
WILD CAUGHT MOSQUITO SPECIES IDENTIFICATION USING IR
SPECTROSCOPY AND CHEMOMETRICS

A thesis presented to the faculty of the Graduate School of Western Carolina
University in partial fulfillment of the requirements for the degree of Masters of

Science in Chemistry.

By

Harrison O’Neal Edmonds

Advisor: Dr. Scott W. Huffman
Associate Professor of Chemistry

Department of Chemistry & Physics

Committee Members: Dr. Carmen L. Huffman, Chemistry & Physics
Dr. Brian D. Byrd, Health and Human Sciences

April 2021



ACKNOWLEDGEMENTS

Throughout this project, there have been many setbacks, both large and small. I am thankful

to many individuals for continuing to push me past these obstacles. I want to thank my par-

ents Tracy and Kelley Edmonds, for encouraging my siblings and me to never quit from a very

young age. I want to thank my lovely wife Kristyn for her continuous support throughout this

project. I would also like to thank the giants whom shoulders I stand on Dr. Scott Huffman,

Dr. Brian Byrd, and Dr. Carmen Huffman have been available every step of the way to an-

swer any questions and provide direction to this project. Also, fellow students Lamyae Sroute,

Bradley Guilliams, Connor Larmore, and Mark Rothermund have had a profound impact on

this project’s work, and I am very thankful for their intellectual input. I would also be remiss

if I did not recognize the two people responsible for sparking my love for science. Dr. Alesia

Jennings and Dr. Mike Bowman, thank you for being the type of educator I aspire to be one

day. Last but certainly not least, much of this work would not have been possible if not for the

financial support from the American Mosquito Control Association Research Fund (2018) and

the North Carolina Biotechnological Center Biotechnology Innovation Grant (2018-BIG-6511).

ii



TABLE OF CONTENTS

List of Tables................................................................................................................... v
List of Figures ................................................................................................................. vi
List of Abbreviations........................................................................................................ vii
Abstract .......................................................................................................................... viii
CHAPTER ONE: INTRODUCTION................................................................................. 1

Background................................................................................................................ 1
Vectorial Capacity Equation................................................................................. 2
Infrared Spectroscopy ......................................................................................... 3
Beer’s Law......................................................................................................... 5
Infrared Microspectroscopy ................................................................................. 5

Data Processing .......................................................................................................... 5
Cropping............................................................................................................ 6
Normalization .................................................................................................... 6
Savitzky-Golay Smoothing and Second Derivative Function ................................... 6
Outlier Rejection ................................................................................................ 7

Data Analysis Tools .................................................................................................... 7
Euclidean Distance ............................................................................................. 7
Student T-Test .................................................................................................... 8
Principle Component Analysis ............................................................................. 9
Partial Least Squares - Regression........................................................................ 10

Research Objectives .................................................................................................... 14
CHAPTER TWO: EXPERIMENTAL................................................................................ 15

Materials.................................................................................................................... 15
Mosquito Samples .............................................................................................. 15
Instrumentation .................................................................................................. 15

Methods..................................................................................................................... 16
Measurement Procedure ...................................................................................... 16
Data Pre-Processing............................................................................................ 17
Outlier rejection ................................................................................................. 17

Data Analysis methods................................................................................................ 19
Principle Component Analysis (PCA)................................................................... 19
Partial Least Squares - Discriminate Analysis (PLS-DA) ........................................ 19

CHAPTER THREE: RESULTS AND DISCUSSION.......................................................... 20
Aedes triseriatus Wild vs. Lab ..................................................................................... 20

Analyzing a Mosquito’s IR Spectra ...................................................................... 20
Pre-Processing of Data ........................................................................................ 21
Hypothesis ......................................................................................................... 25
Euclidean Distance ............................................................................................. 26

iii



Principle Component Analysis (PCA)................................................................... 27
Partial Least Squares - Discriminate Analysis (PLS-DA) ........................................ 29

Aedes triseriatus Wild vs. Lab with varying ages ........................................................... 30
Hypothesis ......................................................................................................... 30
Euclidean Distance ............................................................................................. 31
Principle Component Analysis (PCA)................................................................... 34
Partial Least Squares - Discriminate Analysis (PLS-DA) ........................................ 35

Species Separation of Wild Caught Aedes triseriatus...................................................... 35
Hypothesis ......................................................................................................... 35
Partial Least Squares - Discriminate Analysis (PLS-DA) Results ............................ 36

CHAPTER FOUR: CONCLUSIONS AND FUTURE DIRECTIONS................................... 39
REFERENCES................................................................................................................ 41

iv



LIST OF TABLES

Table 1. Mosquito Sample Ages. .............................................................................. 16
Table 2. FT-IR Microscope Parameters. .................................................................... 17

v



LIST OF FIGURES

Figure 1. Artificially constructed plot showing clear euclidean distance separation be-
tween group 1 (red, n = 5) and group 2 (blue, n = 5). .................................. 8

Figure 2. Schematic Representation of PCA Analysis. ............................................... 10
Figure 3. PCA score plot showing separation of hypothetical group 1 (blue, n = 25)

and group 2 (red, n = 25). ......................................................................... 11
Figure 4. Example PLS-DA discrimination score plot showing separation of hypothet-

ical group 1 (blue, M = 3) and group 2 (red, N = 3). ................................... 13
Figure 5. Mosquito anatomy with location of infrared measurement shown by a red out-

line.......................................................................................................... 18
Figure 6. Mean IR spectrum of Aedes triseriatus mosquitoes, highlighting important peaks

for species identification, A: CH2 and CH3 stretching (unsaturated lipids), B:
carbonyl stretching and N-H deformation (Amide I and II), C: hydrocarbon
bending (Deoxyribonucleic acid (DNA), lipids, protein, etc.), D: C-O-C stretch-
ing (chitin) ............................................................................................... 20

Figure 7. Mean laboratory-reared Aedes triseriatus spectra (orange) vs. mean wild Aedes
triseriatus spectra (blue)............................................................................ 22

Figure 8. All cropped Aedes triseriatus FT-IR Spectra................................................ 23
Figure 9. All normalized Aedes triseriatus FT-IR Spectra. .......................................... 24
Figure 10. All second derivative Savitzky-Golay smoothed FT-IR Spectra. .................... 25
Figure 11. Euclidean distance Scatter plot for wild (red, n = 63) and lab reared Aedes

triseriatus spectra (blue, n = 36). ............................................................... 26
Figure 12. Loading vectors 1 and 2, used to calculate scores in the PCA score plot......... 28
Figure 13. PCA score plot of Aedes triseriatus with laboratory-reared mosquitoes (blue,

n = 36) and wild caught mosquitoes (red, n = 63). ...................................... 29
Figure 14. PLS-DA Discrimination score plot comparing wild (red, M = 34) to laboratory-

reared (blue, N = 19) Aedes triseriatus. ...................................................... 30
Figure 15. Mean laboratory-reared Aedes triseriatus spectra both with (orange) and with-

out (green) varying ages vs. mean wild Aedes triseriatus spectra (blue). ........ 32
Figure 16. Euclidean distance Scatter plot for wild (red, n = 63) and lab reared Aedes

triseriatus with varying ages spectra (blue, n = 244).................................... 33
Figure 17. PCA score plot of Aedes triseriatus with laboratory-reared mosquitoes of vary-

ing age (blue, n = 244) and wild caught mosquitoes (red, n = 63). ............... 34
Figure 18. PLS-DA Discrimination score plot comparing wild (blue, N = 39) to laboratory-

reared (red, M = 142) Aedes triseriatus (with age variation). ........................ 36
Figure 19. PLS-DA discrimination plots showing species separation between Aedes tris-

eriatus (black, N = 20 (a), N = 63 (b)) and Culex quinquefasciatus (green,
M = 15 (a), M = 71 (b) ), both with (b) and without (a) age variation............ 38

vi



LIST OF ABBREVIATIONS

BEI Biodefense and Emerging Infections Research Resources Repository
CDC Centers for Disease Control and Prevention
DNA Deoxyribonucleic Acid
DOF Degrees of Freedom
DP Data Processing
ED Euclidean Distance
FT Fourier Transform
HDF Hierarchical Data Format
IR Infrared
JDX Java Desktop For XWindows
MCD Minimum Covariance Determinant
MR4 Malaria Research and Reference Reagent Resource Center
MSU Michigan State University
NC North Carolina
PCA Principle Component Analysis
PLS Partial Least Squares
PLS −DA Partial Least Squares Discriminate Analysis
PLS −R Partial Least Squares Regression
SPA Software Publishers Association
WCU Western Carolina University

vii



ABSTRACT

WILD CAUGHT MOSQUITO SPECIES IDENTIFICATION USING IR SPECTROSCOPY

AND CHEMOMETRICS

Harrison O’Neal Edmonds, M.S.,Chemistry

Western Carolina University (April 2021)

Advisor: Dr. Scott W. Huffman

At its current state, mosquito control is all but reliant on the work of the entomologist. The ento-

mologist and other mosquito control personnel are society’s first line of defense against harmful

vector-borne diseases that have caused mosquitoes to be named the most deadly animal on earth.

An accurate and rapid way of accessing a mosquito population is critical to combat mosquito-

borne disease. Current methods of accessing an adult mosquito species rely almost exclusively

on microscopic identification by highly trained personnel. This process is both very tedious and

labor-intensive. This process is also subject to a series of operator and or laboratory errors. There-

fore, there is a need for rapid and nondestructive adult mosquito species identification techniques

that can be used on an ecologically, economically, and epidemiologically meaningful scale. Our

current research aims to develop biochemical discrimination methods between multiple wild

species of mosquitoes using infrared spectroscopy. Infrared spectroscopy is a sensitive, information-

rich technique capable of detecting a wide range of molecular signals, ranging from subtle changes

in protein secondary structure to transmembrane protein-lipid interactions. The resulting data,

when coupled with numerical analysis (chemometric) methods such as principal component

analysis, linear discriminate analysis, and partial least squares, may be used to classify mosquito

species. Herein, we have applied Fourier transform infrared (FT-IR) microspectroscopy to iden-

tify a subset of wild mosquito species, including Culex quinquefasciatus and Aedes triseriatus),

using a chemometric model trained by laboratory-reared mosquitoes of the same species. When
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trained using laboratory-reared mosquitoes of varying ages, this method can yield up to 96.2%

accuracy when predicting Culex quinquefasciatus and Aedes triseriatus. This method, which

is rapid and easy to use, can decrease labor cost and time associated with species identification.

Further development coupled with process automation may provide operationally practical meth-

ods for rapid species identification of many mosquitoes and other distinguishable mosquito fea-

tures.
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CHAPTER ONE: INTRODUCTION

Background

Mosquitoes are the most deadly animal on planet Earth with over 750,000 deaths per year caused

by mosquito-transmitted diseases.1 This public health issue is not just in tropical areas; cases of

mosquito-borne illness in the United States are rising rapidly and becoming an increasing public

health concern.2,3 Although the West Nile virus is the most prevalent mosquito-borne disease in

the United States, the most common in NC is La Crosse encephalitis. La Crosse encephalitis is a

predominately pediatric disease occurring primarily in Western counties.4 Currently, there are no

vaccines for humans to protect against most mosquito-transmitted viruses. Thus, mosquito con-

trol agencies are our last line of defense against the transmission of mosquito-borne diseases. En-

tomologists working in mosquito control are responsible for the routine surveillance of mosquito

populations in their area. Mosquito surveillance is typically completed by setting up surveillance

traps such as the industry-standard CDC light trap, then identifying mosquitoes caught in said

traps.5

Identification typically consists of microscopic identification of adult female mosquitoes us-

ing morphological signals, a very labor-intensive task.6 Routine surveillance is often so expensive

that smaller mosquito control agencies cannot afford it.7–9 These agencies are also responsible for

evaluating the associated public health risk factors from a given population of mosquitoes. After

evaluation, the responsibility of the entomologist’s and other mosquito control personnel’s is to

develop a plan to combat the risk associated with populations of specific mosquito species. This

defense typically takes the form of population control using insecticides. If not used responsi-

bly, these pesticides can have harmful effects on human health where pesticide exposure has been

linked to a variety of cancers.10 Pesticides also have a significant negative economic impact both

inside and outside of the public health industry; current statistics predict that insecticides cause

billions of US dollars per year in economic and environmental damage to fields such as public
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health ($1.1 billion), pesticide resistance ($1.5 billion), and crop losses caused by pesticides ($1.4

billion).11,12 Because of this, it is essential to use targeted insecticide application only to sites

with populations of mosquitoes that are vector threats; this minimizes the harmful side effects of

insecticide application. Careful record keeping and frequent surveillance with rapid turnaround

are essential for targeted insecticide applications. However, microscopic species identification is

very tedious, labor-intensive, and subject to operator errors. Therefore, to properly marshal pub-

lic health resources, it is imperative that an accurate, rapid, and affordable way of surveying a

given mosquito population’s species is developed. The technique of using microspectroscopy to

identify a mosquito’s species has already been shown to differentiate between multiple species of

laboratory-reared mosquito populations by Sroute et al.7 The method is rapid and easy to use and

has the potential to decrease both the cost of labor and time associated with species identification,

making it an impressive tool for species surveillance work in mosquito control agencies. Multi-

ple groups have even expanded on this work and used inferred spectroscopy to determine the age

of the mosquitoes measured.13,14 However, until now there has been no study’s highlighting the

use of laboratory-reared mosquitoes to train a database used to identify wild-caught mosquitoes.

This aspect is essential to this research because the method’s application in the mosquito control

setting would be on the wild mosquito population for species surveillance. Thus, It is crucial to

determine whether the method built by Sroute et al. will need to be adapted to study the wild-

caught mosquitoes or be directly applied in mosquito control surveillance.

Vectorial Capacity Equation

Vectorial capacity is a model that uses the information provided by routine surveillance to predict

the threat level of a given mosquito population from a public health perspective. The Vectorial

capacity (V ) is the total number of potentially infectious bites resulting from all the mosquitoes

biting a single perfectly infectious human on a single day.15 Meaning the higher Vectorial capac-

ity, the higher the risk of the spread of the disease in question. The Vectorial capacity (V ) can be
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expressed using the equation:

V =
ma2pn

− ln p
(1)

where m is representative of the ratio of female mosquitoes to humans, a represents daily blood-

feeding rate, p is a single mosquito’s odds of survival through one day, and the parasite or virus’s

incubation period is characterized by n days.15,16 On average, a human interacting with m mosquitoes

per day would be bitten at the rate of ma2; this value is squared due to two bites being required

to transmit disease from infected to an uninfected host. For a mosquito to become infectious, it

would have to survive the incubation period with the probability pn. Then, the infectious mosquitoes

live on average 1
−ln(p)

days biting at a rate of a. The equation was developed initially for malaria

but is now used to discuss many other mosquito-transmitted diseases. The Vectorial capacity

equation estimates can be optimized with carefully surveillance of a mosquito population’s age,

since it relates to survival rate (p) and incubation rate (n). Resent work by Guilliams et al.14 has

shown infrared spectroscopy’s ability to determine the age of a mosquito using the same tech-

nique as species identification. This discovery means that one spectroscopic measurement can

provide a variety of information about a mosquito, which can then be used to epitomize a variety

of parameters in the Vectorial capacity equation.

Infrared Spectroscopy

Infrared spectroscopy is a measurement tool commonly used to study the interactions of infrared

light and molecules, and the resulting spectra act as a molecular fingerprint. The infrared region

of the electromagnetic spectrum is from 12500-10 cm−1, and is typically divided into three sub-

regions: near-infrared region (12500-4000 cm−1), mid-infrared region (4000-400 cm−1) and far-

infrared region (400-10 cm−1). The mid-infrared region is commonly used to study chemical

structures’ fundamental vibrations because nearly all molecules have characteristic vibrations

in this region.17 For a molecule to absorb infrared light, the molecule must undergo a net change
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in dipole moment in at least one of its vibrational modes. The maximum number of vibrational

modes (n) for a given molecule can be calculated using the following equation for nonlinear

molecules:

n = 3N − 6 (2)

where N is the number of atoms in the structure. After a light particle or photon is absorbed for

a particular vibrational mode the molecule undergoes a transition from ground vibrational energy

level (v = 0) to the first excited state (v = 1). The energy difference between the two energy

levels (∆E) must be equal to the energy of the photon of IR light, which is calculated using:

∆E = hcν̃ (3)

where h is Plank’s constant, c is the speed of light, and ν̃ is the wavenumber of the light used to

cause the excitation. ν̃ can be calculated using the equation:

ν̃ =
1

2πc

√
k

µ
(4)

where k is the force or spring constant of the vibrational mode denoting the strength of the bonds

involved in the vibration and µ is the reduced mass of the atoms involved in the vibration. This

equation shows that vibrational modes involving heavy atoms with weaker chemical bonds tend

to absorb lower-energy infrared light. By comparison, lighter atoms’ vibrational modes with

stronger chemical bonds tend to absorb higher energy infrared light. This ability to differentiate

between vibrational modes using the exact wavenumber of infrared light causes infrared spec-

troscopy to be a robust tool to analyze a chemical’s molecular structure.18
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Beer’s Law

The total amount of inferred light absorbed by the samples vibrational modes can be measured

using absorbance (A), which can be expressed with the equation known as the Beer-Lambert-

Bouguer Law (Beer’s Law),19

A = εbC (5)

where A is the absorbance at a specific wavelength, ε is the molar absorptivity for a particular

substance, b is the pathlength, and C is the concentration of the substance. Beer’s Law is additive,

so when dealing with a mixture, Beer’s Law can be written as:

A = ε1b1C1 + ε2b2C2 + εnbnCn... (6)

where n is the number of components in the mixture. This assumption is valid unless the com-

pounds chemically interfere with each other.

Infrared Microspectroscopy

Mosquitoes are complicated organisms with chemically distinct body parts and heterogeneous

morphologic features. For this reason, a specific form of infrared spectroscopy was chosen: Fourier

transform infrared (FT-IR) microspectroscopy. Using a microscope allows measurement of a par-

ticular area of a mosquito and allows for efficient user adjustments of the sample to assure the

measurement’s quality.

Data Processing

Since almost every compound has at least one IR vibrational mode, infrared spectra of mixtures

can be very complicated and challenging to interpret, biological or otherwise. FT-IR spectroscopy

is often paired with chemometric data processing (DP) methods and statistical analysis, which

allows a computer to perform much of the data interpretation. This combination has been used
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for many applications, including everything from street drug detection20 to characterization of

petroleum-based products.21

The data processing of any classification technique contains two main steps: training and val-

idation. Before any classification technique begins, the user must randomly split the dataset into

two portions, where one portion will be used in the model’s training and the other in the model’s

validation. The validation set can then be used to evaluate the model’s prediction accuracy.

Also, before classification, it is typical that spectra will undergo various pre-processing steps

to decrease the impact of non-correlative information represented in the data. Typically these

steps help reduce the impact of spectral variances caused by the instrument, environment, user,

or sample geometry.

Cropping

Atmospheric water vapor and carbon dioxide can cause unwanted spectral variation because of

changes in the environment where the spectra are measured, such as humidity. Therefore, it is

typical that areas of the infrared spectrum that show a majority of the water vapor/carbon dioxide

absorbance are removed before analysis.17

Normalization

Normalization’s primary purpose is accounting for variations in sample thickness since a larger

sample would effectively have a longer path length producing larger absorbance values. So it

is essential to normalize the spectra, so the sample size is not a contributing factor to classifica-

tion.17,22

Savitzky-Golay Smoothing and Second Derivative Function

When working with biological samples, it is common to have baseline spectral issues (e.g., slop-

ing or oscillating baselines) due to the scattering of light away from the sample. Often a first or

second derivative is used to de-emphasize this baseline fluctuation. This method has also shown

the ability to resolve overlapping spectra bands.17 In general, a Savitzky-Golay smoothing/ differ-

entiation algorithm attempts to amplify important spectral information by limiting the impact of
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spectral noise.17,23

Outlier Rejection

The final pre-processing step is to perform outlier rejection on the data to remove spectra flawed

due to user error. Outlier rejection can take many different forms in various data analysis methods

but often involves a distance measurement technique24 to analyze each spectrum compared to the

mean or reference spectrum. This experiment’s outlier rejection uses the Mahalanobis distance to

compare each spectrum to the others within its group (wild, laboratory-reared, Aedes triseriatus,

etc.). The Mahalanobis distance specifically has been shown to be a valuable tool for spectro-

scopic outlier rejection25,26 and provides a quick and efficient way to find flawed infrared spectra.

Data Analysis Tools

Euclidean Distance

Euclidean distance (ED) is a popular data analysis tool used to calculate the difference between

two vectors (spectra).27 In this study, this distance measurement technique is used to compare the

mean of the data to each spectrum, which provides a metric that can be used to visualize spec-

tral deviation from the mean. The equation used to calculate the Euclidean distance for spectra

analysis is,28

EDn =
√

(R− Sn)2 (7)

where R is the reference or mean spectrum, Sn is the nth spectra in the dataset, and EDn is the

Euclidean distance value for the nth spectrum. Euclidean distance can be adapted and used as a

tool for cluster analysis where, rather than finding the mean of all the data, the mean of a single

group is compared to individual spectra. This process can be applied as a rapid way to identify

significant spectral differences between two groups. An example (using artificially constructed

data) of clear separation between two spectral groups using Euclidean distance is shown in Figure

1. In this example, a ED value of 0 means that the data did spectra did not match the reference,
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while a ED = 6 means the spectra matched the reference very well. In Figure 1, the Euclidean

distances of group 1 (red) are different from that of group 2 (blue). In Figure 1 the x-axis is the

Euclidean distance value calculated from Equation 7, and the y-axis is the ”Spectrum ID” or in-

dex of the nth spectra. When comparing plots of this nature, it is important to understand that the

y-axis (Spectrum ID) separation is meaningless and only added to the plot for visualization pur-

poses. The size of each group analyzed with ED will also be displayed in the figure caption of

the score plots with n corresponding to the number of spectra in each group of spectra. Group 1

spectra all have ED < 3 while group 2 spectra all have ED > 4. This suggests the groups are

distinct.

Figure 1. Artificially constructed plot showing clear euclidean distance separation between group
1 (red, n = 5) and group 2 (blue, n = 5).

Student T-Test

The ED and PCA analysis results can be analyzed group-wise with a student t-test to determine

the statistical significance of Euclidean distance differences. The student t-test will provide a

value either rejecting or failing to reject the null hypothesis. A null-hypothesis hypothesizes that

there is no significant difference between two populations of data, and any observed difference is

simply due to random error. The spectra in each group are denoted by the indices a and b is in the
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equation below calculating the student’s t-test value (texp):

texp =
|amean − bmean|√

a2std
asize

+
b2std
bsize

(8)

where the indices mean, std and size refer to the average, standard deviation and number of sam-

ples/spectra in each group, respectively. The texp value is then compared to the corresponding

ttable value based on the degrees of freedom (DOF ). If texp > ttable the null-hypothesis is re-

jected, and if texp < ttable the null-hypothesis cannot be rejected. For example for the Euclidean

distance representation shown in Figure 1, texp was found to be 4.966 which is larger than the

ttable value of 2.776 (DOF = 4) meaning the null-hypothesis is rejected with 95% (α = .05) con-

fidence level.29,30 Therefore confirming that the groups referenced in Figure 1 are significantly

different.

Principle Component Analysis

Principle component analysis is a data analysis technique that uses machine learning to analyze

a selection of spectra (A) and a given amount (nlv) of loading vectors (L) that are representative

of significant spectral differences. Each loading vector is orthogonal to the next, meaning that

ideally, there is little to no overlap of spectral information. These loading vectors can then be

used to find score matrix values (S), quantifying a spectrum’s similarity to corresponding loading

vectors, and are often plotted on a Cartesian coordinate system (x, y, z, etc.). A schematic of this

process is shown in Figure 2.31

The score matrix values scores are plotted on a Cartesian plane where each axis (x,y,z, etc.) is

a group of score values. These types of graphs are referred to as score plots. An example of one

such score plot is shown below in Figure 3 where the blue points represent the spectra of group

1 and the red points represent the spectra of group 2. The size of each group of spectra analyzed

with PCA will be included in the figure caption of the score plots with n corresponding to the

9



Figure 2. Schematic Representation of PCA Analysis.

number of spectra in each group. Figure 2 displays a clear example of what two distinct groups

should look like using PCA analysis with the entirety of group 1 (blue) separated from the en-

tirety of group 2 (red).

Partial Least Squares - Regression

Partial least squares regression (PLS-R) is used to compare information in two data matrices

using a linear multivariate model. PLS-R is a robust tool that excels when dealing with noisy,

collinear, and even incomplete datasets,32,33 making it a valuable tool for complex statistical anal-

ysis. PLS-R can also be adapted to where C becomes categorical, and this is commonly referred

to as Partial Least Squares Discriminant Analysis (PLS-DA). PLS-DA is especially useful for

pattern recognition since the training data set allows the model to recognize distinct differences

between each group assigned categorically. PLS-DA may be best understood with distinct steps.

First, a regression model (B) is built using the training dataset (Atraining) and the group assign-

ment (C). This model (B) is designed to maximize the statistical difference between the categori-

cally assigned groups. The equation to express this relationship is,

C = AtrainingB (9)

where B, much like with PCA, is a matrix of loading vectors containing combinations of spectral

10



Figure 3. PCA score plot showing separation of hypothetical group 1 (blue, n = 25) and group 2
(red, n = 25).
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features distinct to the assigned groups in the training data set (A). The matrix C is the group

assignment of the training dataset, where 1 is assigned to samples in-group and -1 to samples out

of the group. The second step of PLS-DA is to predict the group membership of the validation set

with the trained model by applying the trained model to the validation dataset (Avalidation); this

produces matrix discrimination scores (P ).

P = AvalidationB (10)

These discrimination scores (P ) can then be used for sample classification. In this process, a

threshold is typically chosen to optimize the in-group/out-group prediction performance. In PLS-

DA, it may be necessary also to take careful note of the size of each group of spectra used in the

analysis to optimize the performance further. Because of this, each group’s size will be noted

within the figure captions of every discrimination score plot with N corresponding to the in-group

and M corresponding to the out-group. An artificially manufactured discrimination score plot is

shown in Figure 4. Figure 4 displays blue points as part of artificially constructed group 1 (blue)

and red points as part of artificially constructed group 2 (red). Similarly to the Euclidean dis-

tance plots, it is important to understand that the y-axis (Sample Number) separation for PLS-

DA discrimination score plots is meaningless and only added to the plot for visualization pur-

poses. In this example figure, all six samples were identified correctly and assigned to their cor-

rect groups according to the chosen threshold (0). This is evident in Figure 4 because all group 1

(blue) points have a value > 0 and all group group 2 (red) points have a value < 0.

Once a PLS-DA classification model was constructed, the accuracy (A) of the model was cal-

culated using the equation:

A =
TP + TN
Total

(11)
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Figure 4. Example PLS-DA discrimination score plot showing separation of hypothetical group 1
(blue, M = 3) and group 2 (red, N = 3).
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where TP is the amount of true positive’s or the number of spectra which were correctly predicted

as part of the in-group (N) with a value greater than the threshold, TN is amount of true negative’s

or the number spectra correctly predicted the out-group (M) with a value less than the threshold

and Total is the total number of samples in the study.

Research Objectives

This research aims to establish if laboratory-reared mosquitoes can be used in an FT-IR spec-

tral library to train a chemometric model to predict a wild-caught mosquito species correctly.

This problem is significantly more complex than previous species prediction studies like the one

completed by Sroute et al.7 The increased complexity of the wild mosquito spectra by a vari-

ety of factors including; (I) contaminants that the wild mosquitoes can pick up from its envi-

ronment, (II) the diet of the wild mosquitoes when compared to that of the laboratory-reared,

(III) the broader differences in the gene pool of wild-caught populations compared to that of a

laboratory-reared colony, (IV) as well as the wide age variations within species that are repre-

sented with a random collection of wild samples. We hypothesize that IR spectra of laboratory-

reared mosquitoes can be used to train a chemometric model to predict the species of wild-caught

mosquitoes. This would be the optimal scenario because laboratory-reared colony’s are typically

readily available, and can be reliably aged and identified. Additionally we predict that, classifi-

cation performance may suffer because of the spectral variation represented in wild mosquitoes’

spectra but not spectra of their laboratory-reared counterparts. Suppose spectral differences are

identified between wild and laboratory-reared mosquitoes. In that case, this project’s secondary

goal is to determine the cause of these differences and quantify their impact on species deter-

mination. This knowledge will then help to guide the optimization of the species identification

method developed by Sroute et al.7 for use in the mosquito control setting for wild species surveil-

lance.
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CHAPTER TWO: EXPERIMENTAL

Materials

Mosquito Samples

Approximately 100 female, Aedes triseriatus mosquitoes and 280 Culex quinquefasciatus were

collected and stored in a −80◦C freezer. Wild Aedes triseriatus (63 mosquitoes, Age: Unknown)

were collected using CDC light traps in areas near Western Carolina University. Aedes trise-

riatus (36 mosquitoes, strain: MSU, Age: 12-15 days) were pulled from a locally housed colony

initiated by Michael Kaufman at Michigan State University(MSU) in 2018. This MSU strain

has been maintained as a continuous lab-controlled colony housed on Western Carolina Uni-

versity’s campus in the Vector-borne Infectious Disease Laboratory. Culex quinquefasciatus

(≈280 mosquitoes, strain: JBH, Age: (see Table 1)) were obtained from MR4/BEI resources.

The colony was then established field collected samples collected at a pond north of Johannes-

burg, South Africa (Coordinates 26 66’S 27 50’E). The colony was contributed to MR4/BEI by

A.J. Cornel.

A selection of laboratory-reared Aedes triseriatus (210 mosquitoes, strain: MSU, Age: (see

Table 1)) of various ages was also pulled from its established colony. Rearing information for

these mosquitoes was carefully monitored and thoroughly documented elsewhere,14 but briefly,

the mosquitoes were reared in cohorts according to age killed by freezing. The exact amount

mosquitoes in each age group are listed in table 1. A selection of laboratory-reared Culex quin-

quefasciatus (≈280 mosquitoes, strain: JBH, Age: (see Table 1)) were also collected and divided

into two groups: young mosquitoes < 1 week old (105), and old mosquitoes ≥ 2-weeks old (156)

based on their respective initial holding times.

Instrumentation

All samples were measured using the FT-IR Microscope with the instrument parameters shown

below in Table 2. All spectra were acquired at room temperature (20-23 C). A background spec-
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Table 1. Mosquito Sample Ages.

Parameter Value Uncertainty in age
Culex quinquefasciatus < 1 week (n = 105) ∆t ≥ 7 days

≥ 2 weeks (n = 156)
Aedes triseriatus 1 day (20-24 hrs) (n = 30) ∆t = ± 1 day

2 days (> 24 hrs, < 30 hrs) (n = 30)
7 days (n = 30)
14 days (n = 30)
21 days (n = 30)
28 days (n = 30)
35 days (n = 30)

trum was acquired every 10-15 samples to reduce the effects of constantly changing atmospheric

and other instrumental conditions. Backgrounds were acquired somewhat subjectively based on

the humidity of the environment and spectral signs of distortion like the presence of water vapor

between 2000 cm−1 and 1800 cm−1. Each sample was measured, and the files were saved in both

JDX34 and SPA file formats. The SPA file format is used by the OMNICTM software and allows

spectra to be viewed at the instrument. Simultaneously, all the JDX files are used to compile an

HDF file35 containing all spectral and meta-data, allowing the data to be efficiently processed us-

ing a personal computer. HDF file format also has the added benefit of being optimized to trans-

fer large data sets efficiently.

Methods

Measurement Procedure

All measurements were completed using the ThermoNicoletTM model Centaurus infrared mi-

crospectrometer. The hind leg of the mosquito (closest to the abdomen) was first removed, and

the tibia (middle segment of the leg) was positioned to be measured using the infrared micro-

scope. The location of the measurement on the mosquito is shown in Figure 5. The infrared mi-

crospectrometer also featured a camera that allowed easier focusing of both the IR and visible
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Table 2. FT-IR Microscope Parameters.

Parameter Value
Microscope Make & Model ThermoNicoletTM Centaurus
Bench Make & Model ThermoNicoletTM IS10
Software OMNICTMversion 9.8.372
Wavelength range 650-4000 cm−1

Near/mid/far IR Mid
Detector MCT/A, Liquid Nitrogen Cooled
Beamsplitter KBr
Blank Air
Scans 64
Resolution 4 cm−1

light onto the sample’s surface, leading to better reproducibility. Thus, the camera was focused

on each leg before analysis. This process also allowed the user to prevent possible spectral varia-

tion sources before they happened, such as a leg bent at an angle on the stage; this would deflect

a large percent of the IR radiation away from the detector, causing spectral distortion. With the

visible camera, this type of sample orientation issue is apparent and correctable.

Data Pre-Processing

The analysis of the resulting spectra was performed in-house using software written in the Python

programming language. Before fitting the data, an optimized set of pre-processing procedures

were performed on the spectra. Each spectrum was cropped to the range 1800 - 650 cm−1 to elim-

inate fitting the information poor region between the Amid I and C-H stretching regions. Also,

each spectrum was normalized by setting the Amid I band height to an absorbance of one and the

baseline at 1800 cm−1 to zero. Then lastly, A second derivative Savitzky-Golay algorithm using a

window size of 25cm−1 and a second-degree polynomial was performed on each spectrum.

Outlier rejection

Principle Component Analysis (PCA) scores are used along with Mahalanobis distance in a Mini-

mum Covariance Determinant (MCD)36 to find the outlier spectra of each group (wild, laboratory-
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Figure 5. Mosquito anatomy with location of infrared measurement shown by a red outline.

18



reared, Aedes triseriatus, etc.) and remove them.

Data Analysis methods

Principle Component Analysis (PCA)

PCA was performed to compare the spectra of laboratory-reared mosquitoes to that of the wild

mosquitoes within the same species. Four loading vectors and their corresponding score plots

were analyzed, and the score plot with the most significant separation is presented in the Results

and Discussion chapter.

Partial Least Squares - Discriminate Analysis (PLS-DA)

PLS-DA was also performed to compare the spectra of laboratory-reared mosquitoes to that of

the wild mosquitoes within the same species, as well as for species classification of a selection

of Aedes triseriatus and Culex quinquefasciatus. The analysis used 4 loading vectors to represent

the data. When the data was split for the species analysis, the laboratory-reared mosquitoes were

used in the training dataset, and the wild mosquitoes were used in the validation dataset. This

separation was done to determine whether a model trained using laboratory-reared mosquitoes

could correctly identify wild mosquito species. The data had approximately equal representation

of Aedes triseriatus (N) and Culex quinquefasciatus (M).
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CHAPTER THREE: RESULTS AND DISCUSSION

Aedes triseriatus Wild vs. Lab

Analyzing a Mosquito’s IR Spectra

A mosquito is a complex heterogeneous mixture that gives a unique IR spectrum of proteins, nu-

cleic acids, lipids, carbohydrates, and other smaller molecules to contribute to broad superposi-

tioned bands. A mean Aedes triseriatus spectra is shown in Figure 6; this figure highlights many

of the key regions associated with biological molecules.

Figure 6. Mean IR spectrum of Aedes triseriatus mosquitoes, highlighting important peaks for
species identification, A: CH2 and CH3 stretching (unsaturated lipids), B: carbonyl stretching
and N-H deformation (Amide I and II), C: hydrocarbon bending (Deoxyribonucleic acid (DNA),
lipids, protein, etc.), D: C-O-C stretching (chitin)
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When visually inspecting these mosquitoes’ infrared spectra, it can be challenging to iden-

tify any apparent differences. However, after pre-processing, slight differences in carbohydrate

bands or Amid I and II bands have proven to be substantial enough to determine a variety of

information about the mosquito, such as their species7 or age.14 Figure 7 shows mean spectra

of all the laboratory-reared Aedes triseriatus (orange) to the mean spectra of the wild samples

(blue) of the same species. Careful examination of Figure 7 reveals a decrease in absorbance for

the laboratory-reared spectra through many of the key regions noted in Figure 6. Most notably

the carbohydrate-based chitin bands from 1190 - 1000 cm−1 experiences a large decrease in ab-

sorbance for the laboratory-reared mean spectra. This absorbance difference could signal that the

wild mosquitoes’ average age is older than the average age of the laboratory-reared mosquitoes,

causing the legs to be slightly larger or thicker on average and thus higher absorbance values.

Pre-Processing of Data

After the spectra were all measured, a selection of outliers was removed using the outlier rejec-

tion tool described in the corresponding methods section. Then the remaining spectra (n ≈ 100)

were all cropped to the region 1800− 650 cm−1. This pre-processing step results are shown with

all the Aedes triseriatus spectra in Figure 8. Figure 8 also highlights the need for the normaliza-

tion step with Amid I band absorbance values ranging from approximately 0.45 all the way to

1.65.

The spectra were then normalized following the procedure described in the Methods/Data

Pre-Processing section. The results of this normalization process are shown in Figure 9. This pre-

processing step causes the spectra to look much more uniform in nature when compared to the

spectra in Figure 8. Figure 9 also displays the wide variation in absorbance values of the chitin

bands from 1190 - 1000 cm−1 that may be caused by the variation in age of the wild samples.

The spectra were then processed using a second derivative Savitzky-Golay smoothing al-

gorithm described in the Methods/Data Pre-Processing section. The results of this process are

shown in Figure 10. Second derivative spectra are difficult to interpret visually, but the spectra do
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Figure 7. Mean laboratory-reared Aedes triseriatus spectra (orange) vs. mean wild Aedes trise-
riatus spectra (blue).
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Figure 8. All cropped Aedes triseriatus FT-IR Spectra.
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Figure 9. All normalized Aedes triseriatus FT-IR Spectra.
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experience a lot of variation 900 - 650 cm−1, meaning these areas could be essential for spectral

classification.

Figure 10. All second derivative Savitzky-Golay smoothed FT-IR Spectra.

Hypothesis

The first step of this study was to identify whether wild Aedes triseriatus spectra could be treated

the same as laboratory-reared Aedes triseriatus spectra and identified using the same technique

outlined by Sroute et al.7 This approach would only be possible if the chosen classification tech-

nique was unable to separate wild from laboratory-reared Aedes triseriatus meaning both groups

of spectra are effectively the same. If the selected classification technique was able to separate

wild and laboratory-reared Aedes triseriatus spectra, further analysis would be required to de-
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termine the source of the differentiation. Then steps should be taken to minimize the impact of

whatever is found to be the source of the spectral separation between wild and laboratory-reared

samples within the same species. Alternatively, if the source is undetermined, a calibration trans-

fer could be performed to uniformly make the wild samples’ spectra match that of the laboratory-

reared samples within the same species.

Euclidean Distance

Euclidean distance was the first and least complex classification method used to identify any

spectral separation between wild and laboratory-reared Aedes triseriatus spectra. The Euclidean

distance of each pre-processed spectra was calculated according to the corresponding methods

section and plotted in Figure 11. Figure 11 shows a clear separation in the x-direction between

the wild and laboratory-reared Aedes triseriatus suggesting the laboratory-reared Aedes trise-

riatus spectra are more similar to each other than their wild counterparts.

Figure 11. Euclidean distance Scatter plot for wild (red, n = 63) and lab reared Aedes triseriatus
spectra (blue, n = 36).

A t-test was performed to test the null-hypothesis using these Euclidean distances. In this ex-

ample, texp was found to be 4.966 which is larger than the ttable value of 2.042 (DOF = 35)

meaning the null-hypothesis is rejected with a 95% (α = .05) confidence level.29,30 In the figure,
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the Euclidean distances of laboratory-reared Aedes triseriatus (age 12-15 days) spectra are blue

and wild-caught Aedes triseriatus spectra are red. The results of the t-test suggest that these two

groups of spectra are significantly different. Thus the spectra should not be used as if they were

the same for further species determination, even though both groups of spectra are indeed Aedes

triseriatus. The results presented in Figure 11 and the subsequent t-test suggest that the wild sam-

ples have a spectral variable unrepresented in the laboratory-reared dataset (or vice versa) causing

this clear separation between groups.

Principle Component Analysis (PCA)

Principal components analysis was then tested as one of the classification methods of choice in

the field of chemometrics.14 PCA was performed on the pre-processed spectra, and resulting

loading vectors 1 and 2 are shown in Figure 12. These loading vectors give the user some in-

sight into what bands cause the separation between groups. In Figure 12 is shown that most of

the separation in score values will be caused by the variations in the spectral features from ap-

proximately 1700- 920 cm−1. The scores for each spectra were calculated based on each loading

vector, and Score 1 was plotted versus score 2, resulting in Figure 13. The blue points represent

spectra of laboratory-reared Aedes triseriatus, and the red points represent spectra of wild Aedes

triseriatus. Scores 1 and 2 were chosen somewhat subjectively for the score plot shown in Figure

13 because they resulted in the largest visual separation between groups of wild and laboratory-

reared mosquitoes.

Figure 13 shows a clear separation between most of the wild and laboratory-reared groups

of spectra. The PCA score plot in Figure 13 echoes the same results as the Euclidean distance

plot shown in Figure 11 suggesting that the wild samples have a spectral variable that is unrep-

resented with the laboratory-reared dataset causing clear separation. A small cluster of approx-

imately eight spectra of wild Aedes triseriatus with a score 1 value < 0 that were not as clearly

separated into their wild group (red). This could be because these samples were the only wild

samples collected that matched the age profile of the laboratory-reared Aedes triseriatus in this
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Figure 12. Loading vectors 1 and 2, used to calculate scores in the PCA score plot.
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study (12-15 days). This assumption would also infer that one of the leading causes of the spectra

separation between the wild and laboratory-reared samples is the spectral differences in sample

age.

Figure 13. PCA score plot of Aedes triseriatus with laboratory-reared mosquitoes (blue, n = 36)
and wild caught mosquitoes (red, n = 63).

Partial Least Squares - Discriminate Analysis (PLS-DA)

Since PLS-DA was the chosen classification method for species determination by Sroute et al.,7 it

was also performed on the wild and laboratory-reared Aedes triseriatus. PLS-DA was completed

using the pre-processed spectra, and resulting discrimination scores were calculated based on

loading vectors 1 − 4. The discrimination scores are shown in Figure 14 where the red points
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represent the wild mosquitoes’ spectra, and the blue represents laboratory-reared mosquitoes’

spectra. The classification accuracy resulting from the discrimination scores shown in Figure 14

was calculated to be 94.3%. Confirming the results proposed by the ED and PCA classification

methods, suggesting wild Aedes triseriatus spectra have a variable that is inconsistent with the

laboratory-reared dataset. This variable or variables causes clear separation, even when using a

small amount of loading vectors to represent the data.

Figure 14. PLS-DA Discrimination score plot comparing wild (red, M = 34) to laboratory-reared
(blue, N = 19) Aedes triseriatus.

Aedes triseriatus Wild vs. Lab with varying ages

Hypothesis

Since all three classification methods showed a clear separation between wild and laboratory-

reared Aedes triseriatus spectra, the next goal was to find the cause of the distinction. Diet, spec-

tral contaminants, genetic variations, age variations, and more could all help to distinguish the
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wild Aedes triseriatus spectra from their laboratory-reared counterparts. Although, one varia-

tion source was of particular interest since the lower absorbance values were recognized in the

chitin bands for in Figure 7 was the variation in age of wild samples when compared to that of

laboratory-reared samples. To identify whether age variation was a contributing factor in the

spectral separation between wild and laboratory-reared mosquitoes, a selection of Aedes trise-

riatus of varying ages was added to the training dataset. The goal being to imitate a wild mosquito

collection of mosquitoes by evenly varying the amount mosquitoes represented in each age de-

mographic within the laboratory-reared dataset. The specifics of how many mosquitoes were

used from each age class can be found in Table 1.

This hypothesis immediately gained life when the mean spectra of Aedes triseriatus sam-

ples with the new age variation dataset was plotted with the mean wild Aedes triseriatus spec-

tra in Figure 15. Figure 15 reveals that varying the age of the laboratory-reared dataset results

in a mean spectra that is much more similar to that of the wild Aedes triseriatus. However, the

mean laboratory-reared Aedes triseriatus spectrum without the age variation has noticeably lower

absorbance values, especially in the chitin bands from 1190 - 1000 cm−1 when compared to the

mean wild Aedes triseriatus. This suggests added demographics of mosquitoes represented in the

laboratory-reared dataset increases the absorbance values sightly in the chitin region and caused

the mean spectra to appear more similar by result. Figure 15 also indicates that the laboratory-

reared dataset containing age variation does a better job of representing wild Aedes triseriatus

spectra. To thoroughly test whether age is a factor contributing to the separation between wild

and laboratory-reared spectra, all classification methods tested above were repeated using this

augmented dataset.

Euclidean Distance

Each spectrum was pre-processed using the same pre-processing techniques referenced in the

methods section. The Euclidean distance was calculated for each spectrum compared to the mean

laboratory-reared spectra (including the new samples with varying ages), and the results were
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Figure 15. Mean laboratory-reared Aedes triseriatus spectra both with (orange) and without
(green) varying ages vs. mean wild Aedes triseriatus spectra (blue).

32



plotted in Figure 16. Figure 16 shows much no signs of visual separation in the x-direction be-

tween groups of spectra. Therefore suggesting, the laboratory-reared Aedes triseriatus spectra

are indistinguishable from their wild counterparts. This inference is backed up by the t-test calcu-

lated using these Euclidean distance scores. In this example, texp was found to be 0.07344 which

is smaller than the ttable value of 1.960 (DOF = 62) meaning the null-hypothesis cannot be re-

jected with a 95% (α = .05) confidence level29,30 suggesting any variation in the data is simply

due to varying sources of random error. Overall, the poorer separation shown in Figure 16 sug-

gests that age variation is a large contributor to the separation between wild and laboratory-reared

Aedes triseriatus spectra.

Figure 16. Euclidean distance Scatter plot for wild (red, n = 63) and lab reared Aedes triseriatus
with varying ages spectra (blue, n = 244).

The Euclidean distances shown in Figure 16 also seem to vary much more with the laboratory-

reared Aedes triseriatus. This could be caused by the smaller sample size of wild Aedes trise-

riatus spectra, and as more wild spectra are added to the dataset, the range of Euclidean distances

would be expected to increase. Along that same line of thought, the laboratory-reared Aedes tris-

eriatus spectra dataset may include age demographics that are not represented at all within the

wild Aedes triseriatus dataset.
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Principle Component Analysis (PCA)

PCA was performed on the pre-processed spectra and the scores for each spectra were calculated

based on each loading vector, and score 1 was plotted versus score 2, resulting in Figure 17. In

Figure 17 the blue points represent spectra of laboratory-reared Aedes triseriatus with age varia-

tion, and the red points represent spectra of wild Aedes triseriatus. The PCA plot seemed to con-

firm the Euclidean distance results, suggesting that the difference between the groups was vastly

diminished when the laboratory-reared dataset was represented by Aedes triseriatus of varying

ages. Therefore, age variation may be a significant contributor to the separation between wild and

laboratory-reared Aedes triseriatus spectra.

Figure 17. PCA score plot of Aedes triseriatus with laboratory-reared mosquitoes of varying age
(blue, n = 244) and wild caught mosquitoes (red, n = 63).
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Partial Least Squares - Discriminate Analysis (PLS-DA)

PLS-DA was performed comparing the pre-processed spectra of the laboratory-reared Aedes tris-

eriatus with varying ages against the wild Aedes triseriatus. The resulting discrimination scores

were then calculated based on loading vectors 1-4. The discrimination scores are shown in Figure

18 where the blue points represent the laboratory-reared Aedes triseriatus spectra with varying

ages represented, and the red points represent wild Aedes triseriatus spectra. The classification

accuracy resulting from the discrimination scores shown Figure 18 was calculated to be 87.2%.

This value means that the PLS-DA models’ accuracy experienced a 7.1% decrease, resulting from

the addition laboratory-reared Aedes triseriatus spectra of varying ages. These results echo the

findings of a PCA and ED; following the addition of the Aedes triseriatus spectra with vary-

ing ages, a decrease is seen in the classification model’s ability to resolve wild and laboratory-

reared samples. This finding suggests that age variation plays an important role in the spectra of

mosquitoes, and needs to be accounted for when preparing the training sets for species discrimi-

nation.

Species Separation of Wild Caught Aedes triseriatus

Hypothesis

All three classification methods suggested that age variation contributed to the separation be-

tween wild and laboratory-reared Aedes triseriatus spectra. Since this research’s overarching

goal in the broadest sense is to build the most efficient/accurate tool for species determination

of wild mosquito samples, the next step was to quantify age variation’s impact on species deter-

mination. PLS-DA was chosen for this test as the primary classification method used for species

determination by Sroute et al.7 PLS-DA was performed using both the dataset containing and not

containing the laboratory-reared age varying Aedes triseriatus. Both tests were classified against

a selection of Culex quinquefasciatus, also of various ages, the specifics of the age distributions

of the Culex quinquefasciatus samples can be found in Table 1.
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Figure 18. PLS-DA Discrimination score plot comparing wild (blue, N = 39) to laboratory-
reared (red, M = 142) Aedes triseriatus (with age variation).

Partial Least Squares - Discriminate Analysis (PLS-DA) Results

PLS-DA was performed using the pre-processed spectra of wild Aedes triseriatus as the valida-

tion dataset and the laboratory-reared Aedes triseriatus as the training dataset. This process is

done intentionally to test whether a model built entirely from laboratory-reared samples could

be used to predict wild sample species. This would be the optimum scenario for applying the

method built by Sroute et al.7 to the mosquito control setting, requiring no wild mosquito col-

lections to build a functional model. The Aedes triseriatus spectra were compared using PLS-

DA against Culex quinquefasciatus of varying ages that were split in half randomly. The result-

ing discrimination scores were then calculated based on loading vectors 1-4. The discrimination

scores are shown in Figure 19 where the green points represent the laboratory-reared Culex quin-

quefasciatus spectra with varying ages, and the black represent the Aedes triseriatus with (b) and

without (a) age variation. Figure 19 shows that without (a) age variation species determination,
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between Aedes triseriatus and Culex quinquefasciatus, can be completed with 91.3% accuracy.

With (b) the addition of Aedes triseriatus samples of varying age an accuracy improvement is

seen from 91.3% (a) to 96.2% (b). This accuracy improvement could directly result from the

model containing age variations, improved ability to represent the spectra of wild Aedes trise-

riatus mosquitoes.
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(a) Without age variation.

(b) With age variation.

Figure 19. PLS-DA discrimination plots showing species separation between Aedes triseriatus
(black, N = 20 (a), N = 63 (b)) and Culex quinquefasciatus (green, M = 15 (a), M = 71 (b) ),
both with (b) and without (a) age variation.
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CHAPTER FOUR: CONCLUSIONS AND FUTURE DIRECTIONS

Overall this study showcased that regardless of the classification method used, wild and laboratory-

reared Aedes triseriatus spectra can be separated. Thus, proving that wild spectra have funda-

mental variables that impact their infrared spectra, such as diet, spectral contaminants (things

the mosquitoes pick up), genetic variation differences, age variations, and more. Further anal-

ysis confirmed age variations as a root cause for some of the spectral differences between wild

and laboratory-reared Aedes triseriatus spectra. This study proceeded to demonstrate the bene-

fits of using a laboratory-reared dataset containing spectra of varying ages to build a chemometric

model for species classification. When creating the classification database for wild species deter-

mination, the goal being to mimic the wild samples as closely as possible with the same species’

laboratory-reared dataset. Ideally, this causes the spectral difference between species to stand

out more prominently and promotes better prediction accuracy. When accounting for age vari-

ation of wild populations with the laboratory-reared dataset, there is an accuracy improvement

from 91.3% (a) to 96.2% (b). This variable is only one of the possible causes of spectral differ-

ence between wild and laboratory-reared mosquitoes. The impact of other wild spectra variables

on species determination should also be investigated in the future. With full knowledge of these

variables, a database can be constructed of laboratory-reared samples that maximizes the classifi-

cation method’s performance.

Future experimentation should be done to (I) validate the performance of the PLS-DA model

used for wild mosquito species determination, (II) further investigate the use of age variation in

laboratory-reared mosquitoes and its impact on species determination of the wild counterparts,

(III) increase the scale; increasing the dataset’s size should produce more accurate and repeatable

results (IV) expand, more than 3,000 mosquito species around the world to test this method on.

Depending on the performance of PLS-DA with a larger dataset and or other species, new clas-

sification models should also be developed and optimized. While further testing is still required,
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this project’s completion has played a significant role in showing how far this new technology

can go. The ability to use FT-IR microspectroscopy to identify wild-caught mosquito species is

a valuable tool to mosquito control agencies worldwide that could save countless resources and

labor.
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