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PREFACE 
 
 
 

 This thesis is organized in manuscript format.  Chapter 1 is an introduction 

focused on the project's regional relevance in the Southern Appalachian Mountains and 

Great Smoky Mountains National Park.  Chapter 2 is a review of scientific literature 

related to the topics in Chapter 3.  Chapter 3 is a manuscript to be submitted to the 

journal Forest Ecology and Management.  Effort was made to minimize redundancy in 

Chapters 1 through 3.  Literature Cited lists references from all chapters.  Appendix A 

contains the geographic locations of hemlock study sites in Great Smoky Mountains 

National Park. 
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ABSTRACT 
 
 
 

COMPARISONS OF ARTHROPOD AND AVIAN COMMUNITIES IN INSECTICIDE-
TREATED AND UNTREATED HEMLOCK STANDS IN GREAT SMOKY MOUNTAINS 
NATIONAL PARK 
 
Josephine Fields Falcone, M.S. 
 
Western Carolina University (March 2009) 
 
Director: Dr. Laura E. DeWald 
 
 
 Great Smoky Mountains National Park is using systemic imidacloprid in Hemlock 

Conservation Areas to treat eastern hemlocks (Tsuga canadensis) infested with hemlock 

woolly adelgid (Adelges tsugae, HWA).  The purpose of this study was to investigate the 

effects of systemic imidacloprid treatments on the insectivorous bird community and on 

the hemlock canopy arthropod community in the context of food availability for 

insectivores.  Territory mapping of three hemlock-associated Neotropical migratory 

foliage-gleaning bird species was conducted in six pairs of treated and untreated 

hemlock study sites.  Relationships between bird territory density and hemlock foliar 

density were also examined.  Canopy arthropods were sampled in these paired sites by 

clipping mid-canopy hemlock branches.  Arthropods were identified to order except 

Hemiptera to suborder.  Arthropods were further categorized into focal bird prey guilds 

and non-target herbivorous insect guilds.  

 Focal bird densities did not differ between treated and untreated sites but were 

positively related to branch foliage mass, implying a preference in these birds for well-

foliated hemlocks.  There was no difference in HWA infestation between treated and 

untreated sites, indicating that treated hemlock trees were not sampled at peak efficacy 

of imidacloprid treatments.  Over 900 non-HWA arthropods from 16 orders were 

collected.  There were no differences in richness, abundance, composition, or density 
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between treated and untreated sites for total arthropods or for the two focal bird prey 

guilds arthropods ≥ 3 mm and larvae ≥ 3 mm, revealing little impact on the overall 

arthropod crop from imidacloprid treatments.  However, non-target herbivorous 

Hemiptera and larval Lepidoptera were significantly reduced in treated hemlocks.  

Although larval Lepidoptera are primary prey for focal birds, lack of differences in bird 

densities suggests the birds are finding other food resources in these mixed hemlock-

deciduous stands.  Results of this study indicate that controlling HWA-induced 

defoliation through use of imidacloprid may in the short term benefit hemlock-associated 

birds.  However, while imidacloprid treatments did not appear to affect most non-target 

arthropods, guilds of non-target herbivorous insects should be monitored for long-term 

declines. 
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CHAPTER 1: INTRODUCTION 
 
 
 

 Eastern hemlocks (Tsuga canadensis [L.] Carr.), described as the redwoods of 

the east (Great Smoky Mountains National Park 2008), range from Canada through the 

Southern Appalachian Mountains.  Economically, hemlocks were once a valuable 

sawtimber tree in the Northeast (Ward et al. 2004).  Today they are valued more for the 

important ecological niche they provide, their prominent use in the landscaping industry, 

and as a sightseeing attraction in state and national parks (Quimby 1996) including 

Great Smoky Mountains National Park (GSMNP).  Their shade tolerance promotes 

dense foliage to grow throughout the hemlock canopy, thus providing a cool, shaded 

habitat that supports unique assemblages of flora and fauna (Quimby 1996, Ward et al. 

2004).  GSMNP, a World Heritage Site and International Biosphere Reserve (Sharkey 

2001), contains some of the largest and oldest eastern hemlock stands in the world 

(Buck et al. 2005).  Unfortunately, these beautiful trees and their associated ecosystems 

are at risk from hemlock woolly adelgid (Adelges tsugae Annand, HWA).  This minute 

non-native insect anchors at the base of hemlock needles to feed on plant fluids which 

causes the hemlock to shed its needles and eventually die (McClure et al. 2001).   

 Non-native insects and pathogens are major sources of stress in the forests of 

eastern North America.  Well known examples of exotic pathogens that have caused 

extensive damage include chestnut blight (Cryphonectria parasitica [Murr.] Barr) in 

American chestnut (Castanea dentata [Marsh.] Borkh.) and Dutch elm disease 

(Ophiostoma spp.) in elm species (Ulmus spp).  A familiar non-native insect pest is the 

gypsy moth (Lymantria dispar L.), whose larvae have extensively defoliated hardwoods 

in decadal outbreak cycles throughout the eastern US (Lovett et al. 2006).  While gypsy 

moth infestations may cause only short-term negative impacts because many trees 
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within a stand survive attack and the moth is not host-specific (Lovett et al. 2006),  HWA 

infestations cause severe, long-term damage because of its host-specificity on Tsuga 

species and the lack of resistance in eastern hemlocks (Lovett et al. 2006).   

 HWA infestation is spreading at a pace of approximately 12 km per year with 

faster expansion in the southern part of the range (Evans and Gregoire 2007).  HWA 

was first recorded in GSMNP in 2002 (Soehn et al. 2005).  In GSMNP, large areas of 

hemlocks have been killed, especially in the Cataloochee Valley region (Kincaid and 

Parker 2008, T. Remaley, pers. comm., pers. obs.).  As hemlocks have declined, other 

changes in the ecosystem have been observed.  Deterioration of hemlock vigor has 

been shown to cause shifts in forest flora (Orwig and Foster 1998, Eschtruth et al. 2006) 

and cause decreases in the numbers of birds that preferentially use hemlocks (Tingley et 

al. 2002), including several Neotropical migratory birds such as the black-throated green 

warbler (Dendroica virens [Gmelin]) which are targeted for conservation (Robbins et al. 

1993).  To conserve the hemlock ecosystem in GSMNP, hemlocks in specially 

designated Hemlock Conservation Areas are being treated for HWA using systemic 

imidacloprid, a chemical which is applied near the roots and is distributed throughout the 

hemlock via sap flow (Webb et al. 2003).  This systemic insecticide application can 

control HWA infestation up to 100% in individual trees.  Despite its effectiveness, the 

overall environmental impact of using insecticides such as imidacloprid in natural 

forested areas must be evaluated (Cowles et al. 2006, Devine and Furlong 2007). 

 The purpose of this study was to investigate the effects of systemic imidacloprid 

on the hemlock-associated insectivorous bird community and on the hemlock canopy 

arthropod community in the context of food availability for insectivores in GSMNP.  

Canopy arthropods were sampled to compare diversity between treated and untreated 

hemlock stands, and bird densities were surveyed in the same stands as an indirect 
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assessment of resource availability in hemlock habitat.  Relationships between hemlock 

health and densities of hemlock-associated birds were also investigated.  Arthropod 

specimens collected in this study were preserved for the GSMNP Museum Collection as 

baseline data for future studies (National Park Service Park Profiles 2009).   
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CHAPTER 2: LITERATURE REVIEW 
 
 
 

Hemlock Ecosystem 

 Eastern hemlocks (Tsuga canadensis [L.] Carr.) range from Nova Scotia west to 

Minnesota and south along the Appalachian Mountains to Georgia (Ward et al. 2004).  

They are one of the most common conifers in northeastern forests where they can occur 

in nearly pure stands with little understory (Lovett et al. 2006).  Throughout their range 

they are typically associated with mesic, sheltered sites (Schafale and Weakley 1990).   

In the Southern Appalachians, the greatest densities of eastern hemlocks are found in 

coves or north-facing slopes in mixed hemlock-deciduous forests (Wilcove 1988, 

Johnson et al. 2000, Ward et al. 2004), often with a dense shrub layer of Ericaceae 

species such as rhododendron (Rhododendron spp.) (Kendeigh and Fawver 1981, 

Wilcove 1988).  Eastern hemlock is widely distributed in forests throughout eastern 

North America, while the Carolina hemlock (T. caroliniana Engelm.) is a rare relict 

species patchily distributed in the Southern Appalachians (Rentch et al. 2000).  These 

two species typically occupy different habitat niches where their ranges overlap.

 Eastern hemlock (hereafter hemlock) is a late-successional species that may 

take centuries to dominate the forest canopy (Quimby 1996).  It is the most long-lived, 

most shade tolerant tree species in eastern North America (Ward et al. 2004).  This 

tolerance for low light permits the evergreen foliage to fill in throughout the canopy and 

down to the forest floor (Ward et al. 2004).  This vertical canopy density is distinct from 

most conifer species that self-prune (Benzinger 1994).  The dense hemlock foliage 

modifies the surrounding environment in protected coves and along waterways by 

moderating air temperatures and aiding retention of soil moisture (Benzinger 1994, 

Quimby 1996).  The shallow root systems make hemlock subject to windthrow which 
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creates canopy gaps and a pit-and-mound pattern of microhabitats on the forest floor 

(Quimby 1996).  Often ericads will occupy gaps in the canopy such as the edges of 

streams (Kendeigh and Fawver 1981), while low light regimes and acidic soil chemistry 

may limit the herbaceous layer (Quimby 1996, Lovett et al. 2006).   

 The ecosystem characteristics created by hemlocks attracts unique biotic 

communities.  Brook trout (Salvelinus fontinalis [Mitchill]) favor streams along hemlock 

stands because of the cooler microclimate created by hemlocks (Quimby 1996), and 

hemlocks support unique bird assemblages throughout their geographic range 

(Kendeigh 1946, Benzinger 1994, Quimby 1996, Yamasaki et al. 2000, Shriner 2001, 

Tingley et al. 2002, Ross et al. 2004, Becker et al. 2008).  The moth species hemlock 

angle (Semiothisa fissinotata [Wlk.]) is a hemlock species obligate (Soehn et al. 2005), 

and Buck et al. (2005), and Dilling et al. (2007) have documented diverse arthropod 

assemblages associated with hemlocks in GSMNP. 

 

Hemlock Woolly Adelgid 

Life History 

 HWA is believed to have been introduced to North America from Asia, though the 

details of its introduction are unknown (McClure et al. 2001).  It was first observed in 

western species of hemlock in the 1920s, and was first detected in the eastern US in 

Virginia in the 1950s.  It was first detected in GSMNP in 2002 (Soehn et al. 2005).  In 

2008 HWA occurred from Maine to Georgia along the Appalachian Mountains (Hemlock 

Woolly Adelgid 2009), and its range is expanding more rapidly in the warmer southern 

extents (Evans and Gregoire 2008).  In eastern North America it attacks both eastern 

and Carolina hemlock (McClure et al. 2001).  Western species of hemlock seem to 

tolerate infestation, while eastern Tsuga species appear to have little to no resistance.    
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 HWA is a tiny insect (less than 1.5 mm in length) that taps nutrient reserves in 

plants (Ward et al. 2004).  This pest feeds on starch reserves in the xylem ray 

parenchyma cells of hemlock needles rather than feeding directly on phloem like many 

related Hemiptera (McClure et al. 2001).  The life cycle of HWA is complex, with typically 

two generations produced per year in North America (McClure et al. 2001, Ward 2004).  

All reproducing HWA in North America are parthenogenetic non-winged females that lay 

up to 300 eggs in woolly white ovisacs (McClure et al. 2001).  Mobile nymphs emerge 

from the eggs and are easily dispersed by wind and animals.  These nymphs crawl to 

the base of a needle where they insert a feeding apparatus called a stylet bundle into the 

ray cells.  As they molt through several stages they remain attached to the same needle 

throughout their lives and build a woolly ovisac that will eventually hold the eggs they 

produce.  Eggs laid in late winter hatch in the spring as either non-winged or winged 

adults.  The non-winged adults settle at the base of a needle and eventually lay eggs 

that will hatch in the summer, which develop into only non-winged adults that overwinter 

and lay eggs the following spring.  The winged adults fly off in search of a spruce 

species (Picea sp.) to complete their life cycle.  However, no North American spruce 

species is a compatible host for winged HWA survival and reproduction, therefore these 

winged individuals do not contribute to future HWA infestations.  As health in hemlocks 

deteriorates, proportionately more non-reproducing winged HWA are born, which can 

ironically cause declines in overall infestation in severely damaged trees in North 

America (McClure 1991). 

 

Effects on the Hemlock Ecosystem 

 HWA can infest and kill all age classes of hemlocks.  The feeding action of HWA 

causes hemlock needles to desiccate, discolor, and drop, and it also kills most buds 

 



16 
 
preventing future growth (McClure et al. 2001).  Defoliation and subsequent death of tree 

limbs typically progresses from lower to upper canopy and can begin within a few 

months of infestation.  Tree death can occur in as little as four years.   

 Lovett et al. (2006) recognized HWA infestation as having a particularly potent 

combination of host specificity and lack of host resistance, and thus both short- and 

long-term impacts to hemlock ecosystems are occurring.  Ecosystem and community 

level effects of HWA forest infestation have been documented primarily in Northeast 

forests.  In New England, hemlock decline has been shown to change forest floor 

parameters and alter nutrient cycling in hemlock-dominated ecosystems (Jenkins et al. 

1999, Stadler et al. 2006, Orwig et al. 2008).  In Delaware and Pennsylvania, Eschtruth 

et al. (2006) reported that as hemlocks declined in vigor light levels increased, resulting 

in a significant increase in understory growth that included invasive plant species.  In 

Connecticut, Orwig and Foster (1998) observed rapid understory growth but few 

hemlock seedlings following hemlock decline.  Similarly, Small et al. (2005) documented 

a shift in the understory to more shrub species and more hardwood saplings.  As 

hemlocks die, early successional hardwoods such as birch (Betula spp.) and red maple 

(Acer rubrum L.) typically replace them (Orwig and Foster 1998).   

 Hemlock-associated avian populations have also been shown to decline in 

response to HWA attack.  In the northeastern US, Tingley et al. (2002) found breeding 

birds such as black-throated green warblers (Dendroica virens [Gmelin]) and Acadian 

flycatchers (Empidonax virescens [Vieillot]) that strongly associate with intact hemlock 

forests decline significantly with hemlock mortality from HWA.  Becker et al. (2008) also 

observed a positive relationship between the numbers of breeding territories of these 

two bird species and hemlock health in Pennsylvania.  Blue-headed vireos (Vireo 

solitarius [Wilson]) have also been negatively impacted by hemlock decline (Tingley et 
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al. 2002).  These three Neotropical migrants are prioritized for conservation primarily 

because of breeding and wintering habitat loss (Hunter et al. 1993, Robbins et al. 1993).  

Loss of hemlock habitat in the Southern Appalachians caused by HWA is critical for 

Neotropical migrants such as blue-headed vireos and black-throated blue warblers 

(Dendroica caerulescens [Gmelin]), that were already experiencing declines in their 

southern range related to habitat fragmentation (Holt 2000).  Because of habitat 

specificity of these birds in the Southern Appalachians, they are bioindicators of hemlock 

habitat integrity and can, therefore, be used in forest conservation and management 

(O’Connell et al. 2000).  Assessment tools for hemlock management are imperative in 

light of the rapid spread of HWA in the Southern Appalachians (Evans and Gregoire 

2007).  

 In addition to HWA, other non-native insect pests have been associated with 

declines in Neotropical migratory bird species.  Often these impacts are related to 

habitat preferences in birds.  In GSMNP, Rabenold et al. (1998) found densities of ten of 

the eleven most common territorial bird species in spruce-fir forests had declined by 

nearly half from 1974 to 1986.  These declines were attributed to the effects of balsam 

woolly adelgid (Adelges piceae [Ratzeburg]) on Fraser fir (Abies fraseri [Pursh] Poir.).  

Birds showing the most severe declines were Neotropical migratory insectivorous 

canopy foragers such as the black-throated green warbler and the blue-headed vireo.   

 Invertebrates within tree canopies can be an important food source for vertebrate 

communities such as insectivorous birds, and non-native forest insect pests can cause 

both positive and negative changes in prey availability.  When food resources are 

altered, foraging and breeding ecology of birds associated with the habitat can be 

affected.  In the case of gypsy moth, Gale et al. (2001) found while defoliation caused a 

short-term decline in birds with a preference for closed forest canopy, this guild returned 
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to pre-infestation density after five years.  Some bird species can benefit from gypsy 

moth larval outbreaks.  For example, cuckoos (Coccyzus spp.), which are Neotropical 

migratory canopy insectivores that preferentially prey on hairy caterpillars like the gypsy 

moth (Hamel 1992), increase in numbers during larval outbreak years (Barber et al. 

2008).  

 Although effects on hemlock-associated birds by HWA are relatively well-

documented, it is unknown if the presence of HWA affects arthropod assemblages in the 

hemlock canopy.  Kenis et al. (2009) observed that while studies of ecological responses 

of forest communities to invasion are numerous, few examine displacement and 

competition between native and non-native insects at the same trophic level and with 

similar resource requirements.  One such study found native picture-winged flies 

(Tephritidae) were significantly reduced in the presence of high densities of a non-native 

weevil (Rhinocyllus sp.) released for biocontrol of non-native thistles (Carduus spp.) 

(Louda et al. 1997).  In another study, the invasive Argentine ant (Linepithema humile 

[Mayr]) was shown to disrupt the community assemblage of native ants in northern 

California (Sanders et al. 2007).  Sample et al. (1996) found gypsy moth-infested plots 

with low levels of defoliation and high numbers of the larvae supported fewer numbers of 

some native lepidopteran taxa, implying that competition was a greater factor in 

depressing native caterpillars than the secondary effect of defoliation.  Finally, in a study 

of habitat preferences in canopy arthropods, Halaj et al. (2000) observed that 

experimentally manipulated defoliation of a western Tsuga species caused significant 

declines in Araneae, Psocoptera, and Collembola numbers.  These results may be 

applicable to the secondary effects of conifer pests such as HWA that cause changes in 

the structural microhabitat of the canopy through defoliation. 
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Chemical Control of Hemlock Woolly Adelgid 

 The severe decline of hemlock communities in response to HWA infestations in 

eastern North America has prompted development of measures to control HWA in both 

landscaped and forested environments.  Control measures include the release of 

predatory beetles for biocontrol, and the use of chemical controls in the form of foliar 

sprays and systemic applications (Ward et al. 2004).  One such systemic insecticide 

application used for long term control of HWA is soil drenching with imidacloprid.  

Imidacloprid (1-[(6-Chloro-3-pyridinyl)methyl]-N-nitro-2-imidazolidinimine) is a broad 

spectrum chloronicotinyl insecticide that affects the nervous system in arthropods (Silcox 

2002, Imida E-Pro 2008).  Its primary actions are against plant fluid-feeding insect pests 

such as herbivorous Hemiptera and thrips (Thysanoptera), but it is also effective against 

other insect orders such as Coleoptera, Diptera, Hymenoptera, Lepidoptera, and 

Orthoptera (Mullins 1993).  It is commonly used for both crop and ornamental pest 

management.   

 In soil drenching applications, the soil around the base of the hemlock is 

drenched with the insecticide, allowing uptake of imidacloprid by the roots and 

subsequent systemic distribution throughout the tree (Tattar et al. 1998, Webb et al. 

2003).  Imidacloprid efficacy from soil drenching treatments can last for more than two 

years (Webb et al. 2003, Cowles et al. 2006).  This application has been shown to 

eliminate infestation in hemlocks in forests (Cowles et al. 2006) and urban environments 

and to significantly reduce infestation in unhealthy trees (Webb et al. 2003).  Elimination 

of HWA has also been demonstrated in forests.     
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Effects of Insecticides on Non-target Arthropods 

 Despite the effectiveness of imidacloprid at controlling HWA, effects on non-

target organisms are a major concern when using any pesticide (Cowles et al. 2006, 

Devine and Furlong 2007).  It is unknown if the use of systemic imidacloprid negatively 

impacts the canopy arthropod community in hemlocks.  However, effects of imidacloprid 

on non-target fauna have been documented in other systems.  Both plant and ground 

dwelling arthropod assemblages have shown short-term reduced abundance and 

diversity in a crop system (Sánchez-Bayo et al. 2007).  Marquini et al. (2002) found 

spray imidacloprid application did not reduce richness but did reduce abundance in 

overall crop arthropods.  There were no declines in two common taxa, namely spiders 

(Araneae) and leafhoppers (Cicadellidae), but some thrips species significantly declined.  

Marquini et al. (2002) suggested these impacts on non-target taxa may cause stress on 

the trophic webs of arthropod communities in crop systems.   

 Beneficial arthropods are a particular concern when chemical controls are used.  

Mizell and Sconyers (1992), and Smith and Krischik (1999) reported that beneficial 

predatory arthropod densities declined with systemic imidacloprid use, while other 

studies have shown little negative impact from spray treatments in crops (Kilpatrick et al. 

2005) or turfgrass (Kunkel et al. 1999).  Although direct mortality has not been 

documented, levels of imidacloprid found in pollen of crop species have been measured 

at sub-lethal and lethal levels for non-target honey bees (Apis mellifera Linnaeus) (Halm 

et al. 2006), which are critical pollinators in many agroecosystems.  Non-target aquatic 

arthropods also may be impacted by systemic imidacloprid, especially when applied 

along watercourses.  Kreutzweiser et al. (2007) found laboratory simulations of leaf fall 

and leaching from systemic tree applications caused sub-lethal and lethal effects in 

aquatic leaf-chewing decomposers.  Sub-lethal and lethal effects have also been 
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demonstrated in the laboratory on black fly larvae (Simulium vittatum (Zetterstedt) 

cytospecies IS-7) (Overmyer et al. 2005).  

  Similar to imidacloprid, other insecticides have had unintended effects on non-

target arthropods.  Several insecticides such as the chemical diflubenzuron (N-[[(4-

chlorophenyl)amino]carbonyl]-2,6-difluoro-benzamide) and the bacterium Bacillus 

thuringiensis var. kurstaki are sprayed to control outbreaks of non-native gypsy moth 

larvae, and this forest pest-insecticide system has been well studied in field settings.  

Multiple studies have shown that arthropod canopy assemblages in deciduous trees 

were reduced following applications of various insecticides to control larval lepidopteran 

gypsy moths (Sample et al. 1993a, Sample et al. 1996, Butler et al. 1997a, Butler et al. 

1997b).  In these studies, native larval lepidopterans were particularly negatively 

impacted.  In an experimental control application, Marshall et al. (2002) found significant 

reductions in non-gypsy moth caterpillar taxa in treated versus untreated stands.  Rieske 

and Buss (2001) detected significant declines in thrips and centipedes (Chilopoda), as 

well as negative trends in other taxa in the litter and ground dwelling community of 

stands treated to control gypsy moth.   

 In another forest pest-insecticide system, treatments for spruce budworm 

(Choristoneura occidentalis Freeman) have been shown to have little impact on overall 

lepidopteran metrics in the shrub layer, though uncommon taxa were significantly 

reduced (Miller 1990).  Simon et al. (2007) reported mixed results apple (Malus spp.) 

orchards chemically treated for a moth pest versus organic orchards, with a trend toward 

higher arthropod abundance in the organic sites but significantly higher diversity in 

treated sites.  Yearly sprays to control the pine wilt nematode (Bursaphelenchus 

xylophilus [Steiner and Buhrer] Nickle) caused short-term declines in forest arthropod 

metrics but did not cause significant long term declines (Kwon et al. 2008).   
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Effects of Insecticides on Forest Birds 

 Use of insecticides to control non-native pests can affect trophic levels other than 

non-target arthropods.  For example, a variety of effects have been documented in birds 

breeding in insecticide-treated forest systems.  Gypsy moth control has had variable 

effect on insectivorous canopy-dwelling birds in terms of foraging and productivity (e.g., 

number or condition of fledglings).  Bell and Whitmore (1997) documented no significant 

effects from gypsy moth control on the overall songbird assemblage (primarily 

insectivores) in Virginia forests, and they noted that pest defoliation in untreated forests 

may actually contribute to greater habitat complexity, which in turn may be beneficial for 

some bird species.  Sample et al. (1993b) found a significant reduction in non-gypsy 

moth lepidopteran biomass in gut contents of insectivorous birds from treated versus 

untreated stands.  Gut arthropod biomass in two bird species was significantly reduced 

in treated stands, while four bird species showed no biomass declines but a significant 

overall dietary shift in treated stands; migrants were impacted more than resident birds.  

The shift to other prey was interpreted as compensation for loss of non-target caterpillars 

killed by the insecticide.   

 Productivity in insectivorous birds may also be negatively impacted from 

insecticide use.  Holmes (1998) found insectivorous female Tennessee warblers 

(Vermivora peregrina [A. Wilson]) spent less time feeding nestlings and more time 

foraging in treated stands, and noted productivity trends were lower in treated stands for 

clutch size, brood size, and hatch rate.  Nagy and Smith (1997) observed that nesting 

success of another insectivore, the hooded warbler (Wilsonia citrina [Boddaert]), was 

higher in untreated stands for one year of a multi-year study.  Rodenhouse and Holmes 

(1992) tracked natural reductions in food availability resulting in primarily a decline in 

caterpillars for insectivorous Neotropical migratory black-throated blue warblers over 
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three years, and they compared the natural effect to an insecticide-induced reduction in 

caterpillars.  They found the naturally caused decline caused stronger negative trends in 

productivity for this bird species than the insecticide-caused declines.  Red-eyed vireos 

(Vireo olivaceus [Linnaeus]), also insectivorous Neotropical migrants, may also suffer 

little impact from gypsy moth treatments, though later nest initiation may be a cautionary 

sign (Marshall et al. 2002).   

 In a study combining effects of gypsy moth defoliation and effects of insecticide 

use, Marshall and Cooper (2004) found territory size in red-eyed vireos did not relate to 

caterpillar density (preferred food) after caterpillars were reduced via insecticide 

application.  However, the authors did find an inverse relationship between foliar density 

and territory size – territories with more defoliation from gypsy moth were larger to 

compensate for fewer food resources (Marshall and Cooper 2004).   

 

Resource Selection in Forest Birds 

Resource Availability and Limiting Factors 

 Habitat selection in vertebrate animals is a complex equation of life history traits, 

population and community dynamics, and regional geographic and climatic influences 

(MacArthur 1972).  Species can be habitat generalists or habitat specialists, and habitat 

preferences are interconnected with other resources such as food on which a species 

depends, as well as pressures such as predation and inter- and intraspecific 

competition.  Food density may regulate population densities in some territorial animals, 

and territoriality is a reflection of aggression toward competitors in an effort to secure 

these resources (food value theory of territoriality, Wilson 2000).   

 Resources are not infinite in the environment, and availability of specific 

resources may limit the numbers of any one species or guild within a given habitat 
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(limiting factors, MacArthur 1958, Wilson 2000).  One potential limiting factor affecting 

densities of breeding insectivorous birds is food availability (Marshall and Cooper 2004).  

Studies have shown strong density dependence away from the breeding grounds for 

insectivorous birds.  During migration Graber and Graber (1983) documented warbler 

density dependence on lepidopteran availability, and Johnson and Sherry (2001) 

correlated wintering warbler numbers (including black-throated green warblers) with 

arthropod density and found no relationship between bird density and habitat structural 

variables.     

 Territorial behavior in breeding birds, such as vocal advertising and agonistic 

interactions between conspecifics, is often associated with protection of food supplies 

(Wilson 2000, Ralph et al. 2003).   Conclusions regarding correlation of breeding 

insectivore territory densities and food resource availability in the habitat are mixed.  The 

brown creeper (Certhia americana Bonaparte) is a bark-gleaning insectivorous short-

distance (non-Neoptropical) migrant whose abundance is possibly related to arthropod 

abundance during the breeding season (Mariani and Manuwal 1990).  Similarly, Haney 

(1999) and Barber et al. (2008) reported increases in the numbers of territories of 

canopy-feeding Neotropical migrants during outbreak years of caterpillar infestations, 

including two parulid warbler species in Haney's (1999) study.  Morse (1976) found 

territory sizes of four warbler species including the black-throated green warbler in island 

and mainland spruce-fir forests of Maine were inversely related to arthropod density for 

one month of one season in a multi-year study, but this relationship was not upheld for 

other canopy insectivores in the study.  He concluded that variations in habitat structure, 

and to a lesser extent interspecific competition, played larger roles than food availability 

in territory densities for this foraging guild.  
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 There is a growing body of literature showing that some migratory breeding birds 

indirectly measure general resource availability when arriving to establish territories 

through assessing habitat structural cues (structural cues hypothesis, Smith and Shugart 

1987).  In the seminal study of structural cues, territory size in Neotropical parulid 

insectivorous ovenbirds (Seiurus aurocapilla [Linnaeus]) was found to more strongly 

relate to prey availability predicted by habitat variables rather than actual prey availability 

measured in the habitat, implying that ovenbirds used habitat cues to determine territory 

size (Smith and Shugart 1987).  Similarly, Marshall and Cooper (2004) found no 

relationship at the beginning of the season between territory size of red-eyed vireos 

(another Neotropical insectivore) and arthropod density, yet there was an inverse 

relationship between territory size and foliar density (i.e., territories in less foliated areas 

were larger).  During mid-season when adults were feeding young, these established 

territory sizes showed an inverse relationship with food density (in this case, 

Lepidoptera).  These findings supported the structural cues hypothesis at the time of 

territory establishment and food value theory at the time when food resources were in 

the greatest demand. 

 

Resource Selection in Three Southern Appalachian Hemlock-associated Birds 

 Bird species can be grouped into habitat and behavioral guilds based on shared 

habitat and dietary choices (Vale et al. 1982).   A specialized habitat and foraging guild 

common to the Southern Appalachian forests is hemlock-associated insectivorous 

foliage-gleaning birds.  Hemlocks support unique assemblages of birds, with some 

variation between the northern and southern parts of the range (compare Ross et al. 

2004 and Kendeigh and Fawver 1981).  The black-throated green warbler, black-

throated blue warbler, the blue-headed vireo are three Neotropical migratory insectivores 
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common in the Southern Appalachian Mountains (Hamel 1992, Simons et al. 2006) and 

are well documented in hemlock and cove forests of GSMNP (Kendeigh and Fawver 

1981, Wilcove 1988).   

 

Habitat Selection 

− Black-throated Green Warbler 

 Black-throated green warblers show a high affinity for conifers (Bent 1953, 

MacArthur 1958, Hamel 1992, Robichaud and Villard 1999), and specifically hemlocks 

(Hamel 1992, Benzinger 1994, Yamasaki et al. 2000, Tingley et al. 2002, Ross et al. 

2004) in the Southern Appalachians (Kendeigh and Fawver 1981, Wilcove 1988, Shriner 

2001).  They typically reside above 640 m elevation in the southern portion of their 

breeding range (Hamel 1992, Kendeigh and Fawver 1981), but are documented in the 

mountains of Tennessee down to 240 m (Nicholson 1997).  They prefer interiors of 

extensive closed-canopy mature forests in the southern part of their range (Hamel 1992) 

and preferentially nest in the canopies of conifers (Bent 1953, Hamel 1992).   

 In mixed conifer-deciduous forests, black-throated green warblers generally 

forage disproportionately in conifers on their breeding grounds (Holmes and Robinson 

1981, Parrish 1995a, Robichaud and Villard 1999).  Parrish (1995b) documented 

populations in New Hampshire that favored deciduous forests for foraging, and this 

preference was linked to distinct regional morphological characteristics in the birds.  This 

warbler favors foraging in the middle of the branch to the outer tips (Rabenold 1978) in 

the mid- to upper canopy (MacArthur 1958, Hamel 1992), but will also use the lower 

branches of trees (MacArthur 1958).  Average foraging heights range from 1 to 12 m in 

Maine (Morse 1968), 14 m in New Hampshire (Holmes et al. 1979), and 3 to 6 m in 

spruce-fir forests of GSMNP (Rabenold 1978).  These strong conifer and hemlock 
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associations, particularly in the Southern Appalachian region, make the black-throated 

green warbler a good bioindicator for measuring potential loss of hemlock habitat in the 

region. 

 

− Black-throated Blue Warbler 

 Black-throated blue warblers are associated with habitat attributes of cove forests 

(Wilcove 1988, Hamel 1992) which is where hemlocks typically are found in the 

Southern Appalachians (Johnson et al. 2000, Ward et al. 2004).  They have also been 

documented as mixed-hemlock associates (Kendeigh 1946, Kendeigh and Fawver 

1981), in GSMNP (Shriner 2001).  Some deciduous forests also are suitable for this bird 

species in the southern part of its range (Hamel 1992).  Black-throated blue warblers 

strongly favor forests with a dense shrub understory (Bent 1953, Hamel 1992) for 

nesting (Steele 1993), with a preference for broadleaved evergreens such as 

rhododendrons (Bent 1953, Hamel 1992) that are commonly associated with hemlock 

and cove forests in the Southern Appalachians (Kendeigh and Fawver 1981, Wilcove 

1988).  These warblers typically are found above 640 m in the Southern Appalachians 

(Kendeigh and Fawver 1981), though one study conducted in the region between 380 

and 1460 m elevation found this warbler absent only at the lowest elevations, with a 

steady increase in numbers up to 1000 m before densities leveled off (Lichstein et al. 

2002).  The black-throated blue warbler prefers interiors of closed-canopy mature forests 

in the southern part of its range (Hamel 1992).  

 The foraging microhabitat of the black-throated blue warbler is shrub and low- to 

mid-canopy (Holmes et al. 1979, Hamel 1992), with an average foraging height of 6 m in 

shrub to tree strata in New Hampshire (Holmes et al. 1979, Steele 1993), and an 

average of 8 m in the Southern Appalachians (Weeks 2001).  They show little foraging 
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substrate preference for any particular plant species (Weeks 2001) and have been 

documented foraging on hemlocks in GSMNP (pers. obs.).  They favor leaves over 

branches for foraging (Robinson and Holmes 1982).   

 

− Blue-headed Vireo 

 Blue-headed vireos are similar to black-throated green warblers in their strong 

preference for conifer (Hamel 1992) and cove forest types (Bent 1950, Kendeigh and 

Fawver 1981, Hamel 1992, Ross et al. 2004) including hemlocks (Yamasaki et al. 2000, 

Tingley et al. 2002, Ross et al. 2004) in the Southern Appalachians (Kendeigh and 

Fawver 1981, Wilcove 1988).  Some deciduous forests are also suitable for this species 

in the southern part of its range (Hamel 1992).  They breed above elevations of 410 m in 

GSMNP (Kendeigh and Fawver 1981) and prefer extensive mature forests in the 

southern part of their range (Hamel 1992).  They build nests in shrub to low canopy 

layers (Hamel 1992, Benzinger 1994) including building directly in hemlocks (Benzinger 

1994) in GSMNP (pers. obs.). 

 Blue-headed vireos show a foraging preference for conifers (Holmes and 

Robinson 1981) and have been documented foraging in hemlocks in GSMNP (pers. 

obs.).  Although they will forage along the entire branch, they prefer the interior near the 

trunk to the middle of the branch in the mid-canopy at heights between 1 and 6 m in 

spruce-fir forests of GSMNP (Rabenold 1978).  They glean more prey off of bark than 

leaves (Holmes and Robinson 1981, Robinson and Holmes 1982).   

 

Food Selection 

 Black-throated green warblers, black-throated blue warblers, and blue-headed 

vireos are all in the same feeding guild of "insectivores" (prey include some Arachnida, 
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e.g., Araneae) which primarily glean sessile (e.g., larval) arthropods such as larvae from 

the surfaces of plants (Hamel 1992).  All use similar major search and capture tactics, 

either directly gleaning prey when encountered, or flying up to nearby surfaces and 

gleaning prey during a brief hover (Robinson and Holmes 1982), and these stereotypic 

behaviors are observable and quantifiable in the field (Graber and Graber 1983, Hutto 

1990, Johnson 2000).   

 Prey energy value should exceed the energy expended to capture and handle 

the prey, which relates in part to the morphology and feeding ecology of the predator 

(Stephens and Krebs 1986).  The black-throated green warbler typically does not take 

prey less than 2 mm long (Morse and Poole 2005), and another warbler in the same 

family (Parulidae), the Wilson's warbler (Wilsonia pusilla [A. Wilson]), has been found to 

under-exploit prey 1 to 3 mm long (Raley and Anderson 1990).  A proposed minimum 

prey length eaten by passerine birds (Passeriformes) is 2.5 mm (Jansson and von 

Brömssen 1981, as cited in Pettersson et al. 1995).  HWA is 0.4 to 1.4 mm in length 

(Kohler 2007), and avian predation on HWA remains undocumented in the literature.  

 Black-throated green warblers, black-throated blue warblers, and blue-headed 

vireos prefer larval Lepidoptera (Kendeigh 1946, Bent 1950, Bent 1958, MacArthur 

1958, Robinson and Holmes 1982, Jones et al. 2003) and also feed nestlings in part with 

caterpillars (Bent 1950, Bent 1958).  Other arthropod prey include but are not limited to 

Hemiptera, Coleoptera, Diptera, and various arachnids (Bent 1950, Bent 1958, Robinson 

and Holmes 1982).   

 

Limiting Factors 

 Niche segregation may serve to allocate limited resources in species with similar 

resource requirements (niche theory, Morin 1999; e.g., MacArthur 1958).  While both 
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habitat and diet overlap in these three species, foraging and nesting microhabitat 

selection may serve to segregate these three species' niches and moderate interspecific 

competition. 

 Predation may also play a role in limiting numbers within a population (Wilson 

2000); however,  there has been limited documentation of predation on adults of black-

throated green warblers (Morse and Poole 2005), black-throated blue warblers (Holmes 

et al. 2005), and blue-headed vireos (James 1998).  Hawks (Accipitridae) will prey on 

these warblers (Holmes et al. 2005, Morse and Poole 2005), yet the vireo has been 

recorded nesting near hawks rather than avoiding them (James 1998).  Nest predation in 

the warblers is known to be mostly from small mammals and some birds (Holmes et al. 

2005, Morse and Poole 2005), but little information is available on nest predation in the 

vireo (James 1998).  All three species build nests with an open cup-like structure.  A 

study of open cup nest predation in GSMNP revealed a 2% predation rate which was 

significantly lower than other tested locations (Wilcove 1985), indicating that nest 

predation may not be a strong factor controlling numbers of these species in the Park.  

 

Quantifying Food Resources for Insectivorous Forest Birds  

 Food availability relies on two major factors: what the bird perceives and 

consumes as prey, and where a given species forages at the microhabitat level (Hutto 

1990, Wolda 1990).  Quantifying food resources for specific bird guilds continues to 

challenge researchers (Smith and Rotenberry 1990).  The difficulty lies in sampling the 

actual food available to the bird rather than the standing crop of arthropods (Hutto 1990, 

Wolda 1990).  In the case of hemlock-associated foliage-gleaning insectivores, ideally 

one would sample arthropods in the canopy within the microhabitats exploited by the 
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guild, and adjust the results of sampled arthropod standing crop to better represent what 

the guild of birds preferentially consumes. 

 Common sources of error in arthropod sampling arise from temporal and spatial 

variation in arthropod abundance because of seasonality and patchiness within 

microhabitats (e.g., tree canopy strata and structure) (Majer et al. 1990).  Sampling on 

consecutive days and within the same window of time can aid in controlling temporal 

variation.  While studies are often designed to investigate the seasonal (Schowalter and 

Ganio 1998, Marshall and Cooper 2004) and daily fluctuations in arthropods (Costa and 

Crossley 1991), snapshot surveys where collections take place in a small window of time 

(e.g., Rango 2005, Kwon et al. 2005) offer a way to temporally control for seasonal 

pulses in arthropods.  Canopy arthropod communities typically are stratified vertically 

because of the distribution of microhabitats, predators, and food resources within the 

layers of the trees (Lowman and Rinker 2004), so sampling in the same part of the 

canopy may control for spatial variation at the microhabitat level.  In arthropod studies 

with two forest treatments (e.g., insecticide treatment and control), pairing sites in 

proximal areas with similar geographic characteristics can also aid in controlling spatial 

variation (Sample et al. 1993a, Pettersson et al. 1995).   

 Arthropod collection methods can sample relative (over time; e.g., pitfall traps) or 

absolute (instantaneous; e.g., collecting all or part of plant) arthropod abundance 

(Cooper and Whitmore 1990).  Methods for arthropod sampling in tree canopies have 

been evaluated for their usefulness in different habitats and in their effectiveness for 

sampling food availability for different bird species and guilds (Cooper and Whitmore 

1990, Dahlsten et al. 1990, Hutto 1990, Johnson 2000).  A recommended method for 

measuring primarily sessile, foliage-dwelling arthropods, the major food resource for 

foliage-gleaning birds, is collecting vegetation and prey crop via branch clipping (Blanton 

 



32 
 
1990, Johnson 2000).  This method is considered effective (Schowalter et al. 1981, 

Cooper and Whitmore 1990, Majer et al. 1990, Johnson 2000), feasible, and affordable 

(Cooper and Whitmore 1990).  Often standardized lengths of branches such as 1 m are 

clipped (e.g., Costa and Crossley 1991, Johnson 2000).  Clipping 1 m branch tips in the 

hemlock canopy at heights between 5 and 10 m would sample the lower vertical foraging 

microhabitat of black-throated green warblers, the higher foraging microhabitat of black-

throated blue warblers, and the outer horizontal branch microhabitat of blue-headed 

vireos. 

 Arthropods collected using the branch clipping method represent a sample of the 

foliage-dwelling arthropod community but not necessarily a measure of food availability 

or preferences for a specific predator.  Other characteristics of arthropods such as life 

stage and size can be valuable information in studies of avian food availability.  Biomass 

of total arthropod crop can be measured directly (Schowalter et al. 1981, Mariani and 

Manual 1990, Pettersson et al. 1995) or through length-to-mass conversions of 

individual specimens if available for local fauna (Moran and Southwood 1982, Johnson 

2000).  However, when preservation of specimens is warranted or when local conversion 

tables are not available, arthropods can also be grouped into relative size classifications 

by measuring length (Rabenold 1978, Raley and Anderson 1990).  Taking taxonomy, life 

stage, and size into account, arthropods can be pooled into guilds based on similarities 

(e.g., larvae ≥ 3 mm) (Schowalter et al. 1981, Moran and Southwood 1982) as more 

accurate measures of avian food resources (Cooper et al. 1990, Wolda 1990).   

 Identification of arthropods to the species level may not be necessary for studies 

of avian food availability when higher taxonomic levels or functional groups may answer 

questions adequately (Wolda 1990).  For example, if an insectivorous bird forages on 

caterpillars preferentially, larval Lepidoptera do not necessarily need to be identified to 
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species to assess caterpillar availability.  Analysis of lower taxonomic levels with 

frequent zero values may also impede detection of trends (Cooper et al. 1990).  

Taxonomic levels commonly used in arthropod literature for analysis of insectivore food 

availability include order (Cooper et al. 1990, Rodenhouse and Holmes 1992, Sample et 

al. 1993a) and family (Butler et al. 1997a, Raley and Anderson 1990, Sample et al. 

1993a). 

 Arthropod taxa or guilds can be quantified as abundance, relative abundance, or 

density.  Density can be calculated in several ways including abundance per branch 

(Franklin et al. 2003), abundance per mass of foliage  (Majer et al. 1990, Costa and 

Crossley 1991, Sample et al. 1996; Butler et al. 1997a, Marshall and Cooper 2004), and 

abundance per total branch mass (woody and foliage) (Pettersson et al. 1995, 

Schowalter 1995).  While no effort to measure food availability for insectivorous foliage-

gleaning birds can be exact because we cannot perceive the foraging environment 

precisely the way a predator does, categorizing arthropod crop according to avian guild 

life history of  foraging microhabitat and dietary preferences can offer approximate 

assessments of available food resources.   
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CHAPTER 3: MANUSCRIPT 
 
 
 

Introduction 

 Eastern hemlock (Tsuga canadensis [L.] Carr., hereafter hemlocks) is a late-

successional, shade-tolerant conifer (Quimby 1996) ranging from Nova Scotia south 

along the Appalachian Mountains to Georgia (Ward et al. 2004).  They are found in 

dense, pure stands and mixed-deciduous forests (Orwig and Foster 1998, Rankin and 

Tramer 2002, Lovett et al. 2006), and in the Southern Appalachian Mountains they are 

common in coves and on north-facing slopes with a dense shrub layer (Kendeigh and 

Fawver 1981, Wilcove 1988, Schafale and Weakley 1990, Ward et al. 2004, Lovett et al. 

2006).  Throughout their range hemlock forests attract unique arthropod (Buck et al. 

2005, Dilling et al. 2007) and avian assemblages (Kendeigh 1946, Benzinger 1994, 

Shriner 2001, Tingley et al. 2002, Ross et al. 2004, Becker et al. 2008) including 

Neotropical migratory birds prioritized for conservation (Hunter et al. 1993, Robbins et al. 

1993). 

 The hemlock ecosystem is threatened by the hemlock woolly adelgid (Hemiptera: 

Adelges tsugae Annand, hereafter HWA), a non-native herbivorous insect from Asia that 

feeds on cellular nutrient reserves in hemlock needles (McClure et al. 2001).  This 

feeding action causes defoliation, inhibits new growth, and can kill trees in as little as 

four years.  Infestation is commonly observed as white woolly ovisacs formed by mature 

non-winged HWA attached at the base of hemlock needles.  A winged form of mature 

HWA is also produced but requires a spruce (Picea spp.) host not found in North 

America for survival and reproduction.  These winged HWA are produced in greater 

proportion as hemlock health declines (McClure 1991).  Hemlock deterioration from 

HWA causes increased light levels at the forest floor, alters soil chemistry (Orwig et al. 
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2008), and increases understory vegetation (Eschtruth et al. 2006).  In the northeastern 

US, numbers of hemlock-associated birds in the avian assemblages of hemlock forests 

have declined as habitat quality declines from HWA infestation (Tingley et al. 2002).   

 In Great Smoky Mountains National Park (GSMNP), efforts are underway to 

conserve the hemlock ecosystem by establishing Hemlock Conservation Areas (HCAs) 

in mixed forest stands with high hemlock density.  Hemlocks in these HCAs are treated 

with the insecticide imidacloprid (1-[(6-Chloro-3-pyridinyl)methyl]-N-nitro-2-

imidazolidinimine) (Imida E-Pro 2008) via soil drenching (Soehn et al. 2005, T. Remaley, 

pers. comm.), which allows trees to take up the chemical through their roots for systemic 

distribution (Webb et al. 2003).  This broad-spectrum insecticide targets plant fluid 

feeders such as herbivorous Hemiptera and thrips (Thysanoptera), and it also controls 

some Coleoptera, Diptera, Hymenoptera, Lepidoptera, and Orthoptera (Mullins 1993).  

Imidacloprid soil drenching has been shown to eradicate HWA in hemlocks (Cowles et 

al. 2006) and permit complete recovery of hemlock foliage (Webb et al. 2003).  However, 

effects of this insecticide on non-target taxa of the hemlock canopy arthropod community 

are unknown.  Marquini et al. (2002) found imidacloprid spray applications did not 

reduce species richness but did reduce abundance in total arthropods associated with a 

canopy of a legume (Fabaceae) crop.  Smith and Krischik (1999) found imidacloprid 

negatively impacted a beneficial predatory beetle (Coleoptera) in agro-horticultural 

crops, while other studies have shown little negative impact from treatments on 

beneficial arthropod predators of pests in crop (Kilpatrick et al. 2005) and turfgrass 

systems (Kunkel et al. 1999). 

 Impacts from imidacloprid in hemlock canopy arthropods might be more 

pronounced in herbivorous insect guilds such as larval Lepidoptera because these non-

target taxa also feed directly on treated tree tissues or fluids.  Caterpillars are a major 
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food source for many avian foliage-gleaning forest insectivores in North America 

(Robinson and Holmes 1982, Holmes 1990), and this foraging guild of birds could be 

indirectly affected by declines in Lepidoptera in treated hemlock stands.  Graber and 

Graber (1983) concluded that biomass of non-lepidopteran prey in Illinois deciduous 

forests would be insufficient forage for migrating foliage-gleaning insectivores.  Jones et 

al. (2003) observed a direct relationship between Lepidoptera abundance and numbers 

of breeding foliage-gleaning birds including black-throated green warblers (Dendroica 

virens [Gmelin]), black-throated blue warblers (Dendroica caerulescens [Gmelin]), and 

red-eyed vireos (Vireo olivaceus [Linnaeus]).  Densities of other breeding foliage-

gleaning insectivores have also been shown to directly relate to lepidopteran availability 

(Haney 1999, Barber et al. 2008).   

 The purpose of this study was to investigate the effects of systemic imidacloprid 

on the hemlock-associated insectivorous bird community and the hemlock canopy 

arthropod community in the context of food availability for insectivores.  I asked if 1) 

hemlock-associated insectivorous foliage-gleaning bird density differs between 

imidacloprid-treated and untreated hemlock stands, and 2) hemlock canopy arthropod 

diversity and food availability for avian insectivores differ between imidacloprid-treated 

and untreated hemlock stands.  

 

Methods 

Study Sites 

 The study took place within GSMNP in Cocke County, TN, and Haywood County, 

NC, in the easternmost region of the Park (Figure 1).  All study sites were in discrete 

patches of mixed hemlock forest.  Six sites were selected in HCAs where all hemlocks in 

the mid- to upper forest canopy had received imidacloprid soil drench treatments within  
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Figure 1.  Map of hemlock study sites in Great Smoky Mountains National Park.  
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the previous two years.  These six sites in HCAs were paired with six untreated sites 

with similar hemlock density and vigor to the adjacent HCAs.   Site pairs were matched 

to minimize geographic variation in site characteristics, and all were within 1-3 km of one 

another with the exception of one pair which was 7 km apart.  Elevation, slope, aspect, 

forest cover, hemlock diameter at breast height (DBH), and hemlock foliage density 

measures were used to verify that sites within a pair represented similar habitat.  

 

Focal Birds 

 The Neotropical migratory black-throated green warbler, black-throated blue 

warbler, and blue-headed vireo (Vireo solitarius [Wilson]) were selected for this study.  

These species are common in the mid-elevations of GSMNP (Kendeigh and Fawver 

1981, Shriner 2001, Simons et al. 2006) where the study sites were located, and they 

have similar habitat and foraging preferences.  All three have an affinity for hemlock 

forests during the breeding season (Kendeigh and Fawver 1981, Shriner 2001, Tingley 

et al. 2002, Ross et al. 2004).  Black-throated green warblers and blue-headed vireos 

forage disproportionately in conifers (Holmes and Robinson 1981, Parrish 1995a, 

Robichaud and Villard 1999) while black-throated blue warblers are less selective 

(Steele 1993, Weeks 2001).  The foraging niches of all three species include mid-canopy 

branches below 10 m (MacArthur 1958, Rabenold 1978, Holmes et al. 1979, Steele 

1993, Weeks 2001).  All three feed on primarily sessile (e.g., larval), foliage-dwelling 

arthropods (Hamel 1992) and typically take prey > 2.5 mm (Jansson and von Brömssen 

1981, as cited in Pettersson et al. 1995) with a preference for larval Lepidoptera 

(Kendeigh 1946, Bent 1950, Bent 1958, MacArthur 1958, Robinson and Holmes 1982, 

Jones et al. 2003) using primarily perch-gleaning and hover-gleaning capture maneuvers 

(Robinson and Holmes 1982).   
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 Focal bird species territories were mapped using the spot mapping method.  This 

technique, which uses behavioral observation to determine how many territories are 

occupied in a given area (Kendeigh and Fawver 1981), is recommended for determining 

densities of birds in patchy habitats (Ralph et al. 1993) such as the hemlock cove forests 

in this study.  Fieldwork was conducted between 5 May and 11 June 2007 when 

temperate North American breeding birds typically have established territories and are 

actively defending them through singing and other territorial behaviors (Ralph et al. 

1993).  For two to three consecutive days, each site was traversed between sunrise and 

1100 when territorial males typically sing the most, and in fair weather and calm winds.  

All territorial behaviors (e.g., singing, counter-singing of two or more males, pairs 

foraging together, and agonistic interactions) of the three focal species were recorded on 

a global positioning system unit map.  Daily maps were compared to determine a final 

number of focal bird territories in a given study site.   

 

Arthropods 

 During bird spot mapping censuses, five hemlocks within each site were marked 

for arthropod sampling in which at least one individual focal bird was observed foraging 

directly in the hemlock.  DBH was measured for these hemlocks.  Percent hemlock 

cover, including mid-story hemlocks not accounted for in GIS cover classes, was 

estimated in a 50 m radius around the foraging hemlocks.  These five foraging hemlocks 

per site were also sampled for arthropods.  To increase arthropod sampling size, the 

closest hemlock with similar DBH and canopy height to each foraging hemlock was also 

sampled, with distance between these trees typically less than 20 m (x̄ = 16.2 ± 12.2 m). 

 Each pair of sites was revisited between 14 June and 22 July 2007 for arthropod 

collection when focal bird pairs were feeding young, a stage during the insectivorous bird 
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breeding season that commonly coincides with pulses in arthropod resources (Rabenold 

1978).  Canopy arthropods were snapshot-sampled (Rango 2005) using the branch 

clipping method as described by Schowalter et al. (1981), Costa and Crossley (1991), 

and in detail by Blanton (1990) and Johnson (2000).  This method is recommended for 

collecting food availability data for insectivorous foliage-gleaning birds because the 

samples are biased toward sessile, foliage-dwelling prey (Cooper and Whitmore 1990, 

Johnson 2000).  One meter long samples were clipped and bagged from the ends of 

hemlock branches in the mid-canopy between 5 and 10 m (x̄ = 7.4 ± 1.0 m) using 

telescoping poles.  One branch was clipped from 10 hemlocks at each of the 12 sites for 

a total of 120 samples or 60 samples per treatment; this number has been shown to be 

sufficient for detecting arthropod differences in other compared habitats (Johnson 2000).  

Chloroform-soaked cotton balls were added to branch collection bags to immobilize 

arthropods and samples were stored at 5°C and processed within five days (Costa and 

Crossley 1991).   

 The length (x̄ = 1.1 ± 0.2 m) and area (L x W; x̄ = 1.3 ± 0.4 m2) of each branch 

were measured and percent of dead woody material (non-foliated twigs) on branches 

was estimated visually.  HWA ovisacs were counted on branches.  Branches were then 

vigorously shaken to dislodge arthropods from vegetation (Morse 1976, Janes 1994, 

Johnson 2000) over a white surface.  Arthropod specimens, including winged HWA, 

were collected and stored in vials of non-denatured ethanol (70%).  Branch materials 

were air-dried for 10 months in paper bags and foliage and branches separated from 

each other and weighed.   

 Unidentified (n = 4) and partial arthropod specimens (n = 61) were excluded from 

arthropod diversity analyses.  All other arthropods were classified to order, a taxonomic 

level used in other avian insectivore food availability studies (Cooper et al. 1990, 
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Rodenhouse and Holmes 1992, Sample et al. 1993a), and the order Hemiptera to 

suborder, based on Borror et al. (1989) and Chu and Cutkomp (1992).  Nomenclature 

was updated using the Integrated Taxonomic Information System (ITIS 2009).  

Specimen length was measured to the nearest millimeter and life stage recorded as 

larval or adult.  Specimens not able to be categorized by life stage (n = 11) were 

excluded from larval analyses.  Arthropods were sub-categorized into two focal bird prey 

guilds as a finer assessment of food availability (Wolda 1990): arthropods ≥ 3 mm and 

larvae ≥ 3 mm.  Because of imidacloprid's action against the herbivore HWA, arthropods 

were sub-categorized into two herbivorous insect guilds: herbivorous Hemiptera and 

larval Lepidoptera.  Larval Lepidoptera also served as the third focal bird prey guild. 

 Both adult forms of HWA, HWA ovisacs and winged HWA, were excluded from 

arthropod diversity and food availability analyses because HWA is 0.4 to 1.4 mm in 

length (Kohler 2007), which is smaller than typical insectivorous bird prey (Jansson and 

von Brömssen 1981, as cited in Pettersson et al. 1995), and there are no 

documentations in the literature of birds preying on HWA.  HWA ovisacs and winged 

HWA were analyzed separately from one another because of their different life 

strategies in hemlocks.  The non-winged HWA in ovisacs feed (and ingest imidacloprid) 

and reproduce on hemlocks, while winged HWA do not remain on hemlocks and are 

unable to reproduce in North America (McClure et al. 2001).  

 

Data Analysis 

Study Site and Branch Characteristics 

 Mean site elevation, slope, and area-weighted percents of northern and southern 

aspects were based on USGS National Elevation Dataset layers (National Map 

Seamless Server 2008) and calculated using ArcGIS software (Version 9.2, ESRI 2006).  
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Area-weighted percents of collapsed GIS forest cover classifications in pooled 

treatments were calculated in ArcGIS using vegetation map layers provided by GSMNP 

(Madden et al. 2004).  The four classifications were hemlock-cove forest, mixed 

hardwood forest, mixed pine forest, and other.  Site means were calculated for percent 

hemlock cover and DBH of hemlocks sampled for arthropods.  Site means were also 

calculated for the following branch metrics from clipped vegetation: foliage mass, foliage 

ratio (ratio of foliage mass to total branch mass), and percent dead woody material. 

 To verify that paired sites represented similar habitat, paired t-tests (two tailed, α 

= 0.05) were used to test for differences between insecticide-treated and untreated sites 

for the following site and branch characteristics: elevation, slope, proportion of northern 

aspect, hemlock cover, hemlock DBH, foliage mass, foliage ratio, and percent dead 

woody material.  GIS cover classes were not statistically tested.   

 

Focal Bird Density 

 Bird density at each site was measured as focal bird territories per 5 ha.  To 

examine the first hypothesis regarding the effects of imidacloprid on hemlock-associated 

insectivorous bird density, paired t-tests (two tailed, α = 0.05) were used to test for 

differences in focal bird density between insecticide-treated and untreated sites.   

 

Arthropod Diversity, Food Availability, and Adelgid Infestation 

 Abundance (numbers per branch), relative abundance (ratio of order or guild 

abundance to total arthropod abundance), density (abundance per 100 g branch foliage) 

and richness (number of orders pooled per site) were used where applicable to express 

arthropod diversity, food availability, and HWA infestation.  The 10 sampled branches 

per site were averaged for all metrics except richness.   
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 Abundance and density were measured for total arthropods.  Abundance, relative 

abundance, and density were measured for arthropod orders, focal bird prey guilds, and 

herbivorous insect guilds.  To examine the second hypothesis regarding the effects of 

imidacloprid on arthropod diversity and food availability for insectivores, paired t-tests 

(two tailed, α = 0.05) were used to test for differences in order richness and metrics of 

total arthropods, orders, focal bird prey guilds, and herbivorous insect guilds between 

treated and untreated sites.  Order richness and abundance were also examined 

through non-metric multidimensional scaling (NMS) ordination (PC-ORD, Version 5, 

McCune and Mefford 2005).  Site clustering and gradients were evaluated for treated-

untreated, elevation, hemlock DBH, and hemlock branch foliage mass.  Multi-response 

permutation procedure (MRPP) using two distance measures, Sorensen (Bray-Curtis; 

abundance) and Jaccard (presence-absence), was used to test differences in 

composition between treated and untreated sites (α = 0.05).  Monte Carlo test of 

significance was used to test for significant indicator taxa (in this case, orders) in treated 

versus untreated sites (α = 0.05).   

 To evaluate HWA infestation, paired t-tests (two tailed, α = 0.05) were used to 

test for differences in abundance and density of HWA ovisacs and winged HWA 

between treated and untreated sites. 

 

A Posteriori Examination of Hemlock Foliage Density 

 Other research within GSMNP and observations of park scientists revealed a 

trend of heavy HWA infestation and subsequent hemlock stress in the southeastern 

region of GSMNP (Kincaid and Parker 2008) including within treated HCAs (T. Remaley, 

pers. comm.).  To explore a posteriori the potential effects of HWA-induced defoliation in 

living hemlocks on hemlock-associated birds in GSMNP, density of focal birds was 
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compared between the five northern study sites (lesser HWA impact) and the six 

southern sites (greater HWA impact); one site that fell between the north-south clusters 

was not included in location comparisons (Figure 1).  Site and branch characteristics and 

focal bird prey guilds were also compared between northern and southern sites to 

evaluate habitat quality and food availability for birds in the two locations.  Treated-

untreated site pairing was disregarded in these location comparisons.  To further explore 

effects of defoliation on hemlock-associated birds, relationships between focal bird 

territory density and hemlock foliage density were examined in all 12 sites.   

 

A Posteriori Data Analysis 

 To evaluate habitat quality by location, two-sample t-tests (two-tailed, α = 0.05) 

were used to test for differences between northern and southern sites for the following 

site and branch characteristics: elevation, slope, proportion of northern aspect, hemlock 

cover, hemlock DBH, foliage mass, foliage ratio, and percent dead woody material.  GIS 

cover classes were not statistically tested.  To compare bird density between locations, 

two-sample t-tests (two-tailed, α = 0.05) were used to test for differences in focal bird 

density between northern and southern sites.  Linear regression (α = 0.05) was used to 

test for relationships between bird density (dependent variable) and the hemlock foliage 

density metrics branch foliage mass, foliage ratio, and percent dead woody material 

(independent variables).  To compare food availability between locations, two-sample t-

tests (two-tailed, α = 0.05) were used to test for differences in relative abundance of the 

three focal bird prey guilds between northern and southern sites.   

 

 

 

 



45 
 
Results 

Study Site and Branch Characteristics 

 There were no significant differences between treated and untreated sites for any 

site or branch characteristic (Table 1).  Sites averaged 7.3 ± 2.9 ha in size and were at 

mid-elevations in GSMNP ranging from 515 to 1076 m (x̄ = 811 ± 166 m).  Slope 

steepness varied from 12 to 56% (x̄ = 29 ± 14%) with predominantly north-facing 

aspects (x̄ = 77 ± 23%).  GIS forest cover classes were similar between treated and 

untreated stands with hemlock-cove forest accounting for nearly 40% and mixed-

hardwoods forest approximately 50% of the overstory in both treatments (Table 2).  

Hemlock cover around bird foraging hemlocks ranged from 30 to 80% with a mean of 50 

(± 6%).  Hemlock diameters of all sampled trees ranged from 7.9 to 122.1 cm and 

averaged 60.4 (± 19.0 cm).  Although the average diameter of hemlocks sampled for 

arthropods did not vary between treated and untreated sites, hemlock diameters in 

treated sites tended to be larger than in untreated sites.  The average diameter of 

hemlocks where birds foraged also did not differ from the nearest hemlock where 

additional arthropods were collected.  Sample hemlock branches were similarly foliated 

between treated and untreated paired sites. 

 

 Study sites located in the northern study area of GSMNP had similar site 

characteristics to sites sampled in the southern area, although the average elevation of 

northern stands was significantly lower versus southern stands (673 vs. 912 m, p = 

0.011) (Tables 1-2).  In addition, branches from hemlocks sampled in the north had 

significantly more foliage mass, higher foliage ratios, and less dead woody material than 

branches sampled from the south.  
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Table 1.  Site and branch characteristics of hemlock study sites sampled in Great Smoky 
 Mountains National Park. 
 
 

Characteristic x̄ ± s.d. x̄ ± s.d. p x̄ ± s.d. x̄ ± s.d. p
Site variables
   elevation (m) 777 ± 215 845 ± 107 0.350 673 ± 142 912 ± 107 0.011
   slope (%) 20 ± 10 39 ± 12 0.062 27 ± 18 30 ± 14 0.728
   northern aspectc 83 ± 22 71 ± 26 0.434 77 ± 24 81 ± 23 0.788
   hemlock coverd 53 ± 7 48 ± 4 0.292 51 ± 8 50 ± 5 0.928
   DBHe 73.4 ± 13.3 47.5 ± 9.8 0.057 62.7 ± 17.9 59.6 ± 22.9 0.813
Branch variables
   foliage mass (g) 32.9 ± 4.8 33.9 ± 7.6 0.780 42.7 ± 7.3 27.1 ± 5.7 0.003
   foliage ratiof 0.24 ± 0.06 0.24 ± 0.07 0.883 0.29 ± 0.05 0.21 ± 0.04 0.028
   dead woodyg 20 ± 10 20 ± 10 0.818 12 ± 6 24 ± 6 0.009
aSix sites per treatment, df = 5
bFive northern and six southern sites, df = 9
cArea-weighted percent of N-facing slopes out of 2 classes: N and S
dPercent hemlock cover (mid- to overstory) at bird foraging locations
eDiameter at breast height (cm) of hemlocks sampled for arthropods
fRatio of foliage mass to total branch mass
gPercent of non-foliated (dead) twigs on branches

Treated Untreated Northern Southern
Insecticide treatmenta Locationb

 
 
 
 
Table 2.  GIS-based cover classifications of hemlock study sites sampled in Great 

Smoky Mountains National Park. 
 
 

GIS cover classifications (%)c Treated Untreated Northern Southern
Mixed hemlock-cove forest 37 39 37 34
Mixed hardwood forest 47 54 63 45
Mixed pine forest 15 5 0 18
Other (field, water, road, human use) 2 2 0 3
aSix sites per treatment
bFive northern and six southern sites
cArea-weighted percents of forest cover classifications in pooled treatments

Insecticide treatmenta Locationb
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 Focal Bird Density 

 A total of 81 focal bird territories were mapped over the 12 study sites.  Bird 

density ranged from 2.8 to 7.7 territories per 5 ha (x̄ = 4.7 ± 1.5), and there was no 

difference between insecticide treatments (Figure 2).  However, territory density was 

significantly higher in northern versus southern sites (5.9 vs. 3.8 per 5 ha, p = 0.015).  

Bird territory density also increased significantly as foliage mass increased, and 

decreased significantly as dead woody material increased on branches (p = 0.017 and 

0.027, respectively) (Figure 3).   

 

Arthropod Diversity, Food Availability, and Adelgid Infestation 

 A total of 906 (non-HWA) arthropods were collected and analyzed, 425 in treated 

sites and 481 in untreated sites.  There were no differences between insecticide 

treatments for total arthropod abundance or density (Table 3).  There were no 

differences between insecticide treatments for abundance, relative abundance, or 

density of the two focal bird prey guilds arthropods ≥ 3 mm (n = 571) and larvae ≥ 3 mm 

(n = 217) (Table 3).  There were no differences between northern and southern sites for 

relative abundance of the two focal bird prey guilds arthropods ≥ 3 mm (x̄ = 0.66 ± 0.16, 

df = 9, p = 0.109) and larvae ≥ 3 mm (x̄ = 0.23 ± 0.12, df = 9, p = 0.637). 

 A total of 16 taxonomic orders in three classes were identified (Table 4), 15 in 

treated sites and 15 in untreated sites.  Order richness averaged 10 (± 2) per site with no 

difference between insecticide treatments.  The four most common orders collected (n > 

100) were Psocoptera, Araneae, Hemiptera, and Lepidoptera.  There were no 

differences between insecticide treatments for abundance, relative abundance, or 

density of Psocoptera, Araneae, or Hemiptera (Table 5).  In contrast, Lepidoptera 

relative abundance was significantly lower in treated stands versus untreated stands  
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Figure 2.  Focal bird density (territories per 5 ha) in hemlock study sites in Great Smoky 

Mountains National Park.  Error bars are 95% confidence intervals. 
 
 
 

 
 

 
Figure 3.  Relationships between focal bird density (territories per 5 ha) and branch 

foliage mass or percent dead woody material in hemlock study sites in Great 
Smoky Mountains National Park. 
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Table 3.  Diversity of total arthropods and two focal bird prey guilds in hemlock study 
 sites in Great Smoky Mountains National Park. 
 
 

Variableb x̄ ± s.d. x̄ ± s.d. p
Total arthropods
   abundance 7.1 ± 3.0 8.0 ± 4.2 0.498
   density 24.5 ± 16.8 24.9 ± 13.1 0.936
Arthropods ≥ 3 mm
   abundance 4.8 ± 2.5 4.8 ± 2.6 0.980
   relative abundance 0.67 ± 0.15 0.63 ± 0.17 0.410
   density 17.1 ± 14.1 15.3 ± 10.3 0.446
Larvae ≥ 3 mm 
   abundance 1.7 ± 1.3 2.0 ± 1.6 0.379
   relative abundance 0.21 ± 0.13 0.25 ± 0.11 0.462
   density 5.6 ± 4.5 5.8 ± 3.5 0.860
aSix sites per treatment, df = 5
bAbundance = numbers per branch; relative abundance = ratio of guild abundance to
   total arthropod abundance; density = abundance per 100 g foliage

Treated Untreated
Insecticide treatmenta

 
 
 
 
Table 4.  Diversity of arthropod orders found on hemlock branches in Great Smoky 

Mountains National Park.   
 
 
Class Order Common name Total
Arachnida Araneae Spiders 197

Opiliones Harvestmen 22
Sarcoptiformes Oribatid mites and allies 6
Trombidiformes Velvet mites and allies 48

Diplopoda Opisthospermophora Millepedes 2
Insecta Coleoptera Beetles 56

Diptera Flies, mosquitoes, and allies 52
Ephemeroptera Mayflies 2
Hemiptera True bugs, hoppers, aphids, and allies 125
Hymenoptera Ants, wasps, and allies 13
Lepidoptera Butterfiles and moths 121
Neuroptera Lacewings and allies 8
Orthoptera Grasshoppers and allies 4
Plecoptera Stoneflies 10
Psocoptera Barklice and allies 232
Thysanoptera Thrips 8

Total 906  
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Table 5.  Diversity of the four most common arthropod orders in hemlock study sites in 

Great Smoky Mountains National Park. 
 
 

Variableb x̄ ± s.d. x̄ ± s.d. p
Psocoptera
   abundance 1.7 ± 1.4 1.7 ± 1.6 0.382
   relative abundance 0.30 ± 0.10 0.21 ± 0.19 0.125
   density 7.9 ± 8.1 6.0 ± 6.6 0.278
Araneae
   abundance 1.5 ± 0.9 1.8 ± 1.2 0.258
   relative abundance 0.19 ± 0.07 0.22 ± 0.06 0.297
   density 5.0 ± 4.3 5.6 ± 3.2 0.585
Hemiptera
   abundance 1.1 ± 0.8 1.0 ± 0.5 0.427
   relative abundance 0.16 ± 0.08 0.15 ± 0.12 0.886
   density 3.8 ± 2.7 2.8 ± 0.7 0.301
Lepidoptera
   abundance 0.8 ± 0.7 1.3 ± 1.3 0.176
   relative abundance 0.09 ± 0.07 0.13 ± 0.06 0.009
   density 2.7 ± 2.6 3.5 ± 2.5 0.222
aSix sites per treatment, df = 5
bAbundance = numbers per branch; relative abundance = ratio of order abundance to
   total arthropod abundance; density = abundance per 100 g foliage

Treated Untreated
Insecticide treatmenta
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(0.09 vs. 0.13, p = 0.009).   

 NMS ordination of study sites according to arthropod order composition 

demonstrated no patterns related to insecticide treatments, elevation, hemlock DBH, or 

hemlock branch foliage mass (dimensions = 2, stress = 9.06) (Figure 4).  Treated sites 

were compositionally similar to their paired untreated site.  MRPP showed no differences 

between insecticide treatments (Sorenson p = 0.909, Jaccard p = 0.910), and there were 

no significant indicator orders for insecticide treatments.  

 Three Hemiptera suborders were identified (Table 6).  The two suborders 

Auchenorrhyncha and Sternorrhyncha comprised the herbivorous insect guild 

herbivorous Hemiptera (pooled n = 60).  Relative abundance of herbivorous Hemiptera 

was significantly lower in treated sites versus untreated sites (0.06 vs. 0.10, p = 0.048) 

(Table 7).  Relative abundance of larval Lepidoptera (n = 113), both an herbivorous guild 

and the third focal bird prey guild, was also significantly lower in treated sites versus 

untreated sites (0.07 vs. 0.13, p = 0.004).  There was no difference between northern 

and southern sites for larval Lepidoptera relative abundance (x̄ =0.11 ± 0.07, df = 9, p = 

0.968). 

 A total of 9566 HWA ovisacs were counted and 653 winged HWA collected.  

There were no differences between insecticide-treated and untreated sites for 

abundance or density of HWA ovisacs or winged HWA (Table 8).     

 

Discussion 

Focal Bird Density, Food Availability, and Hemlock Foliage Density  

 Paired treated-untreated study sites were similar in site characteristics and 

amount of foliage on sampled hemlock branches.  Densities of hemlock-associated 

insectivorous foliage-gleaning birds were also similar in imidacloprid-treated and 
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Figure 4.  Non-metric multidimensional scaling ordination according to arthropod order 

composition of hemlock study sites in Great Smoky Mountains National Park.  
Geographically paired insecticide-treated and untreated sites were 
compositionally similar (in ellipses). 
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Table 6.  Diversity and feeding guilds of Hemiptera suborders found on hemlock 

branches in Great Smoky Mountains National Park.   
 
 
Suborder Common name Feeding guild Total
Auchenorrhyncha Leafhoppers, treehoppers, and allies Herbivores 35
Sternorrhyncha Aphids, scales, and allies Herbivores 25
Heteroptera Assassin bugs, coreids, mirids,          Herbivores, 

   shield bugs, stink bugs, and allies   predators, other 65
Total 125  
 
 
 
Table 7.  Diversity of herbivorous insect guilds in hemlock study sites in Great Smoky 

Mountains National Park.  Larval Lepidoptera were also a focal bird prey guild. 
 
 

Variableb x̄ ± s.d. x̄ ± s.d. p
Herbivorous Hemipterac

   abundance 0.4 ± 0.2 0.7 ± 0.5 0.261
   relative abundance 0.06 ± 0.06 0.10 ± 0.08 0.048
   density 1.4 ± 0.8 1.6 ± 1.2 0.764
Larval Lepidoptera
   abundance 0.7 ± 0.7 1.2 ± 1.3 0.194
   relative abundance 0.09 ± 0.07 0.13 ± 0.07 0.004
   density 2.5 ± 2.4 3.3 ± 2.6 0.181
aSix sites per treatment, df = 5
bAbundance = numbers per branch; relative abundance = ratio of guild abundance to
   total arthropod abundance; density = abundance per 100 g foliage
cSuborders Auchenorrhyncha and Sternorrhyncha

Treated Untreated
Insecticide treatmenta
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Table 8.  Winged and non-winged hemlock woolly adelgid (HWA) in hemlock study sites 

in Great Smoky Mountains National Park.   
 
 

Variableb x̄ ± s.d. x̄ ± s.d. p
HWA ovisacsc

   abundance 72 ± 74 87 ± 82 0.520
   density 223 ± 197 247 ± 196 0.771
Winged HWAd

   abundance 6 ± 3 5 ± 4 0.787
   density 17 ± 8 15 ± 7 0.606
aSix sites per treatment, df = 5
bAbundance = numbers per branch, density = abundance per 100 g foliage
cOvisacs of non-winged HWA counted on branches
dWinged form of HWA collected from branches

Treated Untreated
Insecticide treatmenta
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untreated sites, as were the two arthropod prey guilds for these birds based on size and 

life stage.  However, their favored prey guild, larval Lepidoptera (MacArthur 1958, 

Robinson and Holmes 1982, Holmes 1990, Jones et al. 2003), showed significant 

declines in treated hemlocks.  These results imply that while a major food source was 

reduced in hemlocks, overall habitat and resources in paired treated and untreated sites 

were equivalent for focal birds.  All three bird species will also forage in deciduous trees 

(Hamel 1992) which comprised a large proportion of tree cover in these mixed hemlock 

stands, and these potential deciduous foliage-dwelling prey resources may have 

compensated for caterpillar reductions in hemlocks.  An insecticide-compromised 

lepidopteran prey guild in more dense, monotypic hemlock stands might negatively 

impact territory densities for this specialized guild of birds based on the food value 

theory of territories (Mariani and Manuwal 1990, Haney 1999, Jones et al. 2003, Barber 

et al. 2008).  In contrast, gypsy moth treatments in mixed-deciduous forests have 

affected insectivorous foliage-gleaning birds by inducing dietary shifts to proportionately 

fewer caterpillars (Sample et al. 1993b) and by negatively impacting productivity 

(Holmes 1998, Nagy and Smith 1997).  However, authors noted the insectivores' 

adaptability to insecticide-caused changes in food resources, and avian hemlock 

associates using imidacloprid-treated hemlock forests may also shift from favored prey 

and foraging substrates.   

 Hemlock-associated focal birds were more abundant in northern sites than in 

southern sites, suggesting that this specialized guild of birds preferred some resource or 

combination of resources in the north.  While there were no differences in measured 

food availability in northern versus southern stands, hemlock branches collected from 

northern sites were significantly more foliated than southern branches, and focal bird 

densities significantly increased with foliar density.  These results suggest that breeding 
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avian hemlock associates prefer healthier hemlock trees within mixed hemlock-

deciduous stands in GSMNP.  Numbers of breeding hemlock-associated birds have 

been shown to decline as hemlock health deteriorates in response to HWA in the 

northeastern US (Tingley et al. 2002).  Similarly, Rabenold et al. (1998) documented the 

decline of breeding Neotropical migrant conifer associates including black-throated 

green warblers and the blue-headed vireos in GSMNP spruce-fir forests negatively 

impacted by balsam woolly adelgid (Adelges piceae [Ratzeburg]).  Avian insectivores 

associated with closed-canopy forests have also been shown to decline from gypsy 

moth defoliation; however, this foraging and habitat guild returned over time as 

deciduous trees re-foliated (Gale et al. 2001).  More densely foliated trees may satisfy 

multiple resource needs in breeding birds including better cover from predators and 

better nest substrate (Marshall and Cooper 2004).  Studies have also shown that 

structural cues in the habitat, such as foliar density, that relate to overall resource 

availability and habitat quality may serve to calibrate territory size on the breeding 

grounds rather than direct assessment by breeding birds of food availability (Smith and 

Shugart 1987, Marshall and Cooper 2004).   

 

Arthropod Diversity and Adelgid Infestation 

 Numbers of total arthropods were no different in treated and untreated hemlocks, 

nor was order richness, with 15 orders in each treatment out of 16 total identified, 

indicating that imidacloprid did not impact overall arthropod abundance or diversity.  

Furthermore, ordination of study sites according to arthropod order composition 

demonstrated that geography of paired sites influenced overall arthropod diversity more 

than effects of insecticide treatments.  The two most abundant orders, Psocoptera and 

Araneae, do not feed on directly on treated hemlock tissue and were no different in 
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treated and untreated stands. Similarly, in another study non-target predators and 

scavengers in associated litter communities where systemic imidacloprid was applied 

showed little negative impact from treatments (Sánchez-Bayo et al. 2007).  However, in 

my study herbivorous insect guilds including caterpillars and herbivorous hemipterans 

were significantly reduced in treated sites.  Native insect herbivores may be displaced by 

non-native insect congeners and other herbivores with similar resource requirements 

(Wagner 2008, Kenis et al. 2009), indicating that hemlock insect herbivores may 

compete for resources with herbivorous HWA in HWA-infested trees.  Surprisingly, HWA 

infestation in my study did not differ between insecticide treatments; therefore, 

competition with HWA was similar between insecticide treatments for non-target 

herbivores, implicating imidacloprid as the cause of the declines in herbivorous insect 

guilds.  In contrast to my study, imidacloprid has been found in other studies to reduce 

overall arthropod abundance in crop systems but to have little impact on richness or on 

non-target herbivores (Marquini et al. 2002, Sánchez-Bayo et al. 2007).  By comparison, 

gypsy moth chemical control has been found to significantly reduce both diversity and 

abundance of foliage-dwelling arthropods in treated deciduous forests (Butler et al. 

1997a), and caterpillars have been especially vulnerable to various gypsy moth 

insecticide treatments (Sample et al. 1993b, Sample et al. 1996, Butler et al. 1997b, 

Marshall et al. 2002).  Butler et al. (1997a) observed that over half of the most abundant 

canopy arthropod families which showed reductions from gypsy moth insecticide 

treatments were univoltine, and authors suggested this reproductive strategy may delay 

recolonization compared to taxa with multiple generations produced per year.  Marquini 

et al. (2002) also concluded that impacts of imidacloprid on non-target crop taxa may 

cause changes in the trophic webs of arthropod assemblages in part because of the 

timing of recolonization by different taxa.  In my study, HWA produces multiple yearly 
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generations and likely recolonized faster than native herbivores after imidacloprid 

treatments.     

 

Management Implications 

 While forests may recover from other insect pest infestations such as gypsy 

moth, lack of eastern hemlock resistance to HWA prohibits natural recovery in hemlock 

forests of the eastern US (Lovett et al. 2006).  Systemic imidacloprid treatments may 

conserve eastern hemlock habitat and thus sustain habitat for hemlock-associated birds.  

Black-throated green warblers and blue-headed vireos in this study may serve as useful 

bioindicators of hemlock habitat quality in the mid-elevations of Southern Appalachians 

because of their affinity for hemlocks in this region (Kendeigh and Fawver 1981, Wilcove 

1988, Shriner 2001) and because their numbers decline in hemlock forests in as 

hemlock health deteriorates from HWA (Tingley et al. 2002).   

 Similar HWA infestation levels in treated and untreated hemlocks in my study 

implies that systemic imidacloprid applications, which should have a prolonged 

insecticidal effect and a delayed peak in strength (Webb et al. 2003, Sánchez-Bayo et al. 

2007), were not at peak efficacy when arthropods were sampled.  If herbivores were 

sampled before peak imidacloprid strength, then herbivore declines at the peak would 

likely be greater than reported here.  If herbivores were sampled after peak imidacloprid 

strength, then these results suggest that HWA recovers faster than other herbivores.  If 

these imidacloprid treatments were lacking in overall efficacy, then herbivore declines 

might be greater than measured in my study under more effective treatments.   In all 

three scenarios, repeated treatments over the long term may successively depress non-

target herbivores that have not recovered from previous treatments.  When using 

systemic imidacloprid in hemlock forests, monitoring of herbivorous insect guilds is 
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recommended to detect changes in native hemlock canopy arthropod diversity and 

safeguard avian food resources.    

 

Conclusions 

 Systemic imidacloprid soil application may be a viable conservation tool to 

sustain hemlock groves and save this unique ecosystem in the Southern Appalachian 

region and beyond.  However, potential harmful effects of imidacloprid must also be 

considered when using this control method.   

 Canopies of imidacloprid-treated hemlock trees had reduced herbivorous canopy 

arthropods including larval Lepidoptera, which are an important food resource for many 

bird species.  However, densities of hemlock-associated insectivorous birds were similar 

between the treated and untreated sites, suggesting that birds may find adequate 

resources despite food reductions in these mixed hemlock-deciduous stands.  Hemlock 

associates were denser in stands with healthier hemlocks in GSMNP, regardless of 

insecticide treatment.   

 In this study, despite indications that arthropods were not sampled at peak 

imidacloprid efficacy, herbivorous insects declined from imidacloprid treatments.  In the 

short term imidacloprid treatments may benefit hemlock-associated birds by maintaining 

vigorous hemlocks.  However, in the long term with repeated application, systemic 

imidacloprid may cause compounding declines in herbivorous insects such as larval 

Lepidoptera.  Therefore, continued research is warranted on the effects of imidacloprid 

on herbivorous canopy arthropods over the full systemic imidacloprid treatment cycle 

and through multiple treatments.  Research is also warranted on the direct effects of 

HWA on hemlock canopy arthropod diversity over full gradients of HWA infestation and 

HWA-induced hemlock defoliation.  Coupling canopy arthropod sampling with bird 
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foraging rates and tree species selection during foraging in treated versus untreated 

stands would yield both direct and indirect measures of hemlock-associated avian 

insectivore food availability.  Impacts on the productivity of hemlock-associated 

insectivorous birds, such as time spent away from nests during the feeding of young, 

proportion of caterpillars brought to nestlings, and number and vigor of nestlings 

produced, should also be examined in imidacloprid-treated hemlock stands.   
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APPENDIX A: STUDY SITE LOCATIONS 
 
 
 

Table A1.  Locations of hemlock study sites in Great Smoky Mountains National Park.  
 Coordinates are in Universal Transverse Mercator (UTM) coordinate system, 
 North American Datum of 1983. 
 
 

Site paira Treatment Site landmark m North m South
BC Treated Big Creek Trail 308471 3957637

Untreated Little Cataloochee Trail 310984 3950019
CA Treated East of Cataloochee Valley 313986 3946228

Untreated Road to Cataloochee Valley 313021 3945662
CB Treated Chestnut Branch Trail 309446 3959238

Untreated Chestnut Branch Trail 308251 3959287
LG Treated Low Gap Trail 300946 3958543

Untreated Snake Den Ridge Trail 299496 3957963
RF Treated Rough Fork Trail 307111 3941939

Untreated Mossy Branch 309114 3945195
WS Treated Cataloochee Creek 312014 3946162

Untreated Winding Stair Branch 312256 3946522
aInsecticide treated-untreated pairs of study sites

UTM zone 17 N
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