineum, causing a monoculture which is out competing native 

species. One survey site predicted to have highly suitable habitat in Cherokee County was 

actively being cleared of native vegetation and ditched to drain the flood plain (Fig. 12). Some 

other survey areas appeared to have had similar alterations in the recent past negatively 

impacting habitat quality (Clear Creek and Mud Creek in Henderson County for example).  

 

 

Of the seven targeted survey sites found to host high-quality habitat, six fall within 

conserved land (Appendix B). The two Clay County high suitability sites were the only sites to 

fall within a 68 km radius of a known natural population. However, one site is heavily invaded 

Figure 12. Survey site in Cherokee County with a predicted habitat suitability score of 0.96 being 

actively destroyed during targeted surveys.  

 

 

Figure 13. Wesley Knapp confirms new occurrence of the critically endangered Sagittaria fasciculata 

discovered during targeted surveys. The population was found in an artificial drainage ditch on private 

property in Henderson County. The property was heavily invaded by Rosa multiflora and Ligustrum 

sinense.Figure 12. Survey site in Cherokee County with a predicted habitat suitability score of 0.96 

being actively destroyed during targeted surveys.  
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by non-native species (Eller Preserve owned by the Nature Conservancy) and the other was 

located on private property with no known conservation protection. All the other sites of highly 

suitable habitat fell beyond the target 68km radius from a known population. If the 

reintroduction site at Bat Fork Bog in Henderson County becomes a viable population, two other 

conserved sites containing high-quality habitat fall within the 68km radius: King Creek Bog and 

Pink Beds North. The two Burke County high-quality sites are approximately 67 km from the 

Bat Fork Bog reintroduction site. 

Surveys yielded the discovery of a new occurrence of the critically endangered Sagittaria 

fasciculata on private property in Hendersonville (Fig. 13). Sagittaria fasciculata is endemic to 

North and South Carolina and is listed as Federally Endangered and S1 (Critically Imperiled) in 

North Carolina. It has been documented to occur in 11 extant populations, 5 of which occur in 

Henderson County, NC. The area at large is a degraded swamp forest bog complex heavily 

invaded by Rosa multiflora, Ligustrum sp., and Microstegium vimineum. One colony of many 

hundreds of stems were observed in a wet remnant ditch within a spring fed wetland. Associated 

herbaceous species are Ludwigia paulustris, Sparganium americanus, Biden connata, Impatiens 

capensis, Carex sp., Leersia virginica, Persicaria sp., Dicanthelium sp., and Osmundastrum 

cinnamomea. Woody associates at the site include Acer rubrum, Nyssa sylvatica, Liriodendron 

tulipifera, Pinus echinata, Rhododendron canescens, Viburnum nudum, Ilex montana, and 

Smilax rotundifolia. The occurrence was confirmed by Nature Serve botanist, Wesley Knapp, 

and was reported to the NCNHP. The NCNHP plans to coordinate with the landowner to 
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encourage formal protection of the site. 

 

   

 Another interesting find was an occurrence of Platanthera flava var. flava on state land 

owned by the NC Department of Transportation (NCDOT). The species is listed as S3 in North 

Carolina (Vulnerable), and according to Weakley’s flora is considered rare in the mountains of 

western North Carolina (Weakley 2020). A voucher was collected and will be added to the WCU 

herbarium collection. The portion of NCDOT land where the P. flava population was found is 

designated as a mitigation site, and has a GAP Status of 2, implying the site is being managed for 

biodiversity. However, there was significant invasive species encroachment on the site including 

Ligustrum sp, Rosa multiflora, and Microstegium vimineum.  

Figure 13. Wesley Knapp confirms new occurrence of the critically endangered Sagittaria fasciculata 

discovered during targeted surveys. The population was found in an artificial drainage ditch on private 

property in Henderson County. The property was heavily invaded by Rosa multiflora and Ligustrum 

sinense. 
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CHAPTER 5: DISCUSSION 

 

Knowing where populations and areas of suitable habitat exist for rare species is 

paramount to their persistence and recovery. Over the last decade, species distribution models 

are becoming increasingly popular tools for informing rare species conservation (Qazi et al. 

2022). Using SDMs to direct targeted surveys for undiscovered populations has proven to 

increase efficiency and efficacy compared to other sampling techniques (Sofaer et al. 2019, 

McCune 2020, Borokini et al. 2023). The results of this study support previous findings that 

species distribution modeling can be used to effectively locate suitable habitat for the rare orchid, 

P. integrilabia (Crabtree 2014, Lawson et al. 2022). I developed the first range-wide species 

distribution model for P. integrilabia, and performance metrics indicate strong predictive 

accuracy of the model (AUC-PR=0.991). Although no new occurrences of P. integrilabia were 

discovered during ground truthing surveys, some patches of high-quality habitat were found 

within areas predicted to have a high habitat suitability index by the model. The model predicts 

suitable habitat for P. integrilabia in 6% of the species’ range, and only 3% of the range falling 

within western North Carolina (WNC). More than half of the WNC predicted suitable habitat is 

either developed or on non-conserved private property (Fig. 10). Therefore, according to the 

model, only about 1.3% of the historical range within NC contains conserved suitable habitat for 

P. integrilabia. This is likely an overestimate of habitat availability in WNC based on observed 

overprediction during targeted surveys (Fig. 11). Considering only 0.3% of the predicted suitable 

habitat in WNC was surveyed during this study, results do not rule out the possibility that P. 

integrilabia may still persist within the state. However, results do indicate that suitable habitat in 

the state still exists, but is rare and seriously threatened by environmental degradation. 
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Identification, conservation, and restoration of vestigial habitat patches must be prioritized for 

the successful reintroduction of P.integrilabia into its historical range in western North Carolina. 

 Of the seven targeted survey sites found to host high-quality habitat, I recommend one 

area for incorporation into the reintroduction efforts underway through a partnership between US 

Fish and Wildlife Service and Atlanta Botanic Gardens. The site is owned by Conserving 

Carolina, and occurs within the King Creek Bog, just 5km south of Bat Fork Bog where P. 

integrilabia was reintroduced in 2022. This site had an average predicted HSI score of 0.54, and 

surveys confirmed the presence of highly suitable habitat in an area being actively managed for 

biodiversity through invasive species removal and woody plant encroachment abatement. The 

King Creek Bog is categorized as a French Broad Valley Bog and is extensively described by 

Weakley and Schafale (1994). It hosts a high number of P. integrilabia associated species, 

including Platanthera clavellata and P. ciliaris, both of which share a common mycorrhizal 

symbiont required for germination with P. integrilabia. I suggest this site be considered as a 

suitable location for possible translocation of P. integrilabia.   

If the reintroduction at Bat Fork Bog becomes a viable population, introducing the 

species to King Creek Bog could provide an important neighboring population boosting fitness 

and genetic diversity of both reintroduced populations (USFWS 2021). P. integrilabia is not 

considered an aggressive colonizer given the low percent flowering and subsequent seed 

production observed in small isolated populations potentially due to inbreeding depression 

(Zettler and Fairey 1990). Declining occurrences of P. integrilabia due to environmental 

degradation further isolates remnant populations causing lower viable seed production and 

decreased genetic diversity, which can lead to further decline of occurrences. Therefore, in order 

to execute a successful recovery of P. integrilabia in North Carolina, reducing isolation of 
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reintroduced populations must be considered. The 2022 reintroduction site at Bat Fork Bog is 

more than 138km from the closest documented population. Translocating P. integrilabia into 

King Creek Bog could reduce isolation of the reintroduced population and provide an 

opportunity for increased outcrossing which has been associated with increased fruit set in the 

species (Zettler et al. 1996). Increased fruit set should increase viable seed production, and 

therefore increase the potential for dispersal of the species throughout its historical range in 

western North Carolina.   

Two other sites containing suitable P. integrilabia habitat were found near Bat Fork Bog: 

north Pink Beds in Pisgah National Forest and the Mud Creek wetland on an NC DOT mitigation 

property in Hendersonville. The NC DOT mitigation property could become an important 

receptor site if reintroductions at Bat Fork Bog (and potentially King Creek Bog) become viable 

populations. The degraded red maple swamp is heavily invaded by native and non-native 

species, but with some concerted restoration work could provide an important potential habitat 

patch for P. integrilabia. Pink Beds in Pisgah National Forest could also be a suitable site for 

eventual colonization, as it has very little presence of invasive species, and is being actively 

managed to promote biodiversity. Continued conservation and restoration of these habitat 

patches, as well continuing to search for additional suitable habitat sites near Bat Fork Bog, is 

crucial to the success of reintroduction efforts currently underway.  

I also suggest prioritizing the restoration of another site ranked as highly suitable habitat, 

the Eller Preserve in Clay County. The site is owned and managed by the Nature Conservancy, 

but is heavily invaded by Microstegium vimineum and Ligustrum. If the Nature Conservancy 

begins active restoration of the portion of the preserve deemed suitable for P. integrilabia (south 

of the clearing being managed for pitcher plants), it too could become a suitable receptor site for 



 

40 
 

introduction considering it is only 44 km from the Tallulah Gorge population in north Georgia 

and occurs on a site with GAP Status of 1. 

The results of this model should be considered preliminary, and as a basis for more 

hypotheses regarding the true distribution of P. integrilabia and suitable habitat patches available 

to the species. Ground truthing surveys suggest high sensitivity but low specificity of the model 

leading to overprediction in many areas (Fig.12). Iterative modeling of rare species distributions 

has been shown to increase predictive performance (Williams 2009, Sofaer et al. 2009, Borokini 

et al. 2023). Reducing spatial and environmental autocorrelation can improve transferability of 

habitat suitability patterns into underpopulated regions such as WNC (Phillips et al. 2009, Sofaer 

et al. 2019, Helmstetter et al. 2020). Here I provide a framework for future iterations of the 

model aimed at increasing specificity and reducing autocorrelation by refining presence, 

pseudoabsence, and environmental predictor inputs. 

The presence point dataset used to train the range-wide model could be further refined to 

reduce autocorrelation, better reflect contemporary drivers of P. integrilabia distribution, and 

enhance the accuracy of performance metrics. I make the following recommendations: (1) 

reducing presence points to one observation per pixel of the coarsest predictor dataset to reduce 

autocorrelation. I reduced presence points to one point per 30m pixel, however some of the 

StreamCat metrics had a greater resolution than 30m causing potential oversampling in some 

areas where presence points were clustered. (2) Including only extant populations to train the 

model, which will allow for the use of important environmental predictor variables that change 

with time such as land use and canopy cover. To enhance the accuracy of performance metrics, I 

recommend (3) withholding a random subset of the presence locations throughout the range to 

test predictions. It is possible that the leave-one-out cross-validation approach used to generate 
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model performance metrics led to an inflated prediction of the models’ discrimination ability 

potentially caused by autocorrelation where presence points tend to be clustered (Helmstetter et 

al. 2020). Although these recommended actions will reduce sample size, research shows a 

minimum sample size of 30 is sufficient for producing reliable results (Qazi et al. 2022).   

Furthermore, increasing the number of background points (pseudoabsences) to 

comprehensively represent all environments in the study area should increase SDM performance. 

Research shows increasing background points up to 50,000 (where the burden of computational 

intensity outweighs the benefits of increased sampling) significantly enhances model predictive 

performance (Valavi et al. 2022). Given the extent of the range-wide model compared to 

prevalence of P. integrilabia, I recommend significantly increasing the number of 

pseudoabsence points used to train the model. Including the absence points generated in this 

study may enhance specificity of Blue Ridge predictions (Koshkina et al 2017). Phillips et al. 

(2009) suggest mitigating the sampling bias of presence points by similarly biasing 

pseudoabsence points. Including all NHP rare plant EOs that are not P. integrilabia as absence 

points will mimic the sample bias of the presence points. Increasing the number of randomly 

generated background points will better characterize environmental attributes of the entire study 

area. A combination of all three of these recommendations to increase the number of 

pseudoabsences to train the model will likely improve model accuracy. 

Changes to the suite of environmental predictor variables based on the results of this 

study include using finer resolution data, adding lithology, land use, and canopy cover, and 

potentially removing soil characteristics from the analysis. Using the 30m DEM for slope 

analysis may have caused the model to over-predict in areas too steep for P. integrilabia. Using 

the 10m DEM would more accurately model slope. Slope based on the 10m DEM is only one of 
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three predictor variables used in the highly successful TN only model (Crabtree 2014). However, 

to realize the benefits of this modification would require resampling all data to a 10m resolution, 

significantly increasing computational intensity of the model. The coarseness of catchment-level 

data used in this model likely contributed to autocorrelation (Phillips et al. 2006), and may not 

have captured specific characteristics associated with small habitat patches occurring within 

catchments. I recommend using finer resolution soil metrics (such as POLARIS probabilistic 

30m dataset, Chaney et al. 2016) or removing soil metrics from the analysis altogether based on 

inconsistencies between county soil maps and observed soils within P. integrilabia occurrences. 

The TN model did not incorporate soil characteristics because the actual soil type where P. 

integrilabia was known to inhabit in that region was too small and intricate to be accurately 

mapped (Crabtree 2007). In another study assessing hydrologic characteristics of three wetlands 

in Kentucky hosting P. integrilabia populations, soils at all three sites were incorrectly mapped 

compared to actual observations (Hoy 2012). I recommend adding lithology, as the species’ 

distribution appears to follow patterns in bedrock geology effecting soil pH. When my model 

output is compared to known suitable habitat in Tennessee, the model tends to overpredict in 

areas of limestone. Including lithology in the analysis could reduce overprediction into non-

acidic soils determined by bedrock characteristics. Including canopy cover and land use as 

predictor variables could reduce overprediction into rhododendron tunnels and developed areas 

where P. integrilabia does not occur. 

The results of this study provide some insights on where future targeted surveys could be 

the most effective at discovering new occurrences of P. integrilabia. The Coastal Plain 

physiographic region had the second highest percent of predicted suitable habitat by area, but 

only eight populations are known to occur within that region. It is also the smallest 
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physiographic region within the study area. Targeted surveys in that region in 2020 yielded 4 

new occurrences (Lawson et al. 2022). Based on these results, I recommend more targeted 

surveys for P. integrilabia be employed in the southwest portion of the species’ range in 

northwest Alabama and northeast Mississippi. Despite the need for more botanical and rare plant 

surveys on private land in general, future targeted surveys for undiscovered populations of P. 

integrilabia may be most successful if they are directed towards conserved land. My discovery 

of the critically endangered Sagittaria fasciculata on private land further supports the importance 

of botanical inventory on private land. However, based on my targeted surveys, actual habitat 

suitability for P. integrilabia was more prevalent on conserved land compared to private land. 

Other factors that should be considered when prioritizing areas of predicted suitable habitat for 

targeted surveys is predicted habitat patch size and connectivity. Considering the negative 

anthropogenic affects to habitat quality appear be greater on smaller patches of suitable habitat, 

focusing on sites with the largest contiguous area of predicted suitable habitat may be more 

effective. As for connectivity, the most isolated known population of P. integrilabia is 68 km 

from any other population. Focusing surveys within that radius of known occurrences may be 

most effective for locating undiscovered populations. 

 The identification and conservation of rare species and their habitats is more important 

than ever as we are witnessing an unprecedented decline in biodiversity worldwide. Knowing 

where rare species occur is essential to conservation, and identifying where vestigial habitat 

patches remain within historic ranges is important for species recovery efforts. The results of this 

study show how a range-wide species distribution model for P. integrilabia can effectively 

predict areas of suitable habitat within its historical range in the Blue Ridge physiographic region 

of western North Carolina. The model predicted approximately 2.3% of western North Carolina 
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contains undeveloped suitable habitat for P. integrilabia. I surveyed 0.3% of the predicted 

suitable habitat in western North Carolina which did not yield the discovery of undocumented 

populations, but did locate some remaining patches of suitable habitat within the historical range 

of the species. Targeted surveys also provided powerful insight on model performance, 

informing a framework for future iterations of the model presented here. The results of this study 

do not rule out the possibility that P. integrilabia may still persist in North Carolina, but that 

patches of suitable habitat still remain in the state. Continued efforts to model suitable habitat 

and perform targeted surveys for Platanthera integrilabia will contribute to species conservation, 

and potential restoration of this threatened orchid into its historical range.  
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APPENDIX A: R CODE 

####Code Adapted from Carlos Ramirez-Reyes, “Embracing ensemble 

species distribution models to inform at-risk species assessments” 

2021, some annotations by C. Ramirez-Reyes## 

 

#This code generates species distribution models in R using three 

#algorithms: 

#General additive models (GAM), generalized boosted regression (GBM) 

#and Maximum entropy (MAXENT) 

#Multiple elements are based on "Spatial Distribution Models" tutorial  

#developped by Robert J Hijmans and Jane Elith 2019- 

#https://rspatial.org/sdm/SDM.pdf 

#author: Carlos Ramirez-Reyes cr2066@msstate.edu 

#---------------------------------------------------------------------

---------------# 

 

 

#####load required packages#### 

# data manipulation  

library(raster) #to work with raster files 

library(sp) #to work with coordinates 

library(rgdal) #to work with shapefiles 

library(rgeos) #to perform shapefile gdifference 

library(tidyverse) #to make data subsets 

library(dismo) #Allows running Maxent in R and calculate variable 

correlations 

library(knitr) 

library(data.table) 

 

#load model packages  

library(gbm) # To run GBM 

library(mgcv) #To run GAM 

library (rJava)# To run Maxent 

 

# cross validation 

library(ROCR)  #To calculate AUC 

library(philentropy) #To calculate jaccard index 

library(MLmetrics)  #To calculate AUC-PR 

 

#### System setup#### 

 

#Change working directory if needed to your project directory 

setwd("D:/WCU/Thesis ArcPro/PLIN_model") 
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#Now set a temporary files folder- Ideally a location with a larger 

#capacity >500GB since we will use lots of large rasters 

#This will probably require you to install R libraries again! 

 

rasterOptions(tmpdir = "D:/WCU/Thesis ArcPro/PLIN_model/TempFiles", 

progress="text", timer=TRUE, overwrite = T) 

 

####Load data#### 

 

#####Load presence points for the species#### 

#We will work with a table containing occurrence records (coordinates) 

#with these columns: "species_name", "x" and "y" 

 

p <- read.csv("D:/WCU/Thesis ArcPro/PLIN_model/presence_pts2.csv", 

header = T) 

head(p) 

 

#subset the table to leave only "x: and "y" point coordinates 

p_c <- p[ , c("x","y")] 

head(p_c) 

#Convert coordinates to points: 

p_xy <-p_c 

coordinates(p_xy)=~x+y 

#Assign a projection to presence points (make sure that points' native 

#projection the specified below, otherwise transform it to your 

#coordinate system)I used Albers Equal Area conic proj (aea) 

proj4string(p_xy)=CRS("+proj=aea +lat_0=40 +lon_0=-96 +lat_1=20 

+lat_2=60 +x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs") # set 

projection 

plot(p_xy) 

 

# Note,if you're working with a large area and large pixel sizes, then 

#an equal-area projection system should be used. If the raster cells 

#are not equal-area, then that will bias the pseudoabsences towards 

#larger raster cells and their associated environmental data. 

 

 

####Load predictor variables#### 

 

#Instead of loading predictor rasters one by one we will load all 

#*.tif files in our folder as a raster stack 

#This will require that all your environmental predictor raster files 

#have the same extent (# of columns and rows) 

#Also, it is recommended to use an equal-area projection system.  If 

#the raster cells are not equal-area, then that will bias the 

#pseudoabsences towards larger raster cells and their associated 

#environmental data. 
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dir <- "D:/WCU/Thesis ArcPro/PLIN_model/predictor_tifs"     

#The location where the raster files are 

 

WetnessIndex <- raster("D:/WCU/Thesis 

ArcPro/PLIN_model/predictor_tifs/WetIndex.tif") 

BFI <- raster("D:/WCU/Thesis 

ArcPro/PLIN_model/predictor_tifs/BFI.tif") 

CatchInteg<-raster("D:/WCU/Thesis 

ArcPro/PLIN_model/predictor_tifs/CatchInteg.tif") 

Curvature<-raster("D:/WCU/Thesis 

ArcPro/PLIN_model/predictor_tifs/curve.tif") 

Elevation<-raster("D:/WCU/Thesis 

ArcPro/PLIN_model/predictor_tifs/elev.tif") 

PctOM<-raster("D:/WCU/Thesis 

ArcPro/PLIN_model/predictor_tifs/PctOM.tif") 

PctPerm<-raster("D:/WCU/Thesis 

ArcPro/PLIN_model/predictor_tifs/PctPerm.tif") 

PctSand<- raster("D:/WCU/Thesis 

ArcPro/PLIN_model/predictor_tifs/PctSand.tif") 

AnnPrecip<-raster("D:/WCU/Thesis 

ArcPro/PLIN_model/predictor_tifs/PRISMppt.tif") 

MeanTemp<-raster("D:/WCU/Thesis 

ArcPro/PLIN_model/predictor_tifs/PRISMtmean.tif") 

Slope<-raster("D:/WCU/Thesis 

ArcPro/PLIN_model/predictor_tifs/slope.tif") 

DistToStream<-raster("D:/WCU/Thesis 

ArcPro/PLIN_model/predictor_tifs/StreamDist.tif") 

files=c(WetnessIndex,BFI,CatchInteg,Curvature,Elevation,PctOM,PctPerm,

PctSand,AnnPrecip, 

        MeanTemp,Slope,DistToStream)  

files #Check the names of the files 

library(raster) 

raster_stack=stack(files) 

 

####Load study area####   

 

#Use a polygon to delimit the study area 

sa <- readOGR("D:/WCU/Thesis ArcPro/PLIN_model/Study_Area_proj.shp") 

#do this only if you have a shapefile 

plot (sa)#Visualize the study area 

 

#Import state boundaries for reference if you have such file 

#states <- readOGR("D:/WCU/Shapefile Downloads/States_shapefile.shp") 

#do this only if you have a shapefile 

#plot (states, add = T) 

plot (sa, add = TRUE) 

plot(p_xy, add =T) 
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#Make sure the projections are the same, if they are not, then 

#reproject  

proj4string(raster_stack) 

proj4string(sa) 

proj4string(p_xy) 

proj4string(states) 

 

####Load pseudoabsences points #### 

 

# I created a ‘background’ polygon (bounded by the study area and a 2km 
#buffer around any presence points to be used in the model and 

#randomly generated 500 points within the polygon, then exported the 

#xy coordinates into a .csv file, “pseudoabsence_pts2.csv” 

 

a_xy <- read.csv("D:/WCU/Thesis 

ArcPro/PLIN_model/pseudoabsence_pts2.csv", header = T) 

head(a_xy) 

proj4string(a_xy)=CRS("+proj=aea +lat_0=40 +lon_0=-96 +lat_1=20 

+lat_2=60 +x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs") # set 

projection 

plot(a_xy) 

 

#Visualize the presence and peusdoabsence points 

plot(raster_stack, 2, add=TRUE) #Choose first raster in the predictors 

stack, make add=TRUE 

points(a_xy, col='red',) 

points(p_xy, col='blue') 

plot(sa, border= "blue", add = TRUE) 

 

#### Extract environmental predictor values from rasters and make a 

data table #### 

 

#1. First extract the predictor values for presence points 

p_vals <- raster::extract(raster_stack, p_xy) 

head(p_vals) #Check table 

 

#Now extract predictor values for the background points 

#(pseudoabsences) 

a_vals <- raster::extract(raster_stack, a_xy) 

head(a_vals) #Check table 

 

#2 Append the coordinates for the presence points 

p_xy_coords <- data.frame(p_xy) #Converts spatial points to data 

p_vals <- cbind(p_xy_coords, p_vals) 

head(p_vals) 

#Append the coordinates for the background points 
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#a_xy_coords <- as.data.frame(a_xy[,1:2]) #Converts spatial points to 

#coordinate table 

a_xy_coords <- as.data.frame(a_xy) 

a_vals <- cbind(a_xy_coords, a_vals) 

head(a_vals) 

 

#3 Create row with "1"s to each presence record and a "0" to each 

#background 

pb <- c(rep(1, nrow(p_vals)), rep(0, nrow(a_vals))) 

head(pb) 

colnames(a_vals)[1]  <- "x" 

# Append the pb ("0"s and "1"s) to the extracted values of predictors 

sdmdata <- data.frame(cbind(pb, rbind(p_vals, a_vals))) 

head(sdmdata) 

 

#Now we have the final data with presences and absences points and the 

#associate predictor values to be used in models!  

# Let's save them to the computer 

saveRDS(sdmdata, "D:/WCU/Thesis 

ArcPro/PLIN_model/r_outputs/sdmdata_06132023.Rds")  #An  

write.csv(sdmdata,"D:/WCU/Thesis 

ArcPro/PLIN_model/r_outputs/sdmdata_06132023.csv") 

 

#----------------------------------------------------------# 

######  Generalized additive model      G   A   M         ###### 

#----------------------------------------------------------# 

#Read the sdmdata to continue working if you closed R, you might need 

#to open the predictors too 

sdmdata <-readRDS("D:/WCU/Thesis 

ArcPro/PLIN_model/r_outputs/sdmdata_06132023.Rds") 

 

#To run GAM we need to select the variables to use as having all 

#possible will exceed the capabilities of the model 

#specially with limited presence data, so lets check for correlations 

 

####Check for variable correlations####  

#Lets start with an exploratory analysis to eliminate correlated 

#variables  

not_used_vars <- names(sdmdata) %in% c("pb", "x", "y") #to exclude 

#coordinates and variables not used in correlations 

bc1 <- bioclim(sdmdata[!not_used_vars])  #bioclim finds automatically 

#the predictor columns  

pairs(bc1)      # plots the correlations, so we can start filtering 

#out correlated variables 
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cor(sdmdata[, 

c('WetIndex','BFI','CatchInteg','curve','elev','PctOM','PctPerm','PctS

and','PRISMppt', 

        'PRISMtmean','slope','StreamDist')]) 

M<-cor(sdmdata) 

library(corrplot) 

corrplot(M, method="number")  

#strong corr found between elev and PRISMtmean -0.82, so I removed 

#elev from model 

 

#Run a full model with all non-correlated variables and all points 

 

gam_full <- gam(pb ~ s(WetIndex)+ s(BFI)+ s(CatchInteg) +  

                  s(curve) +s(PctOM) +  

                  s(PctPerm) + s(PctSand) + s(PRISMppt) +  

                  s(PRISMtmean) + s(slope) +  

                s(StreamDist), 

                data = sdmdata,  family= binomial("logit")) 

 

summary(gam_full) #Check the model 

gam_full 

as_table(summary(gam_full)) 

as.table(summary(gam_full)) 

as.table(gam_full) 

testdf1<-data.table(gam_full$var.summary) 

 

####Evaluate the GAM model #### 

 

#First, we create a set of predicted values to contrast with our 

#"actual" presence and absences(pseudoabsences) 

#We use the "leave one out-l1o" approach in which we remove one of the 

#points in the data and create a model 

#with the remaining set. We then use that model to predict the 

#suitability of the point left out. And repeat the process  

#for each row of the dataset. 

 

l1o_gam <- rep(1,nrow(sdmdata)) #create an object of the size of nrows 

for (j in 1:nrow(sdmdata)) #Create the function 

{ 

  fj <- gam(pb ~s(WetIndex)+ s(BFI)+ s(CatchInteg) +  

              s(curve) +s(PctOM) +  

              s(PctPerm) + s(PctSand) + s(PRISMppt) +  

              s(PRISMtmean) + s(slope) +  

              s(StreamDist),#select the same model variables used in 

#the model above 

            data = sdmdata[-j,],  family= binomial("logit"))#Train the 

#model with everything except one point 
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  l1o_gam[j] <- predict(fj, sdmdata[j,], type="response") #Now make 

#the prediction of the 1 point 

} 

 

#Now calculate the metrics 

AUC_GAM <- AUC(y_pred = l1o_gam, y_true = sdmdata$pb) #Calculates the 

#AUC  

PRAUC_GAM <- PRAUC(y_pred = l1o_gam, y_true = sdmdata$pb) #Calculates 

#the PR-AUC  

COR_GAM <- cor(l1o_gam, sdmdata$pb, "complete.obs") #Calculates the 

#correlation  

JAC_GAM <- rbind(l1o_gam, sdmdata$pb) 

JAC_GAM <-JAC_GAM[,!apply(is.na(JAC_GAM), 2, any)] 

JAC_GAM <- 1-distance(JAC_GAM, method = "jaccard") #Calculate Jaccard 

#index  

 

#Finally make a prediction of the species potential suitable habitat 

#over the full study area extent using the GAM model.  

 

pred_gam_full <- predict(raster_stack,gam_full,progress='text', 

type="response")   

plot(pred_gam_full) 

writeRaster(pred_gam_full, filename="D:/WCU/Thesis 

ArcPro/PLIN_model/r_outputs/outputrasters/GAM_raster06132023", 

format="GTiff", overwrite=TRUE) #Save it 

 

 

#--------------------------------------# 

####--------- M A X E N T ---------#### 

#--------------------------------------# 

#To run Maxent in R we need to first install the package "dismo", 

#which contains Maxent as a function 

#We also NEED to have java installed in the pc and the maxent.jar file 

#copied in the #R dismo folder, that in our case I had to put it as 

D:/TempR/R/win-library/3.5/dismo/java/maxent.jar 

#Go here if you need trouble shooting java 

#https://stackoverflow.com/questions/37735108/r-error-onload-failed-

#in-loadnamespace-for-rjava 

#Go here to look for more parameters for Maxent 

#https://stackoverflow.com/questions/35082922/running-maxent-in-

#r/35464295 

#Go here for a guide to select parameters 

#https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-

#0587.2013.07872.x 
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#When working with MaxEnt, consider using the R package 'ENMeval' to 

#optimize the MaxEnt parameters: https://cran.r-

#project.org/web/packages/ENMeval/vignettes/ENMeval-vignette.html 

 

#Read the sdmdata to continue working if you closed R, you might need 

#to open the predictors too 

sdmdata <-readRDS("D:/WCU/Thesis 

ArcPro/PLIN_model/r_outputs/sdmdata_06132023.Rds") 

 

#let create a model using the same non-correlated predictor variables 

#as in the GAM model  

 

max_full <- 

maxent(sdmdata[c("WetIndex","BFI","CatchInteg","curve","PctOM","PctPer

m","PctSand","PRISMppt", 

                             "PRISMtmean","slope","StreamDist")], 

                   p=sdmdata[,"pb"], 

                   args=c('quadratic=true', 

                          'product=true', 

                          'threshold=true', 

                          'hinge=true', 

                          'threads=2', 

                          'responsecurves=true', 

                          'jackknife=false', 

                          'askoverwrite=false', 

                          'writeplotdata=true')) 

 

max_full  #Check the model output 

 

 

####Maxent model evaluation#### 

 

 

#We will create a model evaluation in  a similar way to GAM, using the 

#leave-one-out approach, see above for description 

 

l1o_max <- rep(1,nrow(sdmdata)) #create an object of the size of nrows 

for (j in 1:nrow(sdmdata)) 

{ 

  fj <- maxent(sdmdata[-j, 

c("WetIndex","BFI","CatchInteg","curve","PctOM","PctPerm","PctSand","P

RISMppt", 

                             "PRISMtmean","slope","StreamDist")], 

#select the same model variables as the full model 

               p=sdmdata[-j,"pb"], 

               args=c('quadratic=true', 

                      'product=true', 
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                      'threshold=true', 

                      'hinge=true', 

                      'threads=2', 

                      'responsecurves=true', 

                      'jackknife=false', 

                      'askoverwrite=false', 

                      'writeplotdata=true')) 

  l1o_max[j] <- predict(fj, sdmdata[j,], type="response") 

} 

 

#### Maxent AUC #### 

l1o_max <- rep(1,nrow(sdmdata)) #create an object of the size of nrows 

for (j in 1:nrow(sdmdata)) 

{ 

  fj <- maxent(sdmdata[-j,c(4:13)], p=sdmdata[-j,"pb"]) 

  l1o_max[j] <- predict(fj, sdmdata[j,], type="response") 

} 

 

#Now calculate the metrics 

AUC_MAX <- AUC(y_pred = l1o_max, y_true = sdmdata$pb) #Calculates the 

AUC  

PRAUC_MAX <- PRAUC(y_pred = l1o_max, y_true = sdmdata$pb) #Calculates 

the PR-AUC  

COR_MAX <- cor(l1o_max, sdmdata$pb, "complete.obs") #Calculates the 

#correlation  

JAC_MAX <- rbind(l1o_max, sdmdata$pb) 

JAC_MAX <-JAC_MAX[,!apply(is.na(JAC_MAX), 2, any)] 

JAC_MAX <- 1-distance(JAC_MAX, method = "jaccard") #Calculate Jaccard 

#index  

 

# Finally make a prediction of the species potential suitable habitat 

#over the full raster extent using the GAM model 

 

pred_max_full = predict(max_full, raster_stack, progress='text', 

timer=TRUE) 

plot(pred_max_full) 

writeRaster(pred_max_full, filename="D:/WCU/Thesis 

ArcPro/PLIN_model/r_outputs/outputrasters/MAX_raster06152023", 

format="GTiff", overwrite=TRUE) 

 

 

#---------------------------------------------------------- 

#### Boosted regression trees /GBM  Generalized boosted model#### 

#---------------------------------------------------------- 

#---------------------------------------------------------- 

#We will first run an exploratory model to identify the optimal number 

#for trees 
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gbm_ex2<- gbm.step( 

  data=sdmdata, 

  gbm.x 

=c("WetIndex","BFI","CatchInteg","curve","PctOM","PctPerm","PctSand","

PRISMppt", 

           "PRISMtmean","slope","StreamDist"), #select the variables 

#used from sdmdata, same set as GAM 

  gbm.y = "pb", 

  family = "bernoulli", 

  tree.complexity = 5, 

  learning.rate = 0.005, bag.fraction = 0.5) 

 

#We got around optimal number of trees in the run above. Now lets fit 

#the final #model with those trees.  

 

gbm_full <- gbm(formula = pb ~ WetIndex + BFI + CatchInteg + curve + 

PctOM + PctPerm + PctSand + PRISMppt + PRISMtmean + slope 

+ StreamDist, 

                data = sdmdata, 

                distribution = "bernoulli", 

                n.trees = 3050, 

                bag.fraction = 0.5) 

 

summary(gbm_full) #show the relative influence of each variable as 

table 

 

 

#### Evaluate GBM#### 

 

#We also use the leave-one-out approach as in the GAM and GBM, see 

#explanation above 

#start calculating the prediction made  

 

l1o_gbm <- rep(1,nrow(sdmdata)) #create an object of the size of nrows 

for (j in 1:nrow(sdmdata)) 

{ 

  fj <- gbm(pb ~ WetIndex + BFI + CatchInteg + curve + PctOM + PctPerm 

+ PctSand + PRISMppt + PRISMtmean + slope 

            + StreamDist, 

            data=sdmdata[-j,], 

            distribution = "bernoulli", 

            n.trees = 3050, 

            bag.fraction = 0.5) 

  l1o_gbm[j] <- predict(fj, sdmdata[j,], n.trees=3050, 

type="response") 

} 
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#Now calculate the metrics 

AUC_GBM <- AUC(y_pred = l1o_gbm, y_true = sdmdata$pb)  

#Calculates the AUC  

PRAUC_GBM <- PRAUC(y_pred = l1o_gbm, y_true = sdmdata$pb)  

#Calculates the PR-AUC  

COR_GBM <- cor(l1o_gbm, sdmdata$pb, "complete.obs")  

#Calculates the correlation  

JAC_GBM <- rbind(l1o_gbm, sdmdata$pb) 

JAC_GBM <-JAC_GBM[,!apply(is.na(JAC_GBM), 2, any)] 

JAC_GBM <- 1-distance(JAC_GBM, method = "jaccard")  

#Calculate Jaccard index  

 

#Finally make a prediction for the model with all variables to the 

#study area  

pred_gbm_full <- predict(raster_stack, gbm_full, progress='text', 

n.trees=3050, type='response') 

plot(pred_gbm_full) 

#Save the output prediction as a tiff 

writeRaster(pred_gbm_full, filename="D:/WCU/Thesis 

ArcPro/PLIN_model/r_outputs/outputrasters/gbm_raster06152023", 

format="GTiff", overwrite=TRUE) 

 

#### Ensemble model #### 

 

################################################### 

#ensemble model based on weighted AUC-PR/  

#It is a similar approach to using Somers' D as a weighting  

#factor based on ‘Overcoming limitations of modelling rare  

#species by using ensembles of small models’ (Breiner et al  

#2015) Methods in Ecology and Evolution 2015, 6, 1210-1218 

# 

################################################### 

 

 

AUCPRs_sum <-  PRAUC_GAM + PRAUC_GBM + PRAUC_MAX #sum the individual 

#PRAUC scores for each model approach 

 

weight_gam <- (PRAUC_GAM/AUCPRs_sum)   #Calculate the weights for each 

#model  

weight_gamv <- rep(weight_gam,nrow(sdmdata)) #Generate a vector of 

#size sdmdata to be used in the ensemble algebra 

weight_gbm <- (PRAUC_GBM/AUCPRs_sum) 

weight_gbmv <- rep(weight_gbm,nrow(sdmdata)) 

weight_max <- (PRAUC_MAX/AUCPRs_sum) 

weight_maxv <- rep(weight_max,nrow(sdmdata)) 

# The ensemble model prediction based on different models and weights 
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esm <- ((pred_gam_full * weight_gamv) + (pred_gbm_full * weight_gbmv) 

+ (pred_max_full * weight_maxv)) 

 

plot(esm) 

writeRaster(esm, filename="D:/WCU/Thesis 

ArcPro/PLIN_model/r_outputs/outputrasters/PLIN_ensemble_06162023", 

format="GTiff", overwrite=TRUE) 

 

####Calculate AUC of the ensemble model #### 

#Extract the raster values for the presences and absences  

sdmdata_pts <- sdmdata[,c("x","y")]   #get the coordinates 

esm_pred_vals <- raster::extract(esm, sdmdata_pts)   #Extract ensemble 

#values for each coordinate pair 

 

 

#Now calculate the metrics 

AUC_ESM <- AUC(y_pred = esm_pred_vals, y_true = sdmdata$pb) 

#Calculates the AUC  

PRAUC_ESM <- PRAUC(y_pred = esm_pred_vals, y_true = sdmdata$pb) 

#Calculates the PR-AUC  

COR_ESM <- cor(esm_pred_vals, sdmdata$pb, "complete.obs") #Calculates 

#the correlation  

JAC_ESM <- rbind(esm_pred_vals, sdmdata$pb) 

JAC_ESM <-JAC_ESM[,!apply(is.na(JAC_ESM), 2, any)] 

JAC_ESM <- 1-distance(JAC_ESM, method = "jaccard") #Calculate Jaccard 

#index  

 

#### EOF (end of file)####  
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APPENDIX B: TARGETED SURVEY LOCATIONS 

Table B1. Results of targeted surveys completed in August and September 2023. 

HECTARES 

SURVEY 

DATE 

LOCATION  

HSI 

MEAN 

SD  

GAP 

Status 
DESCRIPTION 

P. INTEGRILABIA ASSOCIATED SPECIES 

PRESENT 

HABITAT 

RANK 

3.42 ha 

8/17/23 

King Creek Bog 

Henderson Co. 

Conserving 

Carolina  

0.54 

±0.05 
1 

French Broad Valley Bog; saturated 

substrate with Sphagnum mats and 

significant Carex component with 

variable canopy cover (some areas 

being managed for open canopy), 

many PLIN associated species, 

suggested location for expansion of 

the Bat Fork Bog reintroduction. 

Acer rubrum, Nyssa sylvatica, Viburnum nudum, 

Alnus serrulata, Osmundastrum cinnamomea, 

Osmunda spectabilis, Amauropelta 

noveboracensis, Lorinseria areolata, Lycopus 

virginicus, Lobelia cardinalis, Oxypolis rigidor, 

Eutrochium fistulosum, Platanthera clavellata, 

Platanthera ciliaris, Sphagnum sp.  

high 

10.89 ha 

8/18/23 

Mud Creek, 

Henderson 

County 

NC Dept 

Transportation 

0.75 

±0.12 
2 

Disturbed alluvial swamp with large 

pockets of saturated soils among 

braided runnels with Sphagnum mats 

and significant Carex component and 

variable canopy cover west of 

powerline cut, invaded by Ligustrum 

sp, and Rosa multiflora 

Acer rubrum, Liriodendron tulipifera, Nyssa 

sylvatica, Alnus serrulata, Viburnum nudum, 

Osmundastrum cinnamomea, Osmunda 

spectabilis, Lorinseria areolata, Amauropelta 

novaboracensus, Lycopus virginicus, Oxypolis 

rigidor, Lobelia cardinalis, Eutrochium 

fistulosum, Carex intumescens, Sphagnum sp., 

Platanthera clavellata 

high 

23.94 ha 

8/22/23 

Pink Beds 

North, 

Transylvania 

County 

US Forest 

Service 

0.53 

±0.11 
3 

Large swamp forest- bog complex 

with saturated soils, many pockets of 

well-developed Sphagnum with 

significant Carex component, 

variable canopy cover, and many 

PLIN associated species 

Acer rubrum, Liriodendron tulipifera, Nyssa 

sylvatica, Viburnum nudum, Dicanthelium sp., 

Chasmanthum laxum, Osmundastrum 

cinnamomea, Osmunda spectabilis, 

Parathylepteris noveboracensis, Lorinseria 

areolata, Lycopus virginicus, Lobelia cardinalis, 

Eutrochium fistulosum, Carex intumescens, 

Platanthera clavellata, Sphagnum sp. 

high 
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HECTARES 

SURVEY 

DATE 

LOCATION  

HSI 

MEAN 

SD  

GAP 

Status 
DESCRIPTION 

P. INTEGRILABIA ASSOCIATED SPECIES 

PRESENT 

HABITAT 

RANK 

5.76 ha 

8/24/23 

Eller Preserve, 

Clay County 

The Nature 

Conservancy 

0.85 

±0.17 
1 

Low Mountain Seepage Bog; 

southern-most drainage south of the 

meadow represents best PLIN habitat. 

Area of suitable habitat heavily 

invaded by Ligustrum sp. and 

Microstegium vimineum 

Acer rubrum, Alnus serrulata, Liriodendron 

tulipifera, Nyssa sylvatica, Viburnum nudum, 

Osmundastrum cinnamomea, Osmunda 

spectabilis, Amauropelta noveboracensis, 

Lorinseria areolata, Lycopus sp., Eutrochium 

fistulosum, Lobelia cardinalis, Oxypolis rigidor, 

Platanthera clavellata, Sphagnum sp.  

high 

2.34 ha 

8/24/23 

Lake Chatuge 

east, 

Clay County 

Private, Cajam 

Properties 

0.74 

±0.17 
4 

Wetland area along small tributary 

stream. Small patches of sphagnum 

mats among braided runnels. Many 

PLIN associated species. Many 

Platanthera leaves observed, some 

flowering P. clavellata. Heavily 

invaded by Ligustrum sp. and 

Microstegium vimineum. Leaf sample 

collected. 

Acer rubrum, Alnus serrulata, Liriodendron 

tulipifera, Nyssa sylvatica, Viburnum nudum, 

Osmundastrum cinnamomea, Osmunda 

spectabilis, Amauropelta noveboracensis, 

Lorinseria areolata, Lycopus virginicus, Lobelia 

cardinalis, Oxypolis rigidor, Parnassia asarifolia, 

Eutrochium fistulosum, Sphagnum sp, 

Platanthera clavellata 

high 

12.78 ha 

9/8/23 

Paddys Creek 

South 

Burke County 

Foothills 

Conservancy 

0.79 

±0.19 
2 

Large non-alluvial wetland in 

northwest part of property; 

approximately 10 acres of headwater 

seep habitat, extended beyond survey 

into neighboring private property. 

Heavily invaded by Murdannia 

keisak and Microstegium. 1000s of 

Platanthera leaves observed, samples 

collected at 7 locations throughout 

seep wetland 

Acer rubrum, Liriodendron tulipifera, Nyssa 

sylvatica, Liquidambar styraciflua, Alnus 

serrulata, Viburnum nudum, Chasmanthum 

laxum, Osmundastrum cinnamomea, Osmunda 

spectabilis, Amauropelta novaboracensis, 

Lorinseria areolata, Lycopus virginicus, Lobelia 

cardinalis, Rhexia mariana, Eutrochium 

fistulosum, Sphagnum sp, Platanthera clavellata 

high 
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HECTARES 

SURVEY 

DATE 

LOCATION  

HSI 

MEAN 

SD  

GAP 

Status 
DESCRIPTION 

P. INTEGRILABIA ASSOCIATED SPECIES 

PRESENT 

HABITAT 

RANK 

16.65 ha 

9/8/23 

Paddys Creek 

North 

Burke County 

NC DNCR, NC 

Land and Water 

Fund 

0.72 

±0.25 
3 

Well-developed sphagnum bog at 

headwaters of a tributary to Paddy's 

Creek in northwest section of survey 

area. Herb layer 80-100% cover 

mostly Dicanthelium sp, Carex sp, 

and Scirpus sp. Dominant tree Pinus 

strobus. Many Platanthera leaves, 

samples collected at 2 locations.  

Acer rubrum, Liriodendron tulipifera, Nyssa 

sylvatica, Liquidambar styraciflua, Viburnum 

nudum, Chasmanthum laxum, Osmundastrum 

cinnamomea, Osmunda spectabilis, Amauropelta 

novaboracensis, Lorinseria areolata, Lycopus 

virginicus, Carex intumescens, Sphagnum sp., 

Platanthera clavellata 

high 

3.15 ha 

8/23/23 

Little TN River 

tributary 

Macon County  

Mainspring 

Conservation 

Trust 

0.67 

±0.09 
2 

Wetland area along tributary stream 

with Platanus occidentalis. 

Significant invasive encroachment of 

Ligustrum japonicum and 

Microstegium vimineum. Canopy 

cover variable and substrate saturated 

in areas still connected to floodplain, 

but lacks significant Sphagnum and 

Carex component. Stream incised 

degrading habitat. 

Acer rubrum, Liriodendron tulipifera, Nyssa 

sylvatica, Amauropelta noveboracensis, Lycopus 

virginianus, Osmundastrum cinnamomea, 

Platanthera clavelata 

medium 

15.39 ha 

8/25/23 

Bushy Head Mt, 

Parker Branch, 

Cherokee 

County 

Private 

0.73 

±0.29 
4 

Headwater stream with some pockets 

of saturated soil in flat areas where 

stream is not incised. Variable canopy 

cover, but mostly shaded. Land 

previously grazed and selectively 

logged. Sphagnum component 

missing or very minor. 

Acer rubrum, Liriodendron tulipifera, Nyssa 

sylvatica, Alnus serrulata, Amauropelta 

novaboracensus, Lobelia cardinalis, Viburnum 

nudum, Platanthera clavellata, few infrequent 

Osmundastrum cinnamomea, Osmunda 

spectabilis,Lorinseria areolata 

medium 

17.37 ha 

8/30/23 

Peachtree, 

Cherokee 

County 

Private 

0.59 

±0.37 
4 

Habitat variable throughout survey 

area. Some headwater streams with 

pockets of saturated soils small 

sphagnum mats in flat inundated 

areas. Some areas of predicted habitat 

overly shaded with large 

Rhododendrons. 

Acer rubrum, Liriodendron tulipifera, Nyssa 

sylvatica, Viburnum nudum, Alnus serrulata, 

Osmundastrum cinnamomea, Amauropelta 

noveboracensis, Lorinseria areolata, Lycopus 

virginicus, Lobelia cardinalis, Platanthera 

clavellata 

medium 
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HECTARES 

SURVEY 

DATE 

LOCATION  

HSI 

MEAN 

SD  

GAP 

Status 
DESCRIPTION 

P. INTEGRILABIA ASSOCIATED SPECIES 

PRESENT 

HABITAT 

RANK 

8.55 ha 

8/31/23 

Wehutty west, 

Cherokee 

County 

Private 

0.78 

±0.29 
4 

Small relatively flat headwater stream 

west of the dirt road. Small patches of 

saturated floodplain with Sphagnum 

appear to be good habitat. Mostly 

shaded, but some small open canopy 

patches. Surprised to find no P. 

clavellata. 

Acer rubrum, Liquidambar styraciflua, Viburnum 

nudum, Alnus serrulata, Osmundastrum 

cinnamomea, Osmunda spectabilis, Amauropelta 

noveboracensis, Lobelia cardinalis, Sphagnum 

sp.  

medium 

6.84 ha 

9/15/23 

King Creek, 

Henderson 

County 

Private, Ingels 

0.66 

±0.16 
4 

Degraded non-alluvial wetland. 

Saturated soils with significant 

Sphagnum/Carex component but 

dominating young willows creating 

dense mid-story canopy, heavily 

invaded by Murdannia keisak. 

Acer rubrum, Liriodendron tulipifera, Alnus 

serrulata, Nyssa sylvatica, Carex intumescens, 

infrequent, Osmundastrum cinnamomea, 

Osmunda spectabilis, Lorinseria areolata, 

Lobelia cardinalis, Platanthera clavellata, 

Sphagnum sp. 

medium 

11.97 ha 

8/16/23 

Green River 

Game Lands 

south 

Henderson Co 

NC State 

0.45 

±0.35 
2 

Stream corridor with some small 

tributaries, too steep, floodplain 

disconnected from stream. 

Acer rubrum, Alnus serrulata, Liriodendron 

tulipifera, Amauropelta noveboracensis 
low 

3.51 ha 

8/16/23 

Green River 

Game Lands 

north 

Henderson 

County 

NC State 

0.32 

±0.32 
4 

Stream corridor with some small 

tributaries, too steep, floodplain 

disconnected from stream. 

Acer rubrum, Alnus serrulata, Liriodendron 

tulipifera, Amauropelta noveboracensis 
low 

3.62 ha 

8/17/23 

King Creek west 

Henderson 

County 

Conserving 

Carolina 

0.75 

±0.24 
2 

Stream-side upland with some nice 

alluvial wetlands where still 

connected with floodplain dominated 

by Scirpus sp., variable canopy cover, 

lacking sphagnum component. 

Acer rubrum, Liriodendron tulipifera, 

Amauropelta noveboracensis, Lobelia cardinalis, 

Oxypolis rigidor, Eutrochium fistulosum 

low 
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HECTARES 

SURVEY 

DATE 

LOCATION  

HSI 

MEAN 

SD  

GAP 

Status 
DESCRIPTION 

P. INTEGRILABIA ASSOCIATED SPECIES 

PRESENT 

HABITAT 

RANK 

10.17 ha 

8/18/23 

Clear Creek 

Henderson 

County 

Private 

0.89 

±0.19 
4 

Most areas north of Clear Creek 

highly unsuitable habitat, cleared and 

ditched agricultural land and horse 

pasture. South of Clear Creek heavily 

invaded by Ligustrum sinense, 

Microstegium vimineum, Rosa 

multiflorum, and Elaeagnus 

umbellata. Some very small patches 

of Sphagnum and Carex, but area 

mostly ditched and disconnected from 

flood plain. 

Acer rubrum, Liriodendron tulipifera, Lobelia 

cardinalis, Amauropelta novaboracensis 
low 

14.04 ha 

8/23/23 

 Kelly Cove Rd 

Macon County 

Mainspring 

Conservation 

Trust 

0.58 

±0.31 
2 

Most drainages on property heavily 

shaded by dense Rhododendron. 

Hydrology impacted by ditching and 

roads. Small seep at base of slope on 

west edge of a flat area west of 

Burningtown Creek w/ Sphagnum 

and many P. clavellata heavily 

invaded by dense Microstegium 

vimineum. 

Acer rubrum, Liriodendron tulipifera, Nyssa 

sylvatica, Viburnum nudum, Amauropelta 

noveboracensis, Eutrochium fistulosum few 

Osmundastrum cinnamomea and Osmuda 

spectabilis w/ Platanthera clavellata in a small 

seepy area with Sphagnum sp.  

low 

13.77 ha 

8/23/23 

Bartram Trail 

Macon County 

US Forest 

Service 

0.34 

±0.30 
3 Too steep and dry, not good habitat. presence/absence survey only low 

5.22 ha 

8/24/23 

Lake Chatuge 

west 

Clay County 

Private, Cajam 

Properties 

0.76 

±0.23 
4 

Disturbed upland area with incised 

stream adjacent to hay field. 
presence/absence survey only low 

7.11 ha 

8/24/23 

Lake Chatuge 

east Stillhouse 

Creek 

Clay County 

Private, Cajam 

Properties 

0.55 

±0.26 
4 

Too steep and dry, some stream side 

habitat but lacking perennial 

wetlands, no significant Sphagnum or 

Carex component. 

presence/absence survey only low 
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HECTARES 

SURVEY 

DATE 

LOCATION  

HSI 

MEAN 

SD  

GAP 

Status 
DESCRIPTION 

P. INTEGRILABIA ASSOCIATED SPECIES 

PRESENT 

HABITAT 

RANK 

9.90 ha 

8/25/23 

Bushy Head Mt, 

Laurel Branch 

Cherokee 

County 

Private 

0.36 

±0.27 
4 

Headwater stream with lots of 

Rhododendron shading out stream 

corridor. 

Acer rubrum, Liriodendron tulipifera, Nyssa 

sylvatica, Amauropelta novaboracensus, Lobelia 

cardinalis 

low 

9.90 ha 

8/31/23 

East of Unaka, 

roadside survey, 

Cherokee 

County 

Private 

0.31 

±0.316 
4 

Patches predicted to be suitable 

habitat converted to pasture, no 

private land access granted. 

presence/absence survey only low 

17.82 ha 

8/31/23 

Wehutty east, 

Cherokee 

County 

Private 

0.61 

±0.33 
4 

Heavily disturbed flat area with 

remnants of a non-alluvial wetland. 

Was actively being cleared, complete 

removal of woody vegetation and 

draining via ditching. 

in margins around recently cleared area: Acer 

rubrum, Liquidambar styraciflua, Liriodendron 

tulipifera, Paratheyleptris noveboracensis, 

Lorinseria areolata, Viburnum nudum, 

Eutrochium fistulosa, Alnus serrulata 

low 

15.03 ha 

9/2/23 

Pink Beds 

South, 

Transylvania 

County 

US Forest 

Service 

0.33 

±0.26 
3 

Swamp forest - bog complex where 

not overgrown with Rhododendron. 

Few small pockets of saturated areas 

with well-developed sphagnum with 

significant Carex component, many 

PLIN associated species. One small 

patch of highly suitable habitat at 

north tip of survey area, added to 

Pink Beds North. 

Acer rubrum, Liriodendron tulipifera, Nyssa 

sylvatica, viburnum nudum, Dicanthelium sp., 

Chasmanthum laxum, Osmundastrum 

cinnamomea, Osmunda spectabilis, 

Parathylepteris noveboracensis, Lorinseria 

areolata, Lycopus virginicus, Lobelia cardinalis, 

Eutrochium fistulosum, Carex intumescens, 

Platanthera clavellata, Sphagnum sp. 

low 

8.91 ha 

9/6/23 

Blue Ridge 

Community 

College 

Henderson 

County 

Private 

0.47 

±0.22 
4 

Degraded Red Maple swamp forest-

bog complex with some wetland areas 

along old drainage ditch. New 

occurrence of Sagittaria fasiculata 

discovered. Lacks Sphagnum and 

other Platanthera sp. Property 

heavily invaded with Rosa multiflora, 

Ligustrum, and Microstegium 

vimineum. Murdannia keisak in open 

wetland east of Bat Fork. 

Acer rubrum, Liriodendron tulipifera, Nyssa 

sylvatica, Viburnum nudum, Alnus serrulata, 

Osmundastrum cinnamomea, Osmunda 

spectabilis, Amauropelta noveboracensis, 

Lorinseria areolata, Carex intumescens 

low 
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