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ABSTRACT 

 

 

 

EVIDENCE OF KIN-SPECIFIC COMMUNICATION IN A TEMPERATE, 

SUBSOCIAL SPIDER ANELOSIMUS STUDIOSUS (ARANEAE, THERIDIIDAE) 

 

Megan Ann Eckardt 

 

Western Carolina University (March 2013) 

 

Director: Dr. Kefyn Catley 

 

 

Sociality in spiders is extremely rare but has evolved repeatedly and is found 

across multiple families, including Theridiidae. Potential benefits of sociality for spiders 

include the ability to capture larger prey, reduced predation on individuals, and reduced 

individual silk costs. However, there are also potential costs and risks, including reduced 

individual fecundity in larger colonies and inbreeding depression. In subsocial spider 

species, such as Anelosimus studiosus, females typically establish nests as solitary 

individuals and raise offspring without the aid of others. This experiment was designed to 

test for evidence of kin-specific communication between mother and offspring by 

inducing choice through a Y-branch experiment. Additionally, the mother’s silk 

production was inhibited to determine if communication could occur through pheromones 

deposited with silk draglines. The results showed significant differences in the way 

spiderlings made choices after being exposed to silk draglines from their mother or from 

an unrelated mother (p=0.016). The spiderlings also chose differently when exposed to a 

mother leaving a silk dragline as opposed to following a mother incapable of producing 

silk (p=0.045). These results suggest a degree of kin-specific communication between 



 

 

mother and offspring and that the communication may be mediated through silk 

draglines. Such kin recognition could be important in understanding group cohesion and 

how kin selection might work to create social networks within typically asocial taxa such 

as spiders.  
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INTRODUCTION 

 

Social behavior has evolved in many animals and across many groups of taxa. 

This begs the question why sociality has evolved in some groups and not others, and why 

sociality appears more often in some groups of taxa than others. A traditional ecological 

tool used to explain the ultimate (evolutionary) reasons behind the development of a 

behavior is the cost-benefit analysis. Behavioral ecology theory predicts that sociality in 

organisms can and will evolve only when the net benefits of close association with 

conspecifics exceed the costs (Lin and Michener 1972, Silk 2007). There are many 

potential benefits to sociality as well as many potential costs, and these benefits and costs 

vary amongst taxa and habitats. The three overarching categories of benefits of sociality 

are: increased foraging abilities, protection from predation, and increased reproductive 

success (Bourke and Franks 1995, Costa 2006, Janson 1998, Lin and Michener 1972, Silk 

2007, Uetz et al. 2002). All provide short-term benefits for individuals as well as longer-

scale, larger benefits for societies (Avilés and Tufiño 1998, Silk 2007). As such, many 

evolutionary processes are invoked to explain the evolution of sociality: selection on 

individuals, kin selection, and even possibly group selection (Avilés 1986, Silk 2007). 

Kin selection can act on a society of related individuals if their inclusive fitness is higher 

when living as a group than as individuals (Hamilton 1964). Kin selection is often 

invoked to explain behaviors that could otherwise seem contradictory because of costs to 

direct fitness. These costs to direct fitness, however, can be compensated for by gains in 

indirect fitness. This is referred to as inclusive fitness in the theory of kin selection.   
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In addition to the benefits, however, there are potential costs to sociality as well. 

Large societies may be more conspicuous to possible predators, leading to an increased 

predation risk (Bonds et al. 2005, Uetz et al. 2002, Silk 2007). Group members may also 

engage in intragroup competition which can affect the individual fitness of individuals 

within the society (Avilés and Tufiño 1998, Bonds et al. 2005, Bourke and Franks 1995). 

Group living can increase the occurrence of parasites or diseases as a result of living in 

such close contact with other individuals (Bonds et al. 2005, Velthuis 1987). Because 

different taxa have different requirements and priorities, these costs and benefits have 

different weights and thus sociality is more likely to evolve in certain groups than in 

others.  

Eusociality is an example of a high level of sociality that can be found in 

Hymenoptera (wasps, bees, and ants) and Isoptera (termites), as well as in a few other 

taxa including some thrips, aphids, and naked mole rats (Pamilo 1984, Jarvis 1981, 

Nowak et al. 2010). Eusociality is characterized by overlapping generations, a division of 

labor in reproduction, and cooperative care of offspring (Danforth 2002, Fewell 2003). 

These eusocial taxa can serve as interesting study groups for sociality in general because 

of the high level of social interactions within colonies. Before Hamilton’s concept of 

inclusive fitness, altruism, a key element of eusocial taxa, was considered to be an 

evolutionary paradox because it seems to conflicts with the core Darwinian concept of 

reproductive self-interest (Thorne et al. 2003). The explanation for the evolution of 

eusociality rests on two major premises: kin selection and inclusive fitness (Evans 1977, 

Hamilton 1964a, b). Genetic processes such as a haplo/diploid sex determination system 

or high levels of inbreeding can influence the degree of relationship between members of 
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the colony, because females in each family-based colony in a haplo/diploid system are 

more closely related to one another than in traditional family groups with a diploid 

system of genetic determination (Evans 1977). In short, having this higher coefficient of 

relatedness amplifies the effect of kin selection, which relies on increased individual 

fitness due to increased reproductive success by their relatives (Hamilton 1964). 

Therefore, eusociality could have evolved in these taxa based on the chance of nest 

inheritance, cooperative breeding, and kin selection (Thorne et al. 2003, Lin and 

Michener 1972).  

Not all Hymenoptera exhibit eusocial behavior, however. In fact, there can be a 

wide variety in the amount of sociality seen in these taxa. In halictid bees (Halictidae), 

for example, there is intraspecific variation in the level of sociality. Some of this variation 

appears to be associated with changes in altitude or latitude (Danforth 2002). In general, 

tropical habitats appear to support more social insects, with all groups of social insects 

best represented in the tropics and subtropics (Evans 1977). Additionally, as in many 

areas of biogeography, elevation parallels latitude, and social species are more common 

at lower elevations in the tropics than at higher altitudes at the same latitude (Avilés et al. 

2007). One explanation for these patterns is that tropical climates more readily permit the 

overlap of generations necessary in eusocial societies, because of a more stable climate. 

There tend to be high levels of competition and predation in warmer climates which 

could support higher levels of sociality in organisms (Evans 1977).  

Additionally, a hypothesis posited by E.O. Wilson suggests that the continuous 

colony function seen in tropical areas allows for cooperative behavior to evolve with 

fewer adaptations (Wilson 1975 in Jones et al. 2007). In temperate areas, where prey 
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items are scarcer, it may be difficult to support the large population sizes typical of the 

social species. Cooperative prey capture by social societies allows a colony to obtain a 

larger food source than would be possible to obtain by individuals (Jones et al. 2007, 

Evans 1977, Guevara and Avilés 2007, Powers and Avilés 2007, Purcell and Avilés 

2008). This is also consistent with Wilson’s hypothesis that sociality in arthropods 

evolved first in the tropics, and then evolved in more temperate areas secondarily (Wilson 

1975). Like most things in ecology, however, it is a delicate balance of costs and benefits 

in sociality, which might explain why there is such great variation both between and 

within species. 

Sociality in Spiders 

The science behind the evolution of sociality in non-eusocial social arthropods 

such as spiders raises many questions. How do different degrees of sociality arise, and 

why do some species show social behavior while congeners may not? Sociality in 

spiders, for example, is extremely rare, occurring in only approximately 23 of over 

39,000 described spider species, but it has evolved repeatedly and is found across 

multiple families (Agnarsson et al. 2006, Avilés et al. 2007, Avilés and Harwood 2012). 

Within the spider family Theridiidae, social behavior is known from 11-12 species 

(Agnarsson et al. 2006). Based on current phylogenetic hypotheses, it appears that 

sociality has evolved approximately six times within the genus Anelosimus (Theridiidae) 

alone but only two pairs of sister species (A. lorenzo and A. rupununi; A. domingo and A. 

dubiosus) share social behavior (Agnarsson et al. 2006). There are potential benefits of 

sociality for spiders, including the ability to capture larger prey, reduced predation on 

individuals, and reduced individual silk costs (Agnarsson et al. 2006, Gonzaga and 
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Vasconcellos-Neto 2002, Guevara et al. 2011). However, there are also potential costs 

and risks inherent in social spider groups, including reduced individual fecundity in 

larger colonies and inbreeding depression (Jones and Parker 2000, Tietjen 1986, 

Agnarsson et al. 2013).  

To be considered “social” under the definition provided by Agnarsson et al. 

(2006), colony members must remain in the natal web past reproductive maturity. The 

nests of social spiders usually contain multiple adult females and the progeny of multiple 

adult females (Avilés and Harwood 2012, Furey 1998). Typically, dispersal in social 

societies occurs only after a colony has reached a relatively large size (Powers and Avilés 

2003, 2007). As a result of multiple generations breeding and remaining in the web, 

social spider populations tend to be strongly inbred (Agnarsson et al. 2006). Also, social 

spiders tend to show highly skewed sex ratios, with sometimes 10 times more females 

than males in the webs (Agnarsson et al. 2006, Avilés and Gelsey 1998). Social spiders 

are found in diverse habitats, but tend to be concentrated in tropical regions of the world 

(Agnarsson et al. 2006, Avilés et al. 2007).  

Sociality is, however, a continuum, ranging from eusocial to social to subsocial to 

asocial (Avilés and Harwood 2012). As such, the term “subsocial” is an abstract word 

without a clear definition, though it generally refers to any form of parental care (Costa 

2006). Powers and Avilés have suggested that subsocial can refer to non-territorial 

periodic-social colonies (2007). In subsocial species of spiders, females typically 

establish their nests as solitary individuals and raise their offspring without the aid of 

others. This differs from social species in which females typically establish their nests 

with other female individuals and may participate in some level of cooperative brood care 
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(Powers and Avilés 2007). Although it can be difficult to define the terms “social” and 

“subsocial,” considering it as a gradient or a continuum can alleviate some of the need for 

discrete categorical descriptions. 

Kin-Recognition and Communication in Spiders 

Communication between members is important in social societies, so we would 

predict some level of communication to occur within social and subsocial spider colonies. 

Such communication may be the result of vibrations, pheromones, or other behaviors. 

Somehow, the spiders have to be able to establish themselves as family members so as to 

show “peer tolerance” among siblings and “offspring tolerance” between mother and 

offspring (Agnarsson 2002). This is especially important in these generalist predators, to 

reduce uncertainty about others’ intentions. Early research showed that the web is the key 

to communication, and specific vibrations transmitted through the web give spiders very 

specific information regarding intraspecific recognition and mating possibilities (West 

1979). Currently, relatively little is known about spider pheromones and their possible 

role in social communication (Agnarsson 2002, Roland 1983). However, studies have 

shown that spiders will often cue on the movements of other spiders, appearing to follow 

drag lines deposited on a substrate (Furey 1998). It is unclear if this behavior is the result 

of a response to silk that could then lead to aggregation, or if the silk mediates a more 

complex system of communication (Jeanson et al. 2004, Mailleux et al. 2008).  

It is possible that collective-decision making is simply an amplified aggregation 

process as a result of multiple silk trails deposited in the same direction. Previous studies 

have shown there to be chemical signals in silk. At the very least sex pheromones used in 

communication between males and females have been isolated from silk (Roland 1983, 
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Tietjen 1978). Spider silk also appears to have some function that contributes to group 

cohesion (Roland 1983, Tietjen 1978, Evans 1999). The further question is, then, is this 

communication kin-specific? Natural selection predicts it would be advantageous for 

some degree of kin-specific recognition within families if kin selection is at work within 

a colony. However, some social spiders, including A. eximius, show a tendency to accept 

unrelated individuals into their family-groups without any form of discrimination 

(Pasquet et al. 1997, Evans 1999). This could be due to contribution of unrelated spiders 

to web building increasing the fitness of the family, so there could be a benefit to 

accepting unrelated immigrants into the nest (Evans 1999). Further, there is evidence of 

some degree of kin recognition among siblings, especially while they are young and the 

risk of being separated from a social unit would be high (Evans 1999).  

An abundance of literature suggests that silk threads play a major role in 

communication between individual spiders (Evans 1999, West 1979, Roland 1983, Saffre 

et al. 1999, Saffre and Deneubourg 2000). There is evidence that signals that help 

individuals recognize kin groups may include pheromones incorporated into the silk of 

the mother that are recognizable by the offspring. Previous experiments have found that 

the presence of dragline silk can influence collective decision making in colony spiders, 

and a binary choice experiment showed that groups of spiders generally selected the same 

nest site with 80% making the same choice (Saffre et al. 1999). Jeanson et al. (2004) 

found that in a collective displacement study, spiders would either travel up a cotton 

thread or a silk shortcut laid down by a previous spider, but they almost all ended up on 

the same side of a binary choice experiment . In social spiders, attraction of kin to their 

natal web is often compared to pheromone trails lain by ant colonies (Trabalon and Assi-
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Bessekon 2008). This evidence suggests that spiders may use pheromones or some other 

aspect of silk production as a mode of communication and to aid in aggregation and 

further that this communication may be kin-specific (Furey 1998). 

Anelosimus eximius 

A well-studied member of the genus Anelosimus is Anelosimus eximius, which 

exhibits more characteristics of social behavior than A. studiosus, and is therefore 

classified as a social theridiid (Agnarsson et al. 2006). A. eximius also displays the 

skewed sex ratio associated with sociality, showing a sex ratio of 10 females to 1 male. 

This skewed sex ratio is thought to possibly be the result of group selection due to the 

increased success of a colony’s survival due to a preponderance of females (Avilés 1986). 

This relies on the fact that females tend to be the “limiting sex” to reproduction so having 

more females in a colony will contribute more individuals to the colony than having an 

equal number of females and males. A. eximius is a neotropical species, living in colonies 

often in excess of a thousand individuals in a nest (Vollrath 1986, Agnarsson 2012).  

As previously stated, sociality is more commonly seen in tropical or warm climate 

species. Multiple studies have found that insects in the lowland rainforests where social 

species within Anelosimus occur are significantly larger than insect species at higher 

elevations where subsocial congeners occur (Avilés et al. 2007, Guevara 2007, Yip et al. 

2008, Purcell and Avilés 2008). This suggests that sociality in Anelosimus could confer 

an evolutionary advantage to social species because cooperative prey capture allows 

access to prey items otherwise inaccessible due to their size (Avilés et al. 2007, Guevara 

and Avilés 2007, Powers and Avilés 2007, Yip et al. 2008, Jones and Parker 2008). All 

the members of the A. eximius colony, from the third instar onward, contribute to the 
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maintenance and construction of the web, prey capture, and colony maintenance 

(Vollrath 1986).  

Another hypothesis explaining why A. eximius is more social than A. studiosus is 

that A. eximius and other social species of Anelosimus may already exhibit high levels of 

inbreeding. If so, the presence of multiple generations and siblings could help buffer the 

possible negative effects of inbreeding depression (Agnarsson et al. 2006). There are 

thought to be two alternative pathways to permanent sociality in spiders: from a subsocial 

precursor or from a parasocial precursor. A subsocial precursor involves group living due 

to extended maternal care, and a parasocial precursor results in social living derived from 

aggregations around a resource (Whitehouse and Lubin 2005, Avilés and Gelsey 1998). 

Evidence from other Anelosimus species suggests that evolution of sociality in the genus 

has evolved as a gradual transition over time from short-term maternal care (subsocial) to 

permanent sociality, so it is likely that A. eximius also evolved from a subsocial precursor 

(Agnarsson 2012).   

Anelosimus studiosus 

Anelosimus studiosus Hentz, the study species in this investigation, is considered 

a subsocial species because they generally are found with a natal web containing a colony 

of up to 50 spiders (Brach 1977, Agnarsson et al. 2006). Unlike a social species, 

however, the progeny of an A. studiosus female generally disperse prior to mating.  

Although the spiderlings disperse before maturity, they do contribute some amount to the 

natal web (Agnarsson et al. 2006). That contribution can be through silk production, web 

maintenance, and food capture. Additionally, A. studiosus has been shown to produce an 

even number of males and females, not exhibiting the skewed sex ratio of the more social 
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congeners (Avilés and Maddison 1991). There is a degree of variation in the level of 

sociality in Anelosimus studiosus, however, and occasionally colonies are found with 

multiple mature females within one extended web structure (Agnarsson et al. 2006, 

Duncan et al. 2010). Additionally, such variation in sociality appears to follow a 

latitudinal gradient (Riechert and Jones 2008, Pruitt et al. 2008, Duncan et al. 2010). A 

study by Pruitt et al. (2008) showed that latitudinal behavioral polymorphisms are 

apparent, with more “asocial” behaviors present at higher latitudes than at lower latitudes 

in North America. Since sociality can be an evolutionary way to colonize a particular 

ecological niche that would otherwise be inaccessible, social spiders are able, through 

cooperative prey capture, to obtain prey items otherwise inaccessible to solitary 

individuals (Yip et al. 2008). 

 This experiment was designed to examine some unanswered questions specific to 

Anelosimus studiosus. For example, assuming an evolutionary advantage through kin 

selection keeping mother and offspring together in the natal web, is there evidence of 

communication between adult and spiderlings that could function to keep kin groups 

together? If evidence of communication is found between adults and spiderlings, is it kin 

specific? And, does silk appear to play a role as the media of this communication? 

Hypotheses 

1. Kin spiderlings choosing the same refuge as their mother in an induced choice 

experiment (cf non-kin spiderling groups) provides evidence of kin-specific 

communication.  
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2. Changes in the choice patterns of spiderlings following inhibition of the 

mothers’ spinnerets may provide evidence that pheromones transmitted via 

silk are the mode of communication.  
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METHODS AND MATERIALS 

 

Study Taxon and Maintenance of the Study Populations 

 Anelosimus studiosus is a temperate colony web-building theridiid. A relatively 

common spider with a distribution throughout the southeastern United States (Brach 

1977), it is found in relatively high abundance on and near the campus of Western 

Carolina University (Jackson County, North Carolina). Colonies are often found near 

water, although on the campus of Western Carolina University the colonies seem to occur 

most commonly on low landscape bushes and do not seem localized to available water. 

Colonies occur in webs approximately 60x60 mm and contain up to 50 spiders. 

Generally, these webs consist of a mother and her offspring, although there is the 

possibility of unrelated immigrants existing within the web (Brach 1977). Generally the 

spiders found in a single web are a mother and her offspring from one reproductive event 

(Levi 1963). For use in this study, 20 colonies of A studiosus were collected from the 

campus of Western Carolina University. Ten of these colonies were collected from a 

cluster of landscape box bushes (Buxus sp.) from one site, and 10 were collected from a 

row of yew bushes (Taxus sp.) at a second, nearby site. Colonies were collected between 

28 June and 1 July 2011. In order to maximize the number of spiderlings collected from 

the web, a Ziploc bag was first placed around the site of the web and then the branch was 

clipped from behind, thereby enclosing the entire web and all of the spiders inside (based 

on Pruitt et al. 2008). Some webs were collected that contained only a mother and egg sac 

that was allowed to hatch in the lab. All egg sacs collected hatched within five days of 

being in the lab.    
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The colonies were placed into individual 10 x 10 x 7.5 cm Tupperware containers 

with screening on top secured by two large rubber bands. The foliage was clipped down 

to approximately the last 6 cm to serve as substrate upon which the spiders could be 

maintained. Colonies were offered food twice weekly, either pinhead crickets or fruit 

flies. The amount of food offered increased as the spiders grew, but was kept consistent 

between colonies to maintain uniformity. Once a week, the area of the laboratory where 

the spiders were kept was lightly misted with distilled water to provide some water but 

not enough to encourage mold growth. The spiders, even as adults, grow only to a 

maximum size of 5mm, so they are very difficult to handle, especially as spiderlings. As 

a result, great care was taken to handle both mother and offspring with extreme care to 

prevent accidentally injuring or killing individual spiders. Spiders were handled as little 

as possible and usually moved by means of a fine paintbrush when necessary.  

Binary Choice Experimental Design 

 Y-branch experiments are a traditional binary-choice experimental design (Saffre 

et al. 1999). In this case, the idea was to determine if there is evidence of a chemical 

communication system that might be kin specific. In this experiment, the Y-branch was 

made out of 10-ply white cotton string. From the bottom, the structure was 10 cm to the 

branch and then 15 cm to the refuge, making a total direct travel distance of 25 cm. The 

Y-branch was set-up with the bottom of the branch emerging from a plastic platform 

surrounded by water. The water is used to discourage the spiders from attempting escape 

off the platform and to force them to travel up the apparatus. At the end of each branch 

(referred to as Left and Right throughout the experiment) was a refuge. The refuge 

consisted of an opaque plastic cup that was easily sterilized and yet provided an attractive 
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shelter for the spiders. The entire Y-branch was suspended via an apparatus constructed 

with PVC piping. This binary choice design was used in both experiment one and 

experiment two. 

Experiment One 

Experiment one was designed to test for a difference in choice-making behaviors 

between kin groups and non-kin groups. Colonies were chosen randomly for the tests, 

within the constraints of whether it was a kin or a non-kin test. When kin tests were 

performed, only one colony was used with mother and offspring coming from the same 

colony. For a non-kin test two colonies were chosen; the adult female from the first 

colony was used with the offspring from the second colony. In both cases, the experiment 

was conducted in the same way. First, the adult female was carefully placed, with the 

assistance of a paintbrush, on the plastic platform and allowed to travel up one of the 

arms of the Y-branch experimental set-up, choosing one of the refuges (scored as Left or 

Right). Then, 5 offspring (either kin or non-kin) were carefully placed directly on the 

string very close to the plastic platform and allowed to travel up the same Y-branch. Each 

individual was recorded (in order) as choosing Left or Right. Spiderlings were placed on 

the string instead of the platform was so that they would immediately come in contact 

with the dragline left behind by the adult. Also, the very small spiderlings were likely to 

get lost or wander around on the plastic platform and perhaps never find their way to the 

Y-branch, so placing them directly on the string increased the possibility that they would 

complete the binary choice. Both adult and offspring were scored as choosing either left 

or right, thus providing data that could be recorded as the number or proportion of 
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spiderlings that chose the same side as the adult, regardless of which side was actually 

chosen. 

Experiment Two 

Experiment two was designed to test for a difference in the choice-making 

behavior of spiderlings when silk was not available as a possible cue. It began when the 

spiderlings began to molt into the fourth instar. At this point the following modifications 

were made: five mothers out of the ten collected from each site were randomly selected 

and their spinnerets were cauterized to inhibit their ability to produce silk. The 

cauterization was performed by first sedating the mother spider by placing it in a closed 

vial in a 4 °C refrigerator for 1 minute. This was found to slow the spiders down 

sufficiently but was not enough to kill them. The anesthetized spider was removed and 

placed in a small petri dish under a dissecting microscope. A small pin was held in the 

flame of a Bunsen burner for 20 seconds and then carefully touched against the spinnerets 

of the mother spider. When the spider began moving again, it was allowed to move 

around the petri dish for approximately 5 minutes, until its behavior seemed normal. It 

was then removed and the petri dish was misted with water to improve visibility of silk 

and examined for evidence of silk trails. If no silk trails were found, the spinnerets were 

assumed to be non-functional. The 10 remaining mothers remained unaltered to serve as 

controls.  

After 10 of the mothers were cauterized, the experiment was repeated as before. 

However, this time mothers were only tested against their own kin. Therefore, the two 

groups tested consisted only of kin groups in which the mother was unable to produce 
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silk and kin groups in which the mother had intact spinnerets. The other procedures 

remained the same.           

The data were analyzed using the software “R.” A Fisher’s exact test for 

independence with a 2x2 contingency table was used to test for a difference in the 

observed and expected values for how the first spiderlings in each replicate chose their 

refuges. Single-sample t-tests were used to see if spiderling decision making was 

significantly different from random assortment for each treatment group. Independent 

sample t-tests allowed to test for a significant difference in the proportion of spiderlings 

choosing the same side as the adult between treatment groups.  
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RESULTS 

 

Experiment One 

Each adult spider and each spiderling were scored as choosing either the left or 

right side, or as making no choice. The order in which choices were made was also 

recorded. Spiders designated as “no choice” were those that had not chosen a refuge at 

the end of a thirty minute period. This was a more common event when the spiderlings 

were younger. In the first two instars, the spiderlings were very tiny and on occasion 

would not move at all from where they were placed on the Y-branch, or would only move 

a short distance up and down. As the spiderlings molted and matured they became more 

decisive and it was a rare event for a spider not to have chosen a side by the end of the 

thirty-minute time period. 

First, the data were analyzed by looking at the choice made by the first spiderling 

in each trial. The first spider to travel up the apparatus would receive less of an effect 

from the behavior or silk output of its fellow spiderlings. Of 80 trials for each treatment 

group, 63 of the first spiderlings in the kin treatment group chose the same refuge as their 

mother. In the non-kin treatment group, only 48 of the first spiderlings chose the same 

refuge as the adult spider (Figure 1). These data were analyzed using a Fisher’s Exact 

Test and the difference is significant (p=0.016) suggesting that, using this criterion, a kin 

effect does exist and provides evidence that supports hypothesis one. 

To analyze the choices of all the spiderlings involved in the trials, the data were 

blocked by colony to account for any genetic difference in the behavior of individual 

families. The results of each trial were combined by family and transformed into a 
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proportion. After performing an arcsine transformation on the proportion to account for 

non-normalcy of proportions, a 1-sided independent samples t-test was run on the data. 

This test also showed a significant difference between the kin and non-kin treatment 

groups (p=<0.01). The back-transformed mean proportion of spiderlings choosing the 

same side as the adult for the kin treatment group was 0.79 and for the non-kin treatment 

group it was 0.49.  

In addition, one sample t-tests were performed on the data to test if the true mean 

of the proportion of spiderlings choosing the same side as the adult was significantly 

different than 0.5, which would be expected by random assortment. Random assortment 

would be likely to occur if the spiderlings were not receiving or attending to any 

communicative signals from their mother but were, instead, choosing a refuge randomly. 

The results fail to reject the null hypothesis for the non-kin groups with a p-value of 0.98, 

but reject the null hypothesis for the kin groups with a p-value <0.01, thereby accepting 

the alternative hypothesis that the true mean is not equal to 0.5. This suggests that the 

spiders in the mixed groups were randomly selecting refuges without making their choice 

based on any communication. The spiders in the kin-groups, however, do not appear to 

be assorting randomly but are aggregating at a level that suggests they are acting on a 

signal of some sort.   
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Table 1. Results from two one-sample t-tests for experiment one. The null hypothesis was 

set as the true mean being equal to 0.5, as would be expected by random assortment. Kin 

groups behaved significantly different than expected by random assortment but non-kin 

groups did not.  

 
Treatment Groups t-value Df p-value 

Kin 6.14 19 <0.01 

Non-kin -0.016 19 0.98 

 

 

Experiment Two 

 Experiment two was designed to explore the way spiderlings followed a mother 

with her spinnerets inhibited and whether that was different from the way spiderlings 

followed a mother with normally functioning spinnerets. The purpose was to determine if 

spider assortment or aggregation is influenced by a component found in the silk of the 

mother. If there is some influence of silk on the decision making of the spiderlings, we 

would expect to see a significant difference between the aggregation behavior of 

spiderlings following a mother with intact spinnerets and the behavior of spiderlings 

following a mother with spinnerets inhibited. 

 Looking at the way the first spiderling chose, there is a significant difference 

when exposed to a mother with intact spinnerets and a mother with inhibited spinnerets. 

Of the 25 trials where the mother had intact spinnerets, the first spider chose the same 

refuge as the mother 18 times. In the 25 trials involving mothers with inhibited spinnerets 

the first spider choose the same side as the adult only 10 times (Figure 2). In the Fisher’s 

exact test this is a significant difference between altered and unaltered treatment groups 

(p=0.045).  
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 As in experiment one, the choice data for all the spiderlings were combined and 

blocked by groups, then transformed so a t-test could be run. This two sample t-test did 

not show significance (p-value=0.1796), so there does not appear to be a difference in the 

proportion of spiderlings that chose the same side as the silk producing adult than those 

that chose the same side as the adult with spinnerets inhibited. The back-transformed 

mean proportion of spiderlings choosing the adult in the silk treatment group was 0.68 

and in the no silk treatment group was 0.56.  

 Again, a 1-sample t-test was performed on the data for both treatment groups to 

test for significant differences from random assortment.  The results fail to reject the null 

hypothesis for the no silk treatment groups ( p=0.334), but rejects the null hypothesis for 

the silk treatment group with a p-value of  0.033, thereby accepting the alternative 

hypothesis that the true mean is not equal to 0.5. This suggests that the spiders in the no 

silk treatment group could be randomly selecting refuges without basing their choice on 

any communication.  

 

 

Table 2. Results from two one-sample t-tests for experiment two. The null hypothesis 

was set as the true mean being equal to 0.5, as would be expected by random assortment. 

Silk groups behaved significantly different than expected by random assortment but the 

no silk groups did not. 

  
Treatment Group t-value Df p-value 

Silk 2.574 8 0.033 

No Silk 1.0205 9 0.334 
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In both experiments there was a chance that the order spiderlings traveled up the 

apparatus had an effect on their decision making. Saffre et al. (2000) found that collective 

decision making in young Anelosimus eximius was very effective, with over 80% of 

spiderlings generally making the same choice. This was without the benefit of a signal 

from a mother’s silk but simply offspring aggregating with one another, with some effect 

of silk of fellow spiderlings. Saffre et al. (1999) also discussed the process of “dragline 

mediated amplification” in decision making. Like ants on a trail, draglines of silk left by 

each individual as they travel up the apparatus could amplify the effect so that the last 

spider to make a choice has evidence of the choices of each spider that went before them 

to influence their choice. Since only 5 spiderlings were used in each test, any amplified 

dragline effect would be relatively small, but it was still necessary to test for a detectable 

effect.  

To do this, differences in the average choice of spiders at each position were 

recorded (1-5, depending on how they made their choice). The data were examined to see 

if spiderlings later in the order were more likely to choose the same side as the spider in 

front of them. If there was an amplification effect, we would expect to see that the later 

spiders would be more likely to choose the same side as the spider in front of them 

because of multiple silk trails for them to follow. There appears to be no difference in 

how the spiders chose based on their position (Figure 3), which suggests that spiderling 

choice was independent of their order in the experimental protocol. Either the spiderlings 

were not cuing on the silk strands of their siblings while making a decision or the effect 

was not strong enough with only five spiderlings to be an issue. 
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Figure 1. Choice of the first spiderling following the adult in the kin vs. non-kin 

treatment groups. There was a significant difference between these two treatment groups 

(p=0.016). “Same” represents the first spiderlings that chose the same refuge as the adult 

(Kin =63, Non-kin= 48), and “Different” represents the first spiderlings that chose the 

different refuge as the adult (Kin =17, Non-kin=32).  
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Figure 2. Choice of the first spiderling following the adult in the silk vs. no silk treatment 

groups. There was a significant difference between these two treatment groups (p=0.045). 

“Same” represents the first spiderlings choosing the same refuge as the adult (Silk = 18, 

No Silk = 10), and “Different” represents the first spiderlings that chose the different 

refuge as the adult (Silk = 7, No Silk =15).  
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Figure 3. A graphical representation of the test to detect an effect of spider position 

(order) on behavior. The frequency represents the number of spiders in each position (1-

5) that chose the same side as the spider directly before them. There is no noticeable 

difference in the results between spider position, suggesting there is no amplification or 

order effect. The “0” bar represents the spiders that chose a side different than the spider 

in front of them.  
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DISCUSSION 

 

Sociality in spiders is rare, as might be predicted in consummate sit and wait 

predators, yet it has evolved independently multiple times (Agnarsson et al. 2006). As a 

result, understanding the processes that produce social behaviors, such as kin-specific 

communication and family-based aggregation, can aid in understanding how social spider 

species have evolved in clades of traditionally asocial taxa. The aim of this study was to 

provide evidence of kin-specific recognition and communication in the sub-social spider 

A. studiosus using a binary choice behavioral test. Additionally, this study was designed 

to determine if the silk plays a role in communication between mother and offspring. The 

results were largely successful in lending support to the hypothesis that there is a 

communicative mechanism in the silk of the mother to which spiderlings are able to 

recognize and respond, and moreover that this communication is kin-specific.  

Experiment one investigated if spiderlings would choose the same refuge as their 

mother more often than unrelated spiderlings, thus providing evidence, or not, of kin 

recognition. The results of the first experiment show that spiderlings follow their mother 

more often than they follow an unrelated spider, thus supporting the first hypothesis. This 

suggests some degree of kin recognition, such that spiderlings are able to distinguish 

between their mother and an unrelated spider. However, such kin recognition was 

imperfect with spiderlings often choosing a different refuge than their mother.  

Multiple studies have shown that spiders use silk draglines to assist in aggregation 

(Saffre et al. 1999, Saffre et al. 2000). This experiment adds another level, however. 

These results suggest that following silk is not indiscriminate but instead relies on some 
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communicative signal that offspring receive from their mother. However, the “random 

choice” seen when spiders followed an unrelated adult female is, in retrospect, a puzzling 

result. Roland (1983) found that spiders will almost always follow threads, no matter who 

laid down the dragline. However, when presented with multiple options spiders tended to 

follow the thread deposited by the most closely related spider. For example, if presented 

with a thread deposited by a conspecific and a thread deposited by a non-conspecific, 

they were more likely to follow the thread of the conspecific. If only presented with a 

thread of a non-conspecific, however, they were more likely to follow that than not 

follow a thread at all. Based on these results, the “random choice” seen when spiderlings 

made a choice when following a non-kin mother is perplexing because it seems they 

should be more likely to follow a dragline than not. The possibility exists, however, that 

in that non-kin trials the dragline of the fellow spiderlings provided additional dragline 

options for subsequent spiderlings to follow.  

 The results of experiment two lend support to the second hypothesis, that the 

communication is mediated by silk. When the mother’s silk was inhibited, the spiderlings 

no longer seemed to receive the signal. The first spiderlings following these altered 

mothers appeared to choose their refuge randomly. However, with multiple spiderlings in 

each trial there was not a significant difference between the treatment groups. This may 

be because the spiderlings, in the absence of silk from an adult, are responding more to 

silk draglines left by their fellow spiderlings.  

Experiment two would have had less meaning in isolation, because all it truly tells 

us is that the spiders tend to follow silk draglines, a behavior that has been shown many 

times and one not unique to social spiders. However, when looked at in context of 
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experiment one, there was a significant difference in the way kin groups made a choice 

after the silk was removed. In fact, kin groups appeared to act like non-kin groups when 

silk was removed. It is likely that it is not simply the silk dragline that is cuing movement 

of the spiderlings but instead that there is a pheromone associated with the silk the 

mother is producing.  

Previous studies have shown that spiders are capable of incorporating pheromones 

into their silk for reproductive purposes and to aid in aggregation. For example, Roland 

(1983) found that the silk of adult females of the spider Stegodyphus sarasinorum Karsch 

(1891), a social species, provides a signal that stimulates the aggregation of conspecifics 

of the same sex, and that this aggregation behavior is not observed when the silk is 

removed. Further, a bioassay of the dragline of female lycosid spiders indicated the 

presence of a sex pheromone that was associated with the dragline and not released from 

the integument (Tietjen 1978). Thus, it is not unreasonable to assume the possibility of a 

pheromone associated with the silk dragline of adult female Anelosimus studiosus that 

would be recognized by their offspring and assist in keeping family units together.  

   Regarding the larger picture, this study provides some insight into the evolution 

of aspects of behavior of a sub-social spider. As was discussed in the introduction, 

evolutionary theory predicts sociality should appear in societies where the benefit of 

living amongst others outweighs the individual fitness costs. In this particular subsocial 

species, there is little evidence of the necessity to live in natal webs for increased prey 

capture. Typically the habitat in which A. studiosus is found provides sufficient amounts 

of small prey and there is little evidence that the young contribute very much to prey 

capture and web maintenance, at least in their first few instars. Instead, it is likely that 
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what most reinforces social behavior is increased survivorship of the young due to 

defense from predation by a group.  

Jones and Parker (2002) found that the delayed dispersal in A. studiosus benefits 

juveniles while they are in the natal web. They also found that having juveniles in the 

web also benefits the mother’s future reproductive success, due to juveniles helping some 

with prey capture and web maintenance as they reach maturity (Jones and Parker 2000). 

This means that there would be an evolutionary advantage not only to group living but to 

maintaining the group as a family unit, requiring communicative signals that would allow 

spiders to recognize their kin group and reject unrelated spiders. 

Establishing a method of communication between mother and offspring is very 

important to the maintenance of a cohesive family unit. Without a method of kin-specific 

communication, maintaining a cohesive family unit in areas with a high density of 

conspecific webs would be extremely difficult. Insofar as kin selection may promote the 

evolution of sociality in spiders, it is important that individuals be able to distinguish kin 

from non-kin in order to determine how to treat fellow spiders in their habitat.  

Responding to pheromones in the mother’s silk and being able to distinguish between 

their own mother and an unrelated mother would provide family group cohesion even in 

areas where there are multiple natal family webs within a small area. 

Interestingly, however, studies have shown that Anelosimus species and other 

social spider species do not always reject unrelated spiders in their webs. Perkins et al. 

(2007) found that foreign spider species were frequently observed in or near the nests of 

A. studiosus. These spiders were identified to be either kleptoparasites that feed on prey 

items in the webs of A. studiosus or commensals that build their webs within the same 
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space (Perkins et al. 2007). Due to the “ricochet effect,” where prey may ricochet off of 

one web and into a nearby web of a different spider, there could be increased fitness for 

spiders living near one another even if their neighbors are unrelated spiders. This 

phenomenon is often referred to as the “selfish herd,” where individuals benefit from 

living in a group even amongst unrelated neighbors (Agnarsson 2002, Perkins et al. 2007, 

Uetz 1989). Still, kin selection could be at work and present an additional fitness benefit 

to group-living spiders, and kin selection requires kin-specific communication or 

recognition.     

 There are a couple puzzling results and perhaps some errors in experimental 

design that could have affected the results of the experiment. For example, in the 

presence of silk, even if not from a related spider, one would expect to see aggregation 

rates greater than 50% (Figure 1). In a similar Y-branch experiment with Anelosimus 

eximius, the more social congener of A. studiosus, Saffre et al. (2000) found the collective 

decision of spiderlings to be very easily reached, with over 80% of spiders selecting the 

same nest site. This was without any input from a mother spider but simply spiderlings 

choosing refuges on their own within a group.  Since spiders can use draglines as cues for 

aggregation, if each spiderling is laying a dragline as it makes a decision, we would still 

expect to see higher levels of aggregation in the groups of spiders even if they were 

following a non-kin mother. One possible explanation is that only five spiderlings were 

used in each test. The experiment may yield different results if more than 5 spiderlings 

are used in each trial. This was a conscious choice to run the experiment in this way, in 

order to keep the trials consistent (some colonies only had 15 spiderlings) and because 

there was a relatively high chance of mortality in spiderlings during handling for trials. 
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However, future experiments would be well served to attempt to use more spiderlings in 

each trial. Another option would be to run more tests using only one adult and one 

spiderling in each test.   

 Another unanswered question is whether the behavior of the spiders changes over 

time. Since sub-social spiders are only periodically social, the spiderlings leave the web 

around or before the time they reach reproductive maturity (Jones et al. 2007). As a 

result, there may be a difference in their level of sociality as they mature and approach 

the time at which they would be leaving the natal web. Even among non-social spiders, 

there is generally some amount of “peer tolerance” among recently eclosed juvenile 

spiders and “offspring tolerance” which reduces predation on offspring or the egg sac by 

adult spiders (Agnarsson 2002). In non-social spiders this peer tolerance lasts only for a 

brief period of time while the young disperse; in sub-social spider systems peer tolerance 

lasts for an extended period of time until the spiderlings begin to approach reproductive 

maturity (Agnarsson 2002). Over the course of this experiment, the first part (kin vs. non 

kin) took place while the spiderlings were in the first three instars. The second part 

(altered mothers vs. non-altered mothers) took place when the spiderlings were in the 

fourth and fifth instars. Because of the way the spinnerets were inhibited (cauterization), 

there was no reversal and the mothers were permanently altered. As a result, the two parts 

of the experiment could not be run simultaneously on the same spider colonies. However, 

it would be interesting to see if there is a change in spiderling sociality or antagonism as 

the spiders approach reproductive maturity.  

This investigation, though performed at a small scale on one sub-social study 

species, has broader implications for helping to understand how social behavior has 
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evolved in spiders. A. studiosus has been considered an important example of a possible 

intermediate stage of social development in spiders, and as a good example of a broad 

range of sociality (Brach 1977). Determining the ability of spiders to distinguish their kin 

from unrelated spiders could help understand how important kin selection might be in the 

evolution of social behavior in spiders vs. how important group selection (increased 

individual fitness as a result of living in a group of spiders, unaffected by relatedness) is 

in the evolution of these behaviors. If kin selection is more important, then selecting for a 

method of kin recognition and discrimination would be critical from an evolutionary 

standpoint. The evidence provided from this research suggests that since spiderlings have 

a mechanism for recognizing their mother due to a component in the silk, that evolution 

favors the ability to stay together as a family unit and that kin selection is important in the 

evolution of sociality in spiders.  
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