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Within the past few years, research involving gesture recognition has flourished and has

led to new and improved programs assisting people who communicate with sign language

[1–8]. Although numerous approaches have been developed for recognizing gestures [5, 6,

9], very little attention has been focused on American Sign Language (ASL) training for

correcting the placement of individual fingers. Although, it is easy to mimic gestures, it

is difficult to know whether or not you are signing them correctly. This is important in

that most gestures, if made slightly incorrect, convey a completely different word, letter, or

meaning [10]. This research involved developing a computer program to assist in teaching

the correct placement of the fingers when performing ASL. Considering sign language has

a wide range of gestures, the focus of the study is on static gestures which include a few

letters of the alphabet. In order for the program to recognize finger placement, the user

must wear colored latex over the fingertips. Then by using image processing techniques

along with different algorithms, ASL hand gestures made by the user will be compared to

standard images in a database. The program will provide feedback concerning how close

the user is to the reference gesture as well as specific instructions concerning how to correct

the gesture. This is the first step in developing a training/teaching program to help teach

sign language accurately and precisely without the need of face-to-face instruction. Future

studies could lead to more accurate training techniques for a wider range of ASL gestures.
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CHAPTER 1: LITERATURE REVIEW

1.1 What is sign language?

Sign language is one of the most complex languages. It is so complex that it consists of

approximately 6000 gestures of common words with finger spelling used to communicate

obscure words or proper nouns [6]. There are also many other gestures that people do

not consider sign language, but they allow for communication between people when a lan-

guage barrier exists. Currently in the US, ASL is the third most used language [11]. ASL,

although it is used by “English” speakers, is a language all on its own [3, 11]. It has all

the characteristics that makes up a language, such as “having its own grammar, sentence

structure, idiomatic usage, slang, style, and regional variations” [12]. ASL does not solely

consist of static gestures and dynamic hand movements, but it also involves body language

and facial expressions [3, 13].

According to [11], many organizations such as the American Sign Language and Inter-

preter Education (ASLIE), American Sign Language Teachers Association (ASLTA), and

American Council on the Teaching of Foreign Languages (ACTFL) felt the need of a stan-

dard for ASL in 2007. These standards were completed and circulated in 2010 [11]. This

standardization will aid with programs currently being used to detect certain gestures accu-

rately because programs usually require parameters to be set when classifying and training

the program to recognize certain gestures [6]. This would also help researchers and pro-

grammers to develop more accurate recognition software because it eliminates the time in

building multiple libraries for each gesture being portrayed and what is trying to be com-

municated.

There are about 6,900 distinct languages as of today and of those, 200 are sign languages,

according to discover.com. With such a wide variety of languages, it is important to have
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some type of bridge that can allow for more universality so everyone can communicate with

one another. Technology is one of the tools that is allowing for this to happen. There are

many computer programs being made (or improved) that are aiding in this when it comes

to sign language [14]. Current methods that help teach sign language include videos /tu-

torials [15], books [16], and the more traditional approach, taking a class. Although these

approaches have been useful, researchers are allowing for more interaction and feedback

with new virtual programs. Ellis [1] presents research concerning a computer program-

ming technique that would teach children sign language. Her experiments showed that

the technology was identifying the signs the children were performing as well as correctly

evaluating the signals in signs posed by different children in order to determine whether the

sign was being performed well enough. Other programs being made range from helping

deaf people communicate with hearing people, like a translator [2], to programs that help

teach math to deaf children [8].

1.2 Different techniques used for gesture recognition

Researchers are developing new techniques for gesture recognition by using different de-

vices such as sensor gloves (data-gloves) [3] or image capture techniques [6, 17]. With

these devices there are many methods that can be implemented such as Hidden Markov

Models [4,14,18] , Local Orientation Histograms [19,20], Neural Network Models [3,13],

Bottom-up and Top-down Approach [4], Zernike moments [4], etc. [17]. What follows is a

discussion of the various combinations of feature recognition techniques and classification

methods that have been used.

1.2.1 Sensor gloves

Sensor gloves are one of the devices many researchers are using when dealing with real-

time gesture recognition of dynamic gestures [1–3]. Ellis uses sensor gloves in her research

in teaching children sign language using conditional template matching techniques [1].

This method is faster than using Hidden Markov Models (HMM), because it is easier to
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search for errors and to explain the outcome of the classification process [1, 21]. This

method demonstrates a detection accuracy of 95 percent, when two children performed the

test, on 175 different gestures [1]. Her research concluded that this was a useful method

but considering the children’s hands were small, the program could not recognize them all

accurately. She also states that a learning system providing feedback to the user could help

in future research for a wider range of learners. In Kadam’s research, the main goal was

accuracy of gestures made [2]. He considered sensor gloves the best way to implement

a teaching program. He was able to recognize fourteen gestures 86 percent of the time;

but this was not sufficient. There are many features to consider when performing sign lan-

guage, and he did not take into account the probability of multiple gestures having similar

characteristics to others which made the program confuse one for the other. Kadam also

stated that they would need to reconsider using more sensors or a new approach, such as

image capturing, for better accuracy.

1.2.2 Image capture

Another approach for gesture recognition is using image capture [4,6,7,14,17–20,22]. This

approach can be used for both static and dynamic gestures. In Yang’s research, he uses this

approach by capturing frame by frame images of a user performing the word cheerleader

[18]. His experiment as well as Starner’s approach [6] show that image capturing can

be used on videos, because they take still images when extracting and recognizing each

gesture [6, 18]. Starner and Freeman prefer image recognition, because it avoids the use

of expensive “data gloves” considering most signing does not involve finger spelling but

instead, gestures which represent whole words [6, 19]. This will allow conversations when

signed to proceed along at a pace similar to the normal spoken conversation.

1.3 Classification of images

Image classification is the “process of assigning a feature vector or a set of features to some

predefined classes in order to recognize the hand gesture” [4]. When it comes to classifica-
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tion of the images, Starner [6], Tanibata [7], and Min [14] all use Hidden Markov Models

(HMM). Hidden Markov Models are used for visual recognition of complex, structured

hand gestures [6]. An HMM is a collection of finite states connected by transitions [23].

Each state is characterized by two sets of probabilities: a transition probability, and either

a discrete output probability distribution or a continuous output probability density func-

tion [23]. Although HMMs are ideal for most projects, they encounter three problems:

the evaluation, estimation, and the decoding [6]. Starner, conveniently in her research also

provides us with ways to fix these types of problems [6]. Many researchers have used

HMM’s for gesture recognition [2–4,6,14]. A few have achieved recognition rates over 85

percent [6, 14].

Another way to classify images is by using Local Orientation Histograms [4, 19, 20]. The

way orientation histograms work is that they provide more contrast within the colors of the

image providing better detection of an object [19, 20]. Local Orientation Histograms are

robust when dealing with lighting changes. This allows for higher recognition accuracy of

the program when recognizing gestures, as shown in Zhou’s [20] research, for example.

Although Freeman [19] and Zhou [20] use local orientation histograms in their research,

Messer [4] and Freeman found that many gestures which look different to the human eye

might have an almost identical orientation histogram, and vice-versa. It is crucial for the

program to recognize the gesture being made and know what image to correctly compare

it with in order to train the user properly [2, 19]. If the program recognizes the image, but

compares it to a different gesture because it recognizes it as the correct gesture made for

that image, it will be a very flawed system.

1.4 Other devices used for gesture recognition

There are other devices that were found to be useful for sign language recognition. Kinect

for Xbox 360 [5] has been used for real-time recognition, and is capable of tracking users’
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fingers. The lack of resolution of the Kinect cameras makes quickly moving hand features

hard to distinguish. Another device is the Wii Remote. It has motion sensing capability

which allows for gesture recognition [13]. It is a good approach for dynamic gesture recog-

nition, because it follows the pattern of hand movement. The Wii remote is not ideal when

performing the correction process of sign language gestures because although it recognizes

the hands position as a whole, it does not detect position or movement of individual fingers.

Various other technologies for displaying and recognizing hand gestures are either is the

research phase or have recently become available in the marketplace [24–26]. Leap Motion

is a sensor as small as a USB flash drive that detects finger movements and displays them

on a monitor screen [24]. This device is fairly new and non expensive, but many complaints

have come up concerning the device’s ability to detect all individual fingers. Digits by Mi-

crosoft [25] is a glove-less device which works with infrared sensors. It displays the hand

on a monitor screen and can be used for gaming, sign language, mobile device interaction,

etc. [25]. Currently Digits is a Microsoft research project and is not available on the mar-

ket. MYO [26] is a wrist/arm band that detects the motions of our muscles and allows for

computer interaction [26]. This is a unique idea and although it is for sale, shipment will

not begin until mid-2014.

1.5 Advantages and disadvantages of different methods for gesture recog-
nition

From the literature review, we can extract useful techniques for gesture correction. Data

gloves seemed to be the better choice because they allow for real-time detection of gestures

being made, but they have their disadvantages as well [2]. It is possible to make a glove-less

sensor such as Microsoft did [25] or a data glove in [2] , but it would be another project

all on its own, and thus, infeasable given the time limit for the research. Image capture

recognition is sensitive to the environment, which may cause a challenge to the recognition

process, such as bad illumination, irregular backgrounds, etc. [4]. There are methods, like
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Local Orientation Histograms [20] and Hidden Markov Models [6] that can help improve

the results. Edge detection methods [27] could be used for the purpose of comparing the

user’s gesture with the reference gesture. Another variable to be considered is the difficulty

of recognizing open and closed finger gestures. Geetha [17] finds a method that is effective

in recognizing 50 percent of the letters in the alphabet 100 percent accurately. All methods

have their advantages for the type of application trying to be implemented. Yang [28]

shows an explanation and a summary of this with different approaches that have been used

in gesture recognition. From Yang’s research we can get a better understanding of different

methods that have been used and what approaches result in better outcomes for specific

applications.

1.6 Key terms

ASL: American Sign Language.

Edge detection: An edge is where there is a significant change in the intensity of an image

which occurs on the boundary between two different regions (edges) in an image [27].

Edge detection shows where pixels should be discarded as “noise” and which pixels should

be retrained.

Image capture: Encyclopedia.com describes this as the process of getting a digital image

from a vision sensor, such as a camera. Usually this entails a hardware interface known

as a frame grabber, which captures single frames of video, converts the analogue values

to digital, and feeds the result into the computer memory. The conversion process is often

accompanied with image compression.

Static gesture: In reference to American Sign Language (ASL), static gesture is a particular

configuration and pose, represented by a single image [19]. Letters as well as individual

words in ASL can be static.
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CHAPTER 2: METHODOLOGY AND RESULTS ANALYSIS

2.1 Summary and outline

In this research we used static images of ASL gestures in developing a program that would

recognize the user’s colored fingertips automatically in order to correct fingers position.

We selected twelve letters from a database [29] to use for comparison with user gestures.

We then took pictures of the user performing the letters in a lighted and shaded environ-

ment. Then we enhanced and analyzed the intensities of the images to derive unique ranges

of red, green, and blue (RGB) colors for each finger. This was useful because it provided

a color range that would be more accurately recognized in a normal environment when

taking snapshots of images. We then computed the midpoint for each finger based on the

pixels found using the set ranges. From these midpoints, we computed distances and an-

gles between fingers. We then compared the user’s correctly performed gestures to the

database. We now had information of the user’s gestures that were performed correctly to

begin testing intentionally incorrectly made gestures to the “correct” gesture information.

From the angles that were obtained, we could confirm that the program was indeed detect-

ing the fingers that were misplaced correctly. Then we found centroids for each gesture and

the corresponding reference image. Then we determined the conditions the program would

use in correcting the x and y placements for each fingertip. Once this was established, we

began to test the correction process of different incorrectly made gestures to make sure the

program was correcting the fingers effectively. Finally a performance metric was estab-

lished to show that once the correction process was complete, the user was indeed within a

certain percentage to be considered correct.

What follows is a detailed description of the research process used to develop a computer

program to assist in the learning of ASL.
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2.2 Database construction

We needed a database of standard ASL gestures in order for the users to have a visual

representation of the letters that they would be signing. It also provided a reference image

in order to compare certain information to the user’s image. Images were retrieved online

from the database at lifeprint.com [29] and approval was obtained for using this database

[30]. Some of the information that was found from the database images were the position

of the midpoint on each fingertip, direction angles, distances between two fingers, angles

formed between three fingers, as well as centroids, etc. (Finger 1 = pinky,...,Finger 5 =

thumb). This information was used to compare the database and user gestures. Testing was

performed on twelve letters (a, b, e, h, i, L, n, r, t, u, w, and y) selected from the database.

These specific letters were chosen because all fingertips were visible in the images. Hand

gestures that show all fingertips are called open hand gestures. The ASL hand gesture

images extracted from the database [29] corresponding to each of the twelve letters chosen

are shown in Figure 2.1.
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Figure 2.1: Database of twelve letters used
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2.3 Lighting setup for image capture

One of the objectives was for the program to recognize fingertip colors automatically when

taking snapshot images. In order for the program to recognize the colors in a “natural” en-

vironment, we asked the user to perform all letters in two different lighting conditions. We

started by having the user (Veronica Flamenco) wear five different colored latex balloons

on the tips of each finger using the right hand. Then, images of the user performing the

twelve letters were taken in both an unshaded and shaded environment. Unshaded gestures

were taken in a well-lit room with natural and artificial lighting. Shaded images of these

letters were taken in a room with moderate lighting using a poster to block most of the light

hitting the hand. These digital images were used to gather red, green and, blue (RGB) color

ranges for both conditions which would then be used to find a set range of RGB colors for

automatic detection of all five fingertips under different lighting conditions. All twelve

letters were performed as closely as possible to the reference images, shown in Figure 2.1.

2.4 Procedure for extracting RGB color ranges

We needed to investigate the RGB values of the unshaded and shaded images in order to

identify all five colors uniquely. The unshaded and shaded images all produced a variety of

intensities of RGB values. A digital image is composed of 24-bits, or three 8-bit values. In

a digital image, every pixel is identified with a red, green, and blue intensity which range

from 0-255 because of the bits that compose the image. If the RGB value is closer to 0,

the color will be darker but when closer to 255 the intensity of the RGB values will be

brighter. We developed a program to recognize all these different intensities in these two

different environments. The purpose of this was to see what these intensities were. The

program allowed for us to click on each of the colored fingertips, three times per finger,

of the unshaded and shaded images of the user. These three clicks provided minimum and

maximum RGB values. Pixels within a selected user image that fell within the min and

max values were recolored black. This was a visual representation to show if each fingertip
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color was being recognized. The program also found the midpoint of each fingertip based

on the average of all rows and columns of the black pixels found.

After several experiments with different user gestures under various lighting conditions,

we found that this procedure did not uniquely identify each fingertip, because of overlap

between the RGB ranges. Although the program was recognizing each fingertip color

correctly, it was also detecting the same colored pixels in other regions of the image. In

Figure 2.2, we see the process the program went through in identifying each of the fingers.

The program first identifies the pink on the pinky by recoloring the pink pixels with black

pixels (a). Then when finding the yellow on the ring finger (b), other areas are also being

recognized to have the same range of color. As the process continues with identifying the

rest of the colors on the other fingers (c-e), we can see more misidentification of individual

colors on other parts of the image. Therefore we began to investigate image enhancement

techniques to help with unique recognition of each fingertip color.

Figure 2.2: Identifying specific colors on each fingertip one by one; (a) Identifying pink
on pinky finger, (b) Identifying yellow on ring finger, (c) Identifying blue on middle finger,
(d) Identifying green on index finger, (e) Identifying purple on thumb

2.5 Image enhancement

Image enhancement was added to the original user image to help narrow the range for

the RGB values for the purpose of identifying fingertips. Three different enhancement

methods were tested on the original image: decorrelation, image color scale adjustment,



25

and decorrelation with linear contrast stretching. Decorrelation methods assist in uniquely

identifying colors in a digital image by stretching the color bands to “enhance the color

separation of an image with significant band to band correlation” [31]. More information

concerning decorrelation is found in Appendix A. The image color scale adjustment method

provides more contrast enhancement.

Figure 2.3 (a) shows the original unshaded image of the user performing the letter ’a’

and (b-d) show the image enhanced using the three enhancement methods. It can be seen

in the enhanced images that, of the two decorrelation methods, (b) and (d), seemed to

provide more defined fingertip colors. After further examination of the data, the RGB

values provided by the decorrelation with linear contrast stretching method (d) gave smaller

ranges for each individual color. This meant that when viewing the enhanced images, this

method provided better color separation which made the features on the image easier to

distinguish. This also showed that the RGB values of all five different fingertip colors were

not overlapping as much for this method, which meant each color was less likely to be

mistaken with one of the other colors. Based on this, the decorrelation with linear contrast

stretching method was chosen to assist in identifying fingertip locations.

Figure 2.3: Original image of ’a’ compared to the three methods used: (a) Original image
(b) Decorrelation (c) Image color scale adjustment (d) Decorrelation with linear contrast
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2.6 Determination of overlap between RGB values

After finding the RGB ranges for both unshaded and shaded images, we examined the

overlap between both images in order to recognize snapshot images. This was going to

help produce a set range of RGB values in order for the program to recognize the colors in

a “natural” environment. After analyzing the RGB values, we noticed six different cases

of overlap between both images, which depended on the enhancement method chosen.

From these cases, we got a set range of RGB values for every color on each fingertip.

Comparisons of the six cases found can be seen in Figures 2.4-2.9.

2.6.1 Explanation of all cases

For each of the following cases:

range(1) is the minimum intensity for a given finger in the unshaded image

range(2) is the maximum intensity for a given finger in the unshaded image

range(3)is the minimum intensity for a given finger in shaded image

range(4)is the maximum intensity for a given finger in shaded image

Figure 2.4 shows Case 1 in which:

range(4)≤ range(1)

We will produce two min and max set values, which create two

non-overlapping ranges, as seen in Figure 2.4. The first min will be

1
2
(range(3)+ range(4))and the corresponding max will be range(4).

The second min will be range(1) and the corresponding max will be

1
2
(range(1)+ range(2)).
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Figure 2.4: Case 1

Figure 2.5 shows Case 2 in which:

range(2)≤ range(3)

We will produce two min and max set values, which create two

non-overlapping ranges, as seen in Figure 2.5. The first min will be

1
2
(range(1)+ range(2))and the corresponding max will be range(2).

The second min will be range(3) and the corresponding max will be

1
2
(range(3)+ range(4)).

Figure 2.5: Case 2

Figure 2.6 shows Case 3 in which:

range(3)≥ range(1) and range(4)≤ range(2) are both true

Then if range(4)− range(3)≤ 1
4
(range(2)− range(1))

The min and max will be found using(1) shown in Figure 2.6. The

min will be
1
2
(range(1)+ range(3)).The max will be

1
2
(range(4)+ range(2)).
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But if range(4)− range(3)≥ 1
4
(range(2)− range(1))

Then the min and max will be found using(2) shown in Figure 2.6.

The min will be range(3)and the max will be range(4).

Figure 2.6: Case 3

Figure 2.7 shows Case 4 in which:

range(1)≥ range(3) and range(2)≤ range(4) are both true

Then if range(2)− range(1)≤ 1
4
(range(4)− range(3))

The min and max will be found using(1) shown in Figure 2.7. The

min will be
1
2
(range(3)+ range(1)).The max will be

1
2
(range(2)+ range(4)).

But if range(2)− range(1)≥ 1
4
(range(4)− range(3))

Then the min and max will be found using(2) shown in Figure 2.7.

The min will be range(1)and the max will be range(2).
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Figure 2.7: Case 4

Figure 2.8 shows Case 5 in which:

range(2)− range(3)≤ 1
2(range(4)− range(3))

In this case, the min is set to
2
3
(range(1)− range(3))+(range(3)

and the max is set to
2
3
(range(4)− range(2))+ range(2).

Figure 2.8: Case 5

Figure 2.9 shows Case 6 in which:

range(2)− range(3)> 1
2(range(4)− range(3))

In this case, the min will be range(3)and the max will be range(2).

Figure 2.9: Case 6
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An example of how these cases were used on both unshaded and shaded images using the

decorrelation with linear contrast stretching method to find the set ranges is as follows.

Table 2.1 shows the enhanced unshaded and Table 2.2 shows the enhanced shaded RGB

values found for the letter ’a’ performed by the user.

Table 2.1: RGB values of enhanced unshaded letter ’a’ performed by user

Finger R min R max G min G max B min B max

Pinky 255 255 0 0 70 84

Ring 137 176 145 222 0 0

Middle 0 0 15 32 248 255

Index 0 29 255 255 0 0

Thumb 146 198 0 0 190 247

range(1) range(2) range(1) range(2) range(1) range(2)

Table 2.2: RGB values of enhanced shaded letter ’a’ performed by user

Finger R min R max G min G max B min B max

Pinky 255 255 0 0 94 102

Ring 114 121 242 246 0 0

Middle 0 0 0 12 255 255

Index 0 0 255 255 0 6

Thumb 64 132 0 0 171 242

range(3) range(4) range(3) range(4) range(3) range(4)

From Table 2.1 and 2.2 we can see all the different ranges of intensities, as well as the

narrowed ranges between the min and max values of Red, Green, and Blue. Also notice

that the Thumb, which is purple, has higher intensities of red and blue but absolutely no

green, which would be expected when trying to obtain the color purple.

Table 2.3-2.5 show the set ranges found for the Red, Green, and Blue using the values from

Table 2.1 and 2.2. The case that was used in determining the set ranges for each color

on each finger is also provided. Notice that if the case was either Case 1 or Case 2, two



31

min and max value sets would be provided, otherwise, only one set of min and max values

would be found.

Table 2.3: Red min and max set ranges for letter ’a’ performed by user

Finger min max min max Case

Pinky 252 255 255 255 1

Ring 113 143 5

Middle 0 0 0 0 1

Index 0 0 0 0 1

Thumb 153 196 5

Table 2.4: Green min and max set ranges for letter ’a’ performed by user

Finger min max min max Case

Pinky 0 0 0 0 1

Ring 230 255 3

Middle 0 8 4

Index 255 255 255 255 1

Thumb 0 0 0 0 1

Table 2.5: Blue min and max set ranges for letter ’a’ performed by user

Finger min max min max Case

Pinky 124 157 5

Ring 0 0 0 0 1

Middle 255 255 255 255 1

Index 0 0 6 14 2

Thumb 236 255 255 255 5

2.7 Automatic detection of fingertips

Using the set ranges of RGB values found in the previous section, we were ready to design a

program that would automatically detect all the five colored fingertips. The cases provided

criteria for locating the fingertip colors. The program recolored the fingertips black by
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using the set ranges to search for pixels meeting the criteria of the given case. This provided

a visual representation to show if each fingertip color was being recognized. It also found

the midpoint based on the average of the row and column values of the recolored pixels.

Figures 2.10-2.21 show the colored fingertips and the midpoints of all twelve letters, found

by the program.

Figure 2.10: Detection of fingertips for Letter ’a’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure 2.11: Detection of fingertips for Letter ’b’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip
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Figure 2.12: Detection of fingertips for Letter ’e’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure 2.13: Detection of fingertips for Letter ’h’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure 2.14: Detection of fingertips for Letter ’i’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip
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Figure 2.15: Detection of fingertips for Letter ’L’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure 2.16: Detection of fingertips for Letter ’n’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure 2.17: Detection of fingertips for Letter ’r’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip
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Figure 2.18: Detection of fingertips for Letter ’t’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure 2.19: Detection of fingertips for Letter ’u’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip
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Figure 2.20: Detection of fingertips for Letter ’w’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure 2.21: Detection of fingertips for Letter ’y’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Although most fingertips were identified, the program had difficulties identifying the mid-

points of a few fingers on the images already stored. For example, in Figure 13 the ring

finger is incorrectly identified. This was caused by the shaded images being too dark which

affected the RGB ranges and caused them to be out of range for a “normal” image. Con-

sidering that most snapshots would be taken in normal lighting, this method was still seen

to be valid. To fix the problem, shaded images were retaken to make them a little less

shaded, then the process was repeated, and all the fingertip colors were recognized. New

recolored fingertips and midpoints for each of the twelve gestures performed can be found

in Appendix B.
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2.8 Image scaling

As explained above, the distance between fingertips is a key measure for determining ac-

curacy of the user’s gestures. Before comparing the distances between fingers of both the

database and the user’s images, we needed to find a scaling factor for each letter, to use on

the distance measurements. This way both images would be proportional in size for com-

paring. We decided to scale the user’s images to match the width of the database images,

because the user’s images were already bigger than the database images. This way, the res-

olutions of the database images were maintained. Considering angles were not dependent

on the images being proportional, they were not scaled.

The user began by performing each letter as close as possible to the images in the database.

Then we detected both the left and right edges of where the hand began, in both the user’s

and database images, to find the width. This was performed by using Sobel edge detection

[32]. We closed in on both the right and left side of both Sobel-transformed images until

the edges were detected. An example of this can be seen in Figure 2.22 using the letter ’a’.

Figure 2.22: Edge detection process, between database (left) and user (right), using ’Sobel’
edge detection, to find the width of ’a’

After obtaining both widths, (1) was used to find the scaling factor.

Scaling Factor = database width
user width (1)

A new scaling factor will not be found or changed each time a different variation of the

letter is signed. The is because the perimeter of the hand gestures will be off, such as a
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finger extended too far out, and will make the edge detection process skew the width for

the scaling factor.

2.9 Determination of angles and distances

While investigating methods in determining whether a gesture was correct or incorrect,

an idea was to compare angles formed between the fingers as well as distances between

fingers. Figure 2.23 shows the fifteen key angles that were chosen. In total there are

sixty different possible angle formations among the five fingers. The process that was

used for choosing these fifteen angles is as follows. We began by ruling out angles that

were repeated but reversed. Then we noticed that bigger angles consisted of smaller angles

added together; those were eliminated next. We decided to only use the smaller angles,

because they covered all the angles possible in the gesture.
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Figure 2.23: Angles formed between all fingers

Other angles that were used later on for comparison purposes were the outer angles that

formed the perimeter of each hand. All angles were different for each letter signed because

they all had unique shapes. An example of the outer angles that were used for the letter ’a’

performed by the user can be seen in Figure 2.24.
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Figure 2.24: Outer angles of the letter ’a’

Distance calculations depended on the lines that formed all the fifteen chosen angles. For

example, if Angle 213 was going to be used, the distance between finger 2 and finger 1 as

well as the distance between finger 1 and finger 3 was going to have to be calculated. Con-

sidering all midpoints were previously found we had x and y coordinates for each fingertip.

This information was used to find all the distances which were calculated using,

distance =
√
(x2 − x1)2 +(y2 − y1)2 (2)

where x1,y1 are the coordinates of one fingertip and x2,y2 are the coordinates of another.

2.10 Angle comparisons

We compared the accuracy of the gestures by first comparing the fifteen key angles as well

as the five outer angles between user and database images.

2.10.1 Fifteen key angles

As previously mentioned, fifteen angles were chosen to be the “Key angles” for all twelve

letters. After calculating both database and user angles, differences between the images

were calculated along with RMS errors of these angles. The RMS error is the root mean

square error for all angles and is calculated using,



41

RMS error =
√

∑
n
t=1(at−ât)2

n (3)

where at is a particular angle on the scaled user image, ât is the same angle on the database

image, n is the number of angles used in the comparison.

Table 2.6 shows the angle differences between the user and the database gestures for each

of the fifteen angles that were chosen (Finger 1 = pinky,..., Finger 5 = thumb). Based on the

RMS errors of the differences between the user’s gestures that were performed “correctly”

and the database images, we found that the images had angle RMS errors between ten and

twenty-three degrees. From this we chose a threshold of twelve degrees for determining

gesture accuracy. In Table 2.6, we can see the angles that resulted in an angle RMS error

greater than twelve degrees when performing correct gestures. Angles with a difference

greater than twelve degrees are represented with an ’x’ for all twelve letters. Table 2.6

shows that each individual letter had a total of about five or fewer angles that deviated by

more than twelve degrees (refer to the count at the bottom of Table 2.6). We can also see

that three out of the twelve letters (a, b, and n) were considered extremely close matches

because they did not have angles greater than twelve degrees.



42

Table 2.6: Fifteen key angles that resulted in greater than a twelve degree difference be-
tween user and database images

Fingers forming the angles a b e h i L n r t u w y count

2 1 3 x x x 3

3 1 4 x 1

4 1 5 x x 2

1 2 5 x x x x 4

5 2 4 x x 2

4 2 3 x x x 3

2 3 1 x x 2

1 3 5 x x x 3

5 3 4 x x x x 4

3 4 2 x x 2

2 4 1 x x 2

1 4 5 x x 2

4 5 3 0

3 5 2 x 1

2 5 1 x 1

count> 12o 0 0 5 2 5 5 0 4 4 1 2 4

Although all the images of the twelve letters were made as correctly as possible, some

angles were considerably off. This could have been caused either by the location of the

midpoint or considering some fingertips were close to one another, a slight movement of

the finger could have caused more deviation than necessary.

2.10.2 Outer angles

Another idea that was considered to show how close the gestures were to the database

was to find the outer angles of all the letters. The outer angles formed the unique outside

perimeter shape of all twelve letters. Table 2.7 shows the five additional angles. Based on

the data found, the outer angles were not useful. Although all twelve gestures were made

as close as possible to the database images, the program considered many of the letters
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completely off. This could be explained by slight movement in adjacent fingers offsetting

the angles even when the user’s gesture appeared to be a close match to the database gesture.

Table 2.7: Five outer angles that resulted in greater than a twelve degree difference between
user and database images

Corresponding angle

for specific letter a b e h i L n r t u w y count

1 x x x x x x 6

2 x x 2

3 x x x 3

4 x 1

5 N/A N/A N/A x N/A 1

count > 12o 2 0 1 2 2 0 0 2 2 1 0 1

2.11 Testing of intentionally incorrect user images

After finding differences between the user’s “correct gestures” and the database images, we

now had an angle threshold that we could use to start comparing incorrect gesture images.

Considering the letter ’a’ was a very close match, based on the information in Table 2.6,

we decided we would use this letter as the preliminary testing image. Then, we took five

different shots of the user performing the letter ’a’ incorrectly. These five different versions

of the letter ’a’ can be seen in Figure 2.25 (Refer to Figure 2.1 to see the database image of

the letter ’a’ and Figure 10 for the user’s correctly performed ’a’.) Images a01 through a03,

in Figure 2.25, show the thumb gradually being moved farther to the observer’s right. In

a04 the thumb is moved slightly down to the observer’s left and in a05 the pinky is moved

up. By using my program we found the midpoints and calculated the angles of the incorrect

gestures that were performed.
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Figure 2.25: 5 Versions of the user performing the letter ’a’ incorrectly

2.11.1 Angle differences between correctly and incorrectly performed ’a’

After calculating all the angles for all five incorrect versions of the letter ’a’, we then tabu-

lated them alongside the angles of the correct ’a’ gesture. These results are summarized in

Table 2.8. It can be seen in Figure 2.25 that fingers 1 and 5 (pinky and thumb) were moved.

The information in Table 2.8 shows that the angles that involve finger 1 and 5 have more

deviation than other angles. Angles highlighted in red show angle deviations when finger

5 was an outer segment of the angle. Angles highlighted in green show angle deviations

when finger 1 was an outer segment of the angle. This confirmed that the program was

correctly detecting the angles which were incorrect.
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Table 2.8: Difference of angles between the fingers of five different incorrect versions of
’a’ compared to the correctly performed ’a’

Fingers that form the angles Degree difference of angles

First Second Third “Correct a” a01 a02 a03 a04 a05

2 1 3 9.9 7.6 9.0 7.2 9.0 0.7

3 1 4 2.0 2.2 2.3 2.9 0.7 7.4

4 1 5 3.8 6.5 15.5 21.9 11.5 2.6

1 2 5 8.9 1.4 10.9 21.6 0.3 72.9

5 2 4 8.5 7.8 19.2 26.0 11.7 5.3

4 2 3 2.0 3.1 3.9 5.0 1.7 4.8

2 3 1 9.5 6.5 7.7 7.7 5.9 63.5

1 3 5 3.4 12.4 26.6 37.1 9.3 76.9

5 3 4 9.0 4.8 18.8 27.8 9.6 4.9

3 4 2 1.8 2.1 2.8 3.3 1.7 3.7

2 4 1 5.5 1.0 1.6 1.2 2.4 60.9

1 4 5 7.8 8.1 29.3 43.0 1.9 75.2

4 5 3 2.5 2.2 4.9 8.8 8.1 5.7

3 5 2 2.3 3.4 6.7 5.6 0.6 3.4

2 5 1 0.8 0.3 2.2 4.0 2.1 63.6

2.11.2 Distance differences between correctly and incorrectly performed ’a’

After calculating all the distances for all five incorrect versions of the letter ’a’, we then

placed all the distances in a table along with the distances of the correct ’a’ gesture. These

results are summarized in Table 2.9. In Figure 2.25, we can see that fingers 1 and 5 (Pinky

and Thumb) were moved. The information in Table 2.9 show that the distances that in-

volved finger 1 and 5 had more deviation than the other distances. Distances highlighted

in red show large distance deviations when finger 5 was moved. Distances highlighted in

green show large distance deviations when finger 1 was moved. This confirmed that the

program was correctly detecting the fingers which were incorrect.
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Table 2.9: Pixel distance difference between two fingers of five different incorrect versions
of ’a’ compared to the correctly performed ’a’

Distance between two fingers Pixel distance difference between two fingers

First Second “Correct a” a01 a02 a03 a04 a05

1 2 5.3 1.7 1.7 2.1 0.1 106.4

2 3 0.7 2.8 2.9 1.2 3.7 2.8

3 4 1.7 8.7 8.4 7.7 5.1 7.0

4 5 7.9 2.6 8.1 30.3 37.4 4.2

1 3 6.8 2.8 2.5 1.6 2.1 88.7

1 4 8.7 11.9 11.3 9.7 7.1 70.2

1 5 6.0 12.6 30.1 53.3 25.2 14.1

2 4 2.1 11.3 11.0 8.6 8.8 9.5

5 3 5.0 5.7 19.9 42.4 31.6 1.0

5 2 0.9 11.1 26.3 46.9 25.5 1.9

2.12 Finding the centroids

In order to provide the user with instructions concerning how to correct misplaced fingers,

we need to determine the amount of x and y displacement that each finger needs to make

the gesture “correct.” The centroid of each fingertip location provides a central point to

compare relative positions of the finger tips. Centroids are useful because they provide a

mean position of selected points in a plane. All the gestures performed could be considered

figures on a plane. We used the midpoints found on the fingertips to find a centroid for each

of the gestures performed as well as the database images. The centroid position identified

by the coordinates (xc,yc) is calculated using,

xc =
∑

5
i=1 xi
5 (4)

yc =
∑

5
i=1 yi
5 (5)

where (xi,yi) are the coordinates of the detected center position of the ith fingertip. We used

(2) to calculate the distances between each fingertip in relation to the computed centroid.
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An example of this can be seen in Figure 2.26. It shows the centroid and the distances from

each finger to the centroid of the database letter ’a’ (a), the user’s correctly performed ’a’

(b), and the user’s incorrectly performed ’a’ (c), which is the letter version a03 performed

previously. Table 2.10 shows the pixel distances from each finger to the centroid of the

database ’a’, the user’s correctly performed ’a’, and the user’s incorrectly performed ’a’.

Figure 2.26: Centroid and distances from fingers to centroids of (a) database ’a’, (b) user’s
correctly performed ’a’, and (c) user’s incorrectly performed ’a’

Table 2.10: Distances, in pixels, from fingers to centroids of the database ’a’, the user’s
correctly performed ’a’, and the user’s incorrectly performed ’a’

Finger Distance to Centroid Distance to Centroid Distance to Centroid

of database ’a’ of user’s correctly of user’s incorrectly

performed ’a’ performed ’a’

Pinky 49.56 54.21 64.49

Ring 31.84 29.95 43.21

Middle 14.22 17.01 19.27

Index 20.45 26.67 12.30

Thumb 78.77 82.01 114.25

From Table 2.10 we can see that when comparing the database ’a’ and the user’s correctly

performed ’a’ that the distances are relatively close. But when comparing the database ’a’

to the user’s incorrectly performed ’a’ we can see that the thumb, which was the finger that
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was moved, now had the largest amount of deviation. Although the thumb was the only

finger that was moved, we can still see some deviation in the other distances. This was

caused by the centroid being shifted farther down which then caused there to be deviation

from the other fingers as well.

2.13 Determining x and y correction

The correction process is the most important part of ASL training, because it provides the

user with useful feedback concerning correct finger placement. We came up with nine

different conditions that the program sifted through to determine if the position of the in-

dividual finger would or would not be considered within range of the database image. This

process is similar to the Eight Nearest Neighbors technique. If the fingers are not consid-

ered within range, the program lets the user know which fingers are incorrect so correction

can be performed. It also provides specific instructions on how to move the fingers so it

is within a range in where the program will consider the finger “correct”. It goes through

all the fingers and finds which finger is the worst (has the maximum amount of pixels off)

and only tells you to correct that certain finger before correcting any other finger. Then

the program will provide the user with the x direction of movement first, followed by the y

direction of movement needed.

2.13.1 Testing using ’Eight Nearest Neighbors’ technique

A visual of the Eight Nearest Neighbor technique can be seen in Figure 2.27. The X

represents the correct location of where the finger should be placed if the distance to the

centroid is more than twelve pixels greater or less than that of the database. If the finger

is any other location except at X, the program will prompt the user on how to move their

finger accordingly. An example would be, if the finger fell within Region 3, the program

would tell the user to move their finger left so many pixels then down so many pixels.
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Figure 2.27: Eight Nearest Neighbor finger locations

2.13.2 Determining the amount of fingertip movement

A visual representation of the amount of movement that was needed in the x and y direction

was desirable in order to show the user how to correct their finger positions.

A measure of accuracy for the correction process was found using the distance RMS error

between the user and database images,

RMS error =
√

∑
n
t=1(dt−d̂t)2

n (6)

where dt is the distance between a particular fingertip and the centroid on the scaled user

image, d̂t the distance between a particular fingertip and the centroid on the database image.

We computed the RMS error for all the twelve letters and computed that twelve pixels

was a good measure of accuracy. Figure 2.28 shows the distances from the centroid to

the thumb as well as the x and y displacement for the database ’a’ (a), the user’s correctly

performed ’a’ (b), and the user’s incorrectly performed ’a’ (c). Notice that the x distance in

the incorrectly performed ’a’ is much larger than the x distance in the correctly performed

’a.’ In this example, the amount of x movement needed to correct the thumb was determined

by subtracted the x in the user image from the x in the database image. Similarly, the amount
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of y movement needed to correct the thumb was determined by subtracted the y in the user

image from the y in the database image.

Figure 2.28: Centroids to Thumb for: (a) Database ’a’, (b) User’s correctly performed ’a’,
(c) User’s incorrectly performed ’a’

Figure 2.29 shows the x and y pixel differences displayed on the screen for the user’s cor-

rectly performed ’a’ as compared to the database ’a’ (refer to Figure 2.28). We can see that

all the differences for both the x and y directions are all below the twelve pixel threshold.

Considering all distances were under threshold, the program then provides the user with a

message “Gesture is Correct program is Done.”

Figure 2.29: Screen shot of x and y distance differences between database ’a’ and user’s
correctly performed ’a’; Indication of whether the gesture was performed correctly

Figure 2.30 shows the x and y pixel differences displayed on the screen for the user’s in-

correctly performed ’a’ when compared to the database ’a’ (refer to Figure 2.28). When

comparing these two images, we can see that the differences increased for at least one of
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the directions on each of the fingers. But for the thumb, we notice that it has the greatest

amount of difference, especially in the x direction. Considering that our program corrects

one finger at a time, whichever has the most deviation, we can see that our program asks

us to correct the thumb’s position first. The program provides the user with a message to

“Move Thumb -58.47 pixels (107 pixels unscaled) in the x direction” and “Move thumb

-18.01 pixels (33 pixels unscaled) in the y direction.” It also provides a stopping x, y co-

ordinate with the message “Move thumb to the location x = 275, y = 32.” Notice that the

program displays scaled pixel values while the commentary provides unscaled pixel values.

If you use the scaling factor particular for a, which was about .545, and you multiply by

107, you will get 58.3.

Figure 2.30: Screen shot of x and y distance differences between database ’a’ and user’s
incorrectly performed ’a’; Directions on whether the gesture was performed correctly when
compared to database ’a’

It is difficult to know how much 59 or 18 pixels are when correcting for that amount. In

order to help the user, we provided a visual on how to correctly move their fingers. This is

explained in the following section.

2.13.3 Correction of user’s five incorrectly performed ’a’

The finger with the most deviation, based on the twelve pixel threshold, will always be

used first when determining the location in which the finger needs to be moved. When

performing the correction process, the user will be provided with three images: the database
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image of the letter they are signing, the image of the gesture they signed, and an image of

the gesture they signed with a white line, which demonstrates the direction the finger needs

to be moved. As previously explained, the program will provide the user with a certain

amount of pixels that should be moved in the x and y direction. But to help the user, we

made the program provide the user with a white line to show the direction the finger should

be moved as well as a white dot at the end of the line to show the stopping location of the

midpoint. In Figures 2.31-2.35 we can see these three images of the five different versions

of ’a’ that were performed.

Figure 2.31: Correction of fingertip placement for ’a01’: (a) Database Image, (b) User
Image, (c) Corrected User Image

Figure 2.32: Correction of fingertip placement for ’a02’: (a) Database Image, (b) User
Image, (c) Corrected User Image
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Figure 2.33: Correction of fingertip placement for ’a03’: (a) Database Image, (b) User
Image, (c) Corrected User Image

Figure 2.34: Correction of fingertip placement for ’a04’: (a) Database Image, (b) User
Image, (c) Corrected User Image

Figure 2.35: Correction of fingertip placement for ’a05’: (a) Database Image, (b) User
Image, (c) Corrected User Image
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Based on the location of the white dot, for all five versions of the letter ’a’ that were

performed, we can see that the program gives an accurate location of the general area of

where the fingertip should be moved. Considering the program corrects one finger at a time

(whichever has the most deviation when compared to the database image) it could possibly

show incorrectness of the ideal location because other fingers could be offsetting the one

needing to be corrected first. An example of this can be seen in Figure 2.35. The location

of the white dot is not precisely where it needs to be placed but once the user has corrected

the finger with the greatest error; the next finger with the worst error will be asked to fix.

An example of this can be seen in Figures 2.36-2.38 which show the correction process of

version 05 of letter ’a’, from Figure 2.35. In Figures 2.36 and 2.37, if the user needs to

redo their finger placement, the program shows the database image, the user’s gesture, and

how they need to correct their gesture. In Figure 2.38, the user’s gesture was considered

“correct” or within threshold, so the program outputted the database and the user’s “correct”

image. Considering the program is using the location of the centroid to correct the user’s

finger placement, a second (or as many times needed) correction could possibly be on the

same finger until that finger is considered correct or until it moves on to another finger

that has more displacement. The program will go through all the fingers and correct their

location (if needed) until the gesture as a whole is considered to be within threshold.

Figure 2.36: First correction process of version 05 letter ’a’, (a) Database ’a’, (b) User’s
incorrect ’a’, (c) Correction for user’s incorrect ’a’
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Figure 2.37: Second correction process of version 05 letter ’a’, (a) Database ’a’, (b) User’s
incorrect ’a’, (c) Correction for user’s incorrect ’a’

Figure 2.38: Corrected ’a’ of version 05 letter ’a’, (a) Database ’a’, (b) User’s corrected ’a’

2.14 Correction process of different letters and versions

Figures 2.39-2.92 show the correction process of different letters and versions of the letters.

In each figure, we first see the database image of the letter that is being signed followed by

the incorrect gesture, and then the correction(s) performed to get the gesture within thresh-

old. There were a total of forty-seven different versions of the letters performed incorrectly,

but only twenty-four are shown as a summary of the correction process. We randomly chose

the versions of the letters shown. This is why some versions will be missing from certain

letters.
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Figure 2.39: The correction process of a01; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) 2nd correction needing to be performed, (d) Cor-
rected gesture

Figure 2.40: The correction process of a02; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) 2nd correction needing to be performed, (d) Cor-
rected gesture

Figure 2.41: The correction process of a04; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) Corrected gesture
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Figure 2.42: The correction process of a05; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) 2nd correction needing to be performed, (d) Cor-
rected gesture

Figure 2.43: The correction process of b13; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) Corrected gesture

Figure 2.44: The correction process of b14; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) Corrected gesture
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Figure 2.45: The correction process of b15; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) 2nd correction needing to be performed, (d) Cor-
rected gesture

Figure 2.46: The correction process of e01; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) 2nd correction needing to be performed, (d) Cor-
rected gesture
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Figure 2.47: The correction process of e02; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) Corrected gesture

Figure 2.48: The correction process of e03; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) 2nd correction needing to be performed, (d) Cor-
rected gesture

Figure 2.49: The correction process of L01; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) Corrected gesture
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Figure 2.50: The correction process of L03; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) Corrected gesture

Figure 2.51: The correction process of L05; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) 2nd correction needing to be performed, (d) 3rd
correction needing to be performed, (e) Corrected gesture

Figure 2.52: The correction process of n01; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) 2nd correction needing to be performed, (d) 3rd
correction needing to be performed, (e) Corrected gesture
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Figure 2.53: The correction process of n02; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) Corrected gesture

Figure 2.54: The correction process of n03; (a) Database image, (a) Initial incorrectly
performed gesture and 1st correction, (c) Corrected gesture

Figure 2.55: The correction process of n04; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) 2nd correction needing to be performed, (d) 3rd
correction needing to be performed, (e) Corrected gesture
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Figure 2.56: The correction process of t01; (a) Database image, (b) Initial incorrectly per-
formed gesture and 1st correction, (c) Corrected gesture

Figure 2.57: The correction process of t02; (a) Database image, (b) Initial incorrectly per-
formed gesture and 1st correction, (c) 2nd correction needing to be performed, (d) Cor-
rected gesture
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Figure 2.58: The correction process of t03; (a) Database image, (b) Initial incorrectly per-
formed gesture and 1st correction, (c) Corrected gesture

Figure 2.59: The correction process of t05; (a) Database image, (b) Initial incorrectly per-
formed gesture and 1st correction, (c) Corrected gesture
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Figure 2.60: The correction process of u01; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) 2nd correction needing to be performed, (d) 3rd
correction needing to be performed, (e) Corrected gesture

Figure 2.61: The correction process of u02; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) Corrected gesture
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Figure 2.62: The correction process of u04; (a) Database image, (b) Initial incorrectly
performed gesture and 1st correction, (c) 2nd correction needing to be performed, (d) Cor-
rected gesture

2.15 Performance metric

Now we needed to find a performance metric for all the incorrect gestures that were signed.

Our goal was to find a performance metric that would give us an indication of accuracy.

We chose a measure that would produce a value of 90 or above, out of 100, to indicate a

gesture that did not need any more correction. However, if it was below 90, the program

would indicate that the gesture needed further correction. Equation (7) shows the initial

equation that was used to find the performance metric.

Initial performance metric = 100− 100×rms error
database width (7)

The RMS error (3) and the database width both depend on the letter that is being signed.

After evaluating the performance metric using the full database width, we found that the

values of the performance metrics for the gestures that had high deviation, resulted in hav-

ing high performance values. Then we decided to use half the database width but this

resulted in the performance values being slightly low for the gestures that were considered

correct. We finally decided on using three fourths of the database width, which gave us (8);

our final performance metric equation.
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Performance metric = 100− 100×rms error
database width×.75 (8)

Using (8), we calculated the performance metric for all the versions of the letters that were

incorrectly signed, as well as their corrections, Figures 2.39-2.62. We tabulated the data

and the results can be found in Table 2.11. From Table 2.11 we can see that after the last

correction was made for all letters and versions, all performance metrics were indeed 90 or

higher.
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Table 2.11: Letter versions corrections and their corresponding performance metric

Figure Letter Performance Correction number and

version metric performance metric (P-M)

1st correction 2nd correction 3rd correction

and P-M and P-M and P-M

39 a01 96.0 91.7 97.3

40 a02 91.9 95.7 96.5

41 a04 90.5 95.7

42 a05 76.6 95.7 96.2

43 b13 90.3 90.9

44 b14 78.9 95.6

45 b15 77.2 92.9 91.0

46 e01 82.4 94.0 95.9

47 e02 90.2 96.0

48 e03 77.7 93.5 94.9

49 L01 73.2 97.2

50 L03 78.6 95.3

51 L05 79.6 94.0 90.3 95.9

52 n01 89.7 79.3 83.3 93.3

53 n02 83.1 93.6

54 n03 81.0 94.6

55 n04 41.5 87.9 87.3 92.4

56 t01 87.9 95.7

57 t02 67.9 90.6 97.1

58 t03 49.4 90.1

59 t05 84.9 94.4

60 u01 78.8 85.6 88.8 91.6

61 u02 88.2 92.5

62 u04 61.0 87.8 92.8
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2.16 Flow diagram of algorithm

A flowchart of the entire process of determining whether or not a static ASL gesture is

correct and providing the user with instructions for correcting a gesture is shown in Figure

2.63. We begin the process by asking the user to place colored latex on each fingertip.

The program then asks the user the letter that they would like to sign. A display of the

database gesture chosen appears and the web camera is turned on. The user then tries

to make the gesture as close to the database image as possible and presses enter to take

a picture of their hand. The image is then enhanced using the decorrelation and linear

contrast stretching method. The program then searches for all five colors in the image. If

all five colors are not found, the program will ask the user to redo their gesture. If all five

colors are found, the program continues with finding midpoints on each fingertip. Once the

fingertips are found, the program then calculates the distances and angles between all the

fingers as well as the centroid, etc. The user’s centroid is then compared to the one from the

database. If all distances are equal to or less than the threshold, of twelve pixels, the gesture

will be considered correctly performed. The program will then show the database and use’s

gesture side by side and the program will be done. If the distances are greater than twelve

pixels, the program will first let the user know which finger needs correction and how

much movement is required in the x and y direction. The program will correct one finger

at a time, whichever finger it finds with the highest amount of deviation off. The program

will then display the database image, the user’s image, and an image of the correction of

the fingertip placement needing to be performed. The program will then return to the step

where the program provides a display of the database image of the letter the user chose

and the web camera will start up again to take a new image of the correction the program

provided to the user. The process will then repeat until the distance difference of the user’s

image is less than the twelve pixel threshold that was set.
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Figure 2.63: Flow diagram of Algorithm
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2.17 Participant testing

Four volunteers were recruited to perform testing of the ASL training program. Each partic-

ipant completed a demographic data sheet and signed an informed consent form approved

by the institutional review board (IRB) at Western Carolina University prior to participat-

ing in the study. Each participant was asked to sign two different letters of the American

Sign Language. The participants were asked to sign both letters correctly in a shaded and

unshaded environment. This was to set up a color range and to get scaling factors spe-

cific for the user in order to compare incorrectly performed gestures. The participant was

then asked to perform the two letters incorrectly, three times per letter. The program then

provided the user with instructions on how to correct each version of the letter that was

performed incorrectly. Each participant was asked to follow directions as close as possible

rather than correcting their gestures visually using the reference image. Each experiment

lasted about an hour per person. The results of the participant testing are shown below.

2.17.1 Participant 1

Participant 1 was asked to sign the letter ’a’ and ’e’. In Figures 2.64-2.69 we can see all the

incorrectly performed versions of each letters and the correction process for each as well

as the performance metric associated with the correction being performed.

Figure 2.64: Correction process with performance metric of a01, Participant 1; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) Corrected gesture and final performance metric
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Figure 2.65: Correction process with performance metric of a02, Participant 1; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial per-
formance metric, (c) 2nd correction needed, and performance metric, (d) 3rd correction
needed, and performance metric, (e) 4th correction needed, and performance metric, (f)
Corrected gesture and final performance metric

Figure 2.66: Correction process with performance metric of a03, Participant 1; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) Corrected gesture and final performance metric

Figure 2.67: Correction process with performance metric of e01, Participant 1; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) 2nd correction needed, and performance metric, (d) Corrected gesture
and final performance metric
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Figure 2.68: Correction process with performance metric of e02, Participant 1; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) 2nd correction needed, and performance metric, (d) Corrected gesture
and final performance metric

Figure 2.69: Correction process with performance metric of e03, Participant 1; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) 2nd correction needed, and performance metric, (d) Corrected gesture
and final performance metric

2.17.2 Participant 2

Participant 2 was asked to sign the letter ’a’ and ’b’. In Figures 2.70-2.75 we can see all the

incorrectly performed versions of each letters and the correction process for each as well

as the performance metric associated with the correction being performed.
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Figure 2.70: Correction process with performance metric of a01, Participant 2; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) Corrected gesture and final performance metric

Figure 2.71: Correction process with performance metric of a02, Participant 2; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial per-
formance metric, (c) 2nd correction needed, and performance metric, (d) 3rd correction
needed, and performance metric, (e) 4th correction needed, and performance metric, (f)
Corrected gesture and final performance metric

Figure 2.72: Correction process with performance metric of a03, Participant 2; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) Corrected gesture and final performance metric
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Figure 2.73: Correction process with performance metric of b01, Participant 2; (a)
Database image, (b) Initial incorrectly performed gesture and initial performance metric
(no corrections were needed)

Figure 2.74: Correction process with performance metric of b02, Participant 2; (a)
Database image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial
performance metric, (c) Corrected gesture and final performance metric

Figure 2.75: Correction process with performance metric of b03, Participant 2; (a)
Database image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial
performance metric, (c) Corrected gesture and final performance metric
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2.17.3 Participant 3

Participant 3 was asked to sign the letter ’a’ and ’L’. In Figures 2.76-2.81 we can see all the

incorrectly performed versions of each letters and the correction process for each as well

as the performance metric associated with the correction being performed.

Figure 2.76: Correction process with performance metric of a01, Participant 3; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial per-
formance metric, (c) 2nd correction needed, and performance metric, (d) 3rd correction
needed, and performance metric, (e) Corrected gesture and final performance metric

Figure 2.77: Correction process with performance metric of a02, Participant 3; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial per-
formance metric, (c) 2nd correction needed, and performance metric, (d) 3rd correction
needed, and performance metric, (e) 4th correction needed, and performance metric, (f)
Corrected gesture and final performance metric

Figure 2.78: Correction process with performance metric of a03, Participant 3; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) 2nd correction needed, and performance metric, (d) Corrected gesture
and final performance metric
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Figure 2.79: Correction process with performance metric of L01, Participant 3; (a)
Database image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial
performance metric, (c) Corrected gesture and final performance metric

Figure 2.80: Correction process with performance metric of L02, Participant 3; (a)
Database image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial
performance metric, (c) Corrected gesture and final performance metric

Figure 2.81: Correction process with performance metric of L03, Participant 3; (a)
Database image, (b) Initial incorrectly performed gesture, 1st correction needed, and ini-
tial performance metric, (c) 2nd correction needed, and performance metric, (d) Corrected
gesture and final performance metric

2.17.4 Participant 4

Participant 4 was asked to sign the letter ’a’ and ’t’. In Figures 2.82-2.87 we can see all the

incorrectly performed versions of each letters and the correction process for each as well

as the performance metric associated with the correction being performed.
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Figure 2.82: Correction process with performance metric of a01, Participant 4; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) Corrected gesture and final performance metric

Figure 2.83: Correction process with performance metric of a02, Participant 4; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) 2nd correction needed, and performance metric, (d) Corrected gesture
and final performance metric

Figure 2.84: Correction process with performance metric of a03, Participant 4; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) Corrected gesture and final performance metric
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Figure 2.85: Correction process with performance metric of t01, Participant 4; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) Corrected gesture and final performance metric

Figure 2.86: Correction process with performance metric of t02, Participant 4; (a) Database
image, (b) Initial incorrectly performed gesture and initial performance metric (no correc-
tions were needed)

Figure 2.87: Correction process with performance metric of t03, Participant 4; (a) Database
image, (b) Initial incorrectly performed gesture, 1st correction needed, and initial perfor-
mance metric, (c) Corrected gesture and final performance metric
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CHAPTER 3: RESULTS AND CONCLUSION

In this study we researched a method for developing a computer program to teach people

American Sign Language. We developed and tested an interactive program that is able to

detect correct placement of fingers for 12 static ASL gestures and provide the user with

instructions in cases when the user’s static ASL gesture is incorrect. We proved that our

method of using colored fingertips combined with image enhancement techniques allowed

for color recognition under “normal” indoor lighting conditions. Angle differences be-

tween user and database provided adequate data for identifying misplaced fingertips and

determining when gestures were considered incorrect or correct. We also used this infor-

mation to determine a threshold when comparing the user’s gestures to the database images.

We found that our method of comparing x and y displacement between each fingertip and

the centroid of all 5 fingertip locations provided accurate measurements for providing vi-

suals and descriptive information on how to correct the finger placements to match the

database images. We developed a performance metric to provide the user with a measure

of accuracy. We showed that our methods proved to be very accurate in providing correc-

tions of all twelve static open hand gestures.

We tested our program on four different individuals who tested two different letters which

were performed incorrectly three ways. The results of participant testing showed that the

program correctly guided the user to perform all incorrect gestures close to the reference

images. All final performance metrics obtained from the participant’s gestures were 90

or higher. Although some of the corrections were very complex, the program was able to

guide the user through them to correct the finger close to the reference images. This result,

combined with visual verification, indicated that our program did correct all the gestures

accurately.
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It is important to note that this project will aid in helping with the placement of the fingers

when learning to sign the alphabet. When in actual conversation with deaf speakers, one

will need to take into account that the direction and placement of the hand, in context of

the conversation itself [33]. When one expresses several gestures in sequence, the position

does not necessarily have to be directly facing the person being addressed.
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CHAPTER 4: FUTURE WORK

The ASL training program developed in this study is designed for use on static gestures in

which all the fingertips are visible. Further work could focus on closed hand gestures in

which not all of the fingertips are visible. In addition, research involving real-time could

also be looked into. This will eliminate the need of taking multiple pictures of the user’s

hand when correcting the placement of the fingers. Future work could also focus on the

training of dynamic gestures. This work could involve the use of data-gloves or image

capture combined with image recognition and interpretation techniques. Considering sign

language also consists of body and facial language as well, future work could involve the

analysis of body, facial, and hand gestures together.
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APPENDIX A: DECORRELATION

A method of image enhancement already embedded into Matlab which was used is Decor-

relation with Linear Stretching. This can be found in the Image Processing Toolbox. Here

one can find many different methods and techniques that can be used when performing

image enhancement. “Decorrelation stretching enhances the color separation of an image

with significant band-band correlation” [31]. When viewing the enhanced images, this

method provides exaggerated color which improves visual interpretation making the fea-

tures on the image easier to distinguish. The number of color bands in this function are

three (for Red, Green, Blue); but more color bands can be applied. The mean and the vari-

ance in each band remain the same. In this process, the original color values are mapped

on to a new set of color values with a wider range. “The color intensities of each pixel are

transformed into the color Eigen space of the NBANDS-by-NBANDS covariance or corre-

lation matrix stretched to equalize the band variances, then transformed back to the original

color bands” [31]. Linear contrast stretching (also known as Normalization) was added to

the decorrelation method in order to expand the color range more. The same method can

be applied alternatively using the MATLAB functions ’stretchlim’ and ’imadjust’ together.

This however limits the pixel values in certain images with unsigned integers of X amount.

The ’Tol’ option bypasses this and is used in the ’decorrstretch’ function. The ’Tol’ chosen

was .01; which meant that the transformed color range was mapped within each band to

a normalized interval between .01 and .99, saturating it two percent. Increasing the ’Tol’

gave the image too much saturation, causing the colors to blend into each other which in

essence did the opposite and made it more difficult for the program to distinguish the set

range for the colors being found. Decorrelation involves reducing the time lag between two

signals when using autocorrelation or cross-correlation while still preserving other aspects

of the signal [31]. Most of the decorrelation algorithms are linear but they can also be

non-linear [31].
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APPENDIX B: NEW MIDPOINTS USING LESS SHADING ON THE
SHADED IMAGES

In section 2.7, we presented a method for detecting fingertips. We obtained a slight im-

provement in the results by re-taking the photographs of the shaded images. Recall that

the color ranges are extracted from unshaded and shaded images and then divided into six

different cases. By using a shaded image that is not so extremely shaded, this generated

color ranges that better matched the colors of a typical user’s photograph. The results using

this modification are shown in Figures B.1-B.12.

Figure B.1: Detection of fingertips for Letter ’a’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure B.2: Detection of fingertips for Letter ’b’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip
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Figure B.3: Detection of fingertips for Letter ’e’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure B.4: Detection of fingertips for Letter ’h’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure B.5: Detection of fingertips for Letter ’i’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip
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Figure B.6: Detection of fingertips for Letter ’L’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure B.7: Detection of fingertips for Letter ’n’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure B.8: Detection of fingertips for Letter ’r’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip
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Figure B.9: Detection of fingertips for Letter ’t’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure B.10: Detection of fingertips for Letter ’u’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip

Figure B.11: Detection of fingertips for Letter ’w’. Right: Selected pixels for each finger-
tip; Left: averaged midpoint for each fingertip
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Figure B.12: Detection of fingertips for Letter ’y’. Right: Selected pixels for each fingertip;
Left: averaged midpoint for each fingertip


