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ABSTRACT 

 

 

SYNTHESIS, CHARACTERIZATION, AND LUMINESCENT PROPERTIES OF EU
3+

 DIPYRIDOPHENAZINE 

FUNCTIONALIZED COMPLEXES FOR POTENTIAL BIO-IMAGING APPLICATIONS. 

 

Jeremy Beasley 

Western Carolina University (November 2014) 

Director: Dr. Brian Dinkelmeyer 

Luminescent properties of lanthanide complexes possess unique characteristics that make 

them good candidates for possible bioimaging agents and have inspired research initiatives to 

further explore these materials.  However, the toxicity of these metals limits their applications as 

in-vivo bioimaging agents.  One solution that eliminates the toxic effects is to encase these 

lanthanide complexes in silica.  This project was designed to probe the variation in the 

fluorescence properties of a highly luminescent europium (III) complex, utilizing a fluorinated β-

diketonate ligand (thenoyltrifluoroacetone (tta)), upon the substitution of the solvent molecules 

by various functionalized dipyrido[3,2-a:2’,3’-c]phenazine (DPPZ) ligands.  A method for 

covalently attaching, or occluding complexes in silica nanoparticles were also included in the 

project design. The structure and properties of the functionalized DPPZ ligands and their 

respective complexes were determined by FT-IR, 
1
H-NMR, UV-Vis, and fluorescence 

spectroscopy techniques.  UV excitation of the complexes resulted in red luminescence (~ 614 

nm) characteristic of trivalent europium ions.  The differences in luminescence properties of the 

complexes are rationalized in terms of the electronic features of the different functionalized 

DPPZ ligands.  The higher overall quantum yield of the un-functionalized DPPZ complex, 

Eu(tta)3DPPZ (Q.Y.= 7.68 ± 0.06 %),  and the low overall quantum yield observed for 

Eu(tta)3DPPZ-COOEt (Q.Y.= 1.08 ± 0.05%), Eu(tta)3DPPZ-Si (Q.Y.= 0.65± 0.04%), 
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Eu(tta)3DPPZ-COOH (Q.Y.= 0.61± 0.07 %), Eu(tta)3DPPZ-CH3 (Q.Y.= 0.59±0.02 %) are 

rationalized in terms of how electron donating or withdrawing groups affect their respective 

ligand-to-metal energy transfer efficiencies.  Eu(tta)3DPPZ was the only complex to show 

enhanced luminescent properties capable of potential applications in biomedical imaging. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Problem Statement 

 Inorganic-organic hybrid materials are an emerging class of materials whose properties 

can be tailored depending on the application. In particular, luminescent nanomaterials whose 

areas of application range from optics and electronics to energy, environment, biology and 

medicine.  More specific applications include photovoltaic cells, micro-optical/-electronic 

components, nanophotonics, cosmetics, light emitting diodes, laser technology, as well as 

controlled targeting and release of active molecules for medical imaging and therapy purposes.
4,7

 

 Inorganic sol-gel materials have been the focus of recent research due to their attractive 

photonic capabilities as well as their low cost in developing siloxane based matrices. Research in 

this area includes light emitting lanthanide-based multi-functional hybrids with potential 

applications in tunable lasers, amplifiers for optical communications, emitter layers in multilayer 

light emitting diodes, efficient light conversion molecular devices, and light concentrators for 

photovoltaic devices.
1,2,5 

A significant part of this research has involved the encapsulation of 

lanthanide organic complexes with diketonates, aromatic carboxylic acids, or heterocyclic 

ligands into hybrid matrices through (i) simple embedding of the complexes,
10-12 

(ii) use of 

ligands covalently grafted to the framework,
10,21 

or (iii) anchoring the metal center to specific 

functional groups of the hybrid matrix.
22-31 

Some of these works explicitly quantified the 

modifications in the emission features of the hybrids, relative to those of the precursor complex. 

There was an improvement in the photostability under UV radiation (one of the drawbacks of 

lanthanide diketonate chelates)
 
and the increase in the emission quantum yields relative to their 
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corresponding precursor complexes.
10

 Lanthanide ions exhibit limited photo-bleaching, higher 

chemical stability which make them more sought after alternatives to organic dyes.
7
  

1.2 Background 

1.2.1 Lanthanide and Ligand Chemistry 

 The properties that make lanthanide complexes of particular interest are their long 

luminescence lifetimes and narrow emission bands.
1-2,4-5

 These characteristics make them good 

candidates for possible bio-imaging agents.  The 4f orbitals of lanthanide (III) ions are shielded 

by the filled 5s and 5p sub-shells, which are the source of their narrow emission bands.  

Lanthanide (III) ion’s 4f-4f electronic transitions are forbidden by the electric dipole selection 

rules due to their orbital parity (Laporte forbidden) being the same in both the initial and final 

electronic states.  This makes direct excitation of f-electrons from lanthanide (III) ions difficult to 

reach an emissive level.  The selection rules are conducive to the lanthanide (III) ion’s being 

excited either during a temporary change in geometric arrangement around the ion, or mixing 

with opposite parity wave functions from 5d orbitals, ligand orbitals, or charge transfer states.
1
 

Because the likelihood of an electric dipole f-f transition is low and direct excitation of a 

lanthanide (III) ion is difficult, an organic chromophore (antenna) ligand can be used to transfer 

energy to the lanthanide (III) ion.  The ligands are covalently bound to the lanthanide and 

transfer energy through a process described as “the antenna effect”.
1
 The ligands (antennae) are 

capable of absorbing light, and transferring the energy of that light to the lanthanide (III) ion.  
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excitation

hv
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energy transfer

organic 
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Figure 1.  An illustration of the "antenna" effect, where incident excitation is absorbed by a chelating organic chromophore 

and energy is transferred to the metal. 

 Excitation of the ligand causes electrons to eventually inhabit the triplet state of the 

ligand (by intersystem crossing).  From there electrons can transfer energy from the triplet state 

to the emissive state of the lanthanide complex center. For the sensitization of the lanthanide (III) 

ion to be more efficient, the antenna ligand needs to have a triplet state (T1) energy similar to that 

of the energy of the lanthanide (III) ions in order to achieve an efficient energy transfer necessary 

for emission of the lanthanide complexes. The structural parameters also play a role in energy 

transfer as the distance between the antenna and the metal ion is crucial for an efficient energy 

transfer process.
20

  

 

Figure 2.  Jablonski diagram showing the energy transfer from the excited state of the ligand to the excited state of 

the europium ion and to the ground state via luminescence. 

Chromophore
S

0

S
1

T
1

5D
0

7F
0

7F
6

Eu+3

E
x
c
it
a
ti
o
n

C
h

ro
m

o
p

h
o

re
F

lu
o

re
s

c
e

n
c

e

ISC

C
h

ro
m

o
p

h
o

re
P

h
o

s
p

h
o

re
s

c
e

n
c

e

ET

EBT
Significant Eu3+ Emission Bands

5D
0
        7F

0
     580 nm

5D
0
       7F

1
      595 nm

5D
0
      7F

2
       615 nm

5D
0
       7F

3
      655 nm



4 

 

 Europium (III) complexes with appropriate antenna ligands have many advantages over 

other lanthanide complexes as bio-imaging agents. The advantage of these Eu
3+

 complexes over 

other lanthanide complexes is that they can be adequately sensitized with longer wavelength 

(visible) light which is less harmful to the biological targets (tissues, cells, etc.) than traditional 

UV excitation.
21

  Another advantage of Eu
3+

 complexes is that they have a narrow emission line 

that occurs in the red light region which have minimal interference from luminescing biological 

samples.
4 

Additionally, Eu
3+

 complexes have a high luminescence quantum yield, large Stokes 

shift and a long luminescence lifetime on the millisecond order.
1
 These properties make Eu

3+ 
a 

prime candidate to coordinate with organic chromophore ligands used in biomedical imaging 

applications. 

 

Figure 3.  Example spectra demonstrating the Stokes shift. 

Modulating/optimizing the luminescent properties of lanthanide ion complexes can be 

accomplished by systematically varying the identity of their attached ligands.  

 To get a luminescing organometallic complex for potential bioimaging applications, the 

appropriate ligand must first be chosen and synthesized.  These properties impact the potential 
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use of these complexes in biomedical applications.  More specifically, if used in a bio-imaging 

application, the biocompatibility of these complexes would have to be determined.  Furthermore, 

if they were found to be toxic, their use would require that these complexes first be rendered 

harmless. One limitation of lanthanide based bioimaging agents is their toxicity.  This toxicity 

can be mediated by using a silane coupling agent, capable of forming/binding to silica 

nanoparticles, to functionalize the ligand coordinating to the Eu
3+

 complex in order to make it a 

more biocompatible matrix.
6,11-12,15

  This offers only a partial solution since the porosity of glass 

may allow Eu
3+

 to diffuse out of the Si-glass matrix, and into the biological sample.    

 An organic photoactive chelator, usually in the form of a multi-dentate ligand with an 

appropriate chromophoric antenna attached is chosen.  Coordination with monodentate ligands 

are typically weak, and they are unable to adequately displace water molecules from the first 

coordination sphere.
3
  However, a chelating antenna ligand (in conjunction with other chelating 

ligands) coordinates to the lanthanide ion, and facilitates energy transfer between the two.  This 

protects the lanthanide from coordination with water (or other solvents), and provides a structure 

to which other reactive functional groups can be attached.
3
    

1.2.2 Silane and Sol-Gel Chemistry 

 Silane coupling agents have the ability to form durable bonds between organic and 

inorganic materials. The basic structure for a silane coupling agent typically has two reactive 

groups.  The X (hydrolyzable) group is typically alkoxy, acyloxy, halogen or amine in nature, 

and reacts with the inorganic portion of the desired substrate.  The R group is a nonhydrolyzable 

organic radical that binds to another organic compound, and may possess a functionality that 

imparts desired characteristics to that compound.  
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R-(CH
2
)
n
     Si     X

3

organofunctional 
group

linker silicon 
atom

hydrolyzable 
groups

 

Figure 4. General structure formula for a silane coupling agent. 

The most widely used organosilanes have one organic substituent and three hydrolyzable 

substituents.  Maximum hydrolytic stability (resistance to water) can be achieved with three 

hydrolyzable substituents. Reaction of silanes occurs during four different processes.  Firstly, 

hydrolysis of the three X groups occurs. Secondly, condensation to oligomers follows hydrolysis.  

Thirdly, the oligomers then hydrogen bond with OH groups of the substrate.  Finally, during 

drying, a covalent bond is formed with the substrate while losing water.
24

 

 

Figure 5.  General process for the bond formation of silanes to a substrate.24
 

 There is usually only one bond from each silicon of the organosilane to the substrate 

surface.  The R group remains available for covalent reaction with other organic compounds.  
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 The coupling agents linker ((CH2)n), between the organic functionality and the silicon 

atom, plays a role in determining what properties the system will have.  Depending on the length 

of the linker a systems physical properties may vary and reactivity inhibited.  Many applications, 

such as sensors, composite and fluorescent materials, require that reactive centers be close in 

proximity to the substrate in order to maximize the utilization of their desired properties.  Steric 

constraints and the accessibility of the organic functional group near the inorganic surfaces are of 

concern when designing a system with silane coupling agents.  As the linker length increases the 

organic functional group has the ability to extend further away from the surface of the inorganic 

substrate.  The characteristics of silane coupling agents are of particular importance when 

designing luminescent materials for biological applications.
24 

1.3 Objectives 

 The questions and concerns described above, are the basis from which this research 

project was designed.  The goal of this project was to synthesize functionalized phenanthroline-

based ligands, coordinate them to Eu
3+

, to investigate their absorbance and fluorescence 

properties, study the variation in complex luminescence upon substituent substitution of the 

ligand, and develop a method for covalently attaching or occluding them in silica nanoparticle.  

Having the europium complexes covalently bound within a silica matrix will minimize any 

diffusion of these complexes out of the glass and preclude any toxicity effects. Sol-gel derived 

siloxane hybrid materials have attracted interest for their possible photonic applications due to 

their ability to combine the optical quality of silica, along with its thermal stability and 

mechanical strength, with the characteristics of organic molecules (chromophores).  Organic 

chelates are known to be adequate sensitizers of lanthanide ions. Organic chelates also help 

reduce the hydroxyl concentrations and quenching during the formation of the siloxane matrixes. 
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Dipyridophenazine (DPPZ) was chosen as the appropriate phenanthroline-based ligand for this 

project.  

 

Figure 6. Structure of DPPZ with ring labels and numbering. 

 DPPZ is an organic, chelating (bidentate) ligand that is planar, chromophoric, 

heterocyclic, and aromatic in nature.  Metal complexes which contain these DPPZ ligands have 

been shown to intercalate with DNA.  This allows for non-covalent insertion of the aromatic 

rings between the base pairs in the DNA double helix via electrostatic and van der Waals forces, 

which eventually lengthens, stiffens and unwinds the double helix.
3,7

  This makes intercalators 

sought after mutagens that inhibit transcription, replication and other DNA repair processes 

implemented in anti-cancer agents. The study of the intercalating behavior in DNA processes are 

beyond the scope this project, and will not be examined.   

 DPPZ is also a compound of interest because of its electronic structure.  Reduction of 

these ligands leads to the formation of radical anion with a charge located on the phenazine part 

of the ligand.  Unoccupied molecular orbitals (MO’s) are located over either the phenanthroline 

(phen; rings A, B and C), or the phenazine (phz; rings B, D and E) portions of the ligand.  The 

molecular orbital model used to describe the properties of DPPZ was probed in a series of 

experiments.
13

 Through substitution of functional groups to DPPZ it is possible to tune the 

energy level of the phz portion of the ligand.  Substituting electron withdrawing groups leads to a 

N

N
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N
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C
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more positive reduction potential, while substituting electron donating groups results in a more 

negative reduction potential. The more negative the reduction potential the higher the electron 

transfer potential becomes.
9
 

This project focused on investigating the structural and electronic effects of unsubstituted 

DPPZ as well as substituting a methyl, carboxylic acid, ethyl ester and amidosilane at the 11 

position of DPPZ.  Thenoyltrifluoracetone (tta) was coordinated to three bidentate sites (six total 

coordination sites) of the europium (III) coordination complex to boost the luminescence 

efficiency of the complexes due to β-diketonates being very efficient chromophores.   The effects 

of coordinating the functionalized DPPZ ligands to the europium (III) coordination complex via 

the displacement of two water molecules were monitored. 

N

N

Eu

O

O

O

SF3C

OO

S CF3

O

S

CF3

R

 

Figure 7.  Proposed structure of the octacoordinate europium complex utilizing tta, and functionalized DPPZ 

ligands.  R= -H, -CH3, -COOH, -COOEt, -Si. 

Measuring the effects of occluding the DPPZ-Si coordination complex within a silica 

nanoparticle was also probed.  The synthesis of these ligands, complexes and nanoparticles, and 

characterization using FTIR and NMR techniques are reported. Due to limited resources their 

crystal structures were unable to be determined for the ligands and complexes.  Electronic 
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properties of the ligands and their coordination complexes were investigated using UV-Vis 

absorption spectroscopy and fluorescence spectroscopy.  In the future, these results could be used 

to explore the substituent effects on the complexes using computational methods such as density 

functional theory (DFT).   
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CHAPTER 2: EXPERIMENTAL 

 

All reagents were purchased from Sigma Aldrich or Acros Organics and used without 

further purification unless otherwise stated.  Synthesized ligands and complexes were 

characterized using Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance 

(NMR, when applicable), UV-visible and fluorescence spectroscopic techniques.  The methods 

used for characterization will be discussed in this section along with all instrument 

specifications. 

2.1 Materials and Instrumentation  

2.1.1 Fourier Transform Infrared Spectroscopy  

 FTIR spectra were obtained using a Perkin Elmer Spectrum One.  All measurements were 

performed at room temperature with a scanning range of 4000 cm
-1 

– 600 cm
-1

, using single-

bounce attenuated total reflectance with a diamond crystal.  For all of the materials that were 

measured as a solid powder (all solvents had been removed), the background was performed on 

the instrument room environment. The ATR plate was cleaned with a Kimwipe and acetone 

between each measurement.   

2.1.2 Nuclear Magnetic Resonance Spectroscopy  

 NMR spectra were obtained using a JEOL 300 MHz Eclipse NMR with a 5 mm probe 

capable of detecting 
1
H and 

13
C nuclei.  Proton NMR samples were prepared using ~10 mg of 

material, in either deuterated chloroform (CDCl3) or deuterated dimethyl sulfoxide (d6-DMSO) 

unless otherwise stated, and spectra were obtained using a varying number of scans ranging from 

16-128 as to ensure an adequate signal-to-noise ratio was acquired.  Carbon NMR samples were 

prepared similarly, except material was added until the deuterated solution became saturated.  
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2.1.3 UV-Visible Absorption Spectroscopy  

 UV-Vis spectra were collected using an Agilent 8453 UV-Vis spectrometer at room 

temperature. This instrument has two different sources: a deuterium lamp (for UV 

measurements), and a tungsten lamp (for visible measurements). The use of a photodiode array 

detector allows the spectrometer to detect a wavelength range of 190 nm – 1100 nm at 1 nm 

intervals.  All of the blank and sample measurements were made using a quartz cuvette (1 cm 

path length). There were three different solvents used to dissolve the ligands and their respective 

complexes: chloroform (DPPZ-COOEt, DPPZ-Si, Eu(tta)3(H2O)2, Eu(tta)3DPPZ-COOEt, and 

Eu(tta)3DPPZ-Si), dimethyl sulfoxide (DPPZ-CH3, DPPZ-COOH, Eu(tta)3DPPZ-CH3, and 

Eu(tta)3DPPZ-COOH), and acetonitrile (DPPZ, and Eu(tta)3DPPZ).  Blanks were obtained of the 

solvent, and all samples dissolved in that particular solvent were subsequently measured to 

prevent the need for continuous re-blanking.  For the quantum yield measurements, analytical 

grade solvents were used and cresyl violet was used as the reference material. The cresyl violet 

was dissolved in methanol, a blank containing methanol was used for those measurements. All of 

the samples of interest, as well as the reference samples, that were prepared for the quantum 

yield measurements were adjusted to have absorbance values less than 0.1 A.U.  Each sample 

was measured in triplicate on three different days, and all the spectra were averaged in order to 

account for any possible environmental or instrumental error associated with the measurements.  

2.1.4 Fluorescence Spectroscopy  

 Fluorescence spectra were acquired using a Perkin Elmer LS-55 Luminescence  

Spectrometer at room temperature.  The same solvent systems for the blanks (to correct for any 

solvent fluorescence), samples and references that were used for UV-Vis measurements were 

also used for fluorescence measurements.  A quartz cuvette was used for all measurements. A 
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scanning range of 200 nm – 800 nm with a scan speed of 200 nm/min was used, with an 

excitation and emission slit of 5.0 nm.  

2.1.5 Quantum Yield Measurements 

 The quantum yield calculations were made using the ae UV-Vis-IR Spectral Software by 

FluorTools.
25

 The software utilizes the following equation: 

𝑄𝑌 = 𝑄𝑌𝑟𝑒𝑓 (
𝑛2

𝑛𝑟𝑒𝑓
2 ) (

𝐼

𝐴
) (
𝐴𝑟𝑒𝑓
𝐼𝑟𝑒𝑓

) 

where QY is the quantum yield of the compound, n is the refractive index of the solvent, I is the 

integrated fluorescence intensity and A is the absorbance at the excitation wavelength.  Cresyl 

violet (QY=0.54) was chosen as the reference compound, and was prepared in methanol 

(n=1.3284).  The excitation wavelength for cresyl violet was at 592 nm (A=0.06006), while the 

emission range used to calculate the integrated fluorescence intensity (I=21608.99) for cresyl 

violet was from 550-725 nm.  These values remain the same for the quantum yield calculations 

for all of the complexes. 

 For the Eu
3+

 complexes a variety of solvents were utilized.  Eu(tta)3DPPZ, Eu(tta)3DPPZ-

CH3/Eu(tta)3DPPZ-COOH, and Eu(tta)3DPPZ-COOEt/Eu(tta)3DPPZ-Si measurements were 

made in acetonitrile (n=1.3441), DMSO (n=1.4793), and chloroform (n=1.4458) respectively. 

The excitation wavelength ranges from 342-349 nm for the various complexes, while the 

emission range used to calculate the integrated fluorescence intensity for the complexes was 

from 550-664 nm.  Baseline absorption and emission spectra of pure solvents were also collected 

(at their respective excitation wavelengths) to be subtracted from the measured absorption and 

emission spectra to correct for background absorption or emission imparted by the solvents.  

Each sample was measured in triplicate on three different days, and all the spectra were averaged 
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in order to account for any possible environmental or instrumental error associated with the 

measurements. 

2.2 Functionalized Dipyridophenazine Ligand Preparation  

2.2.1 Synthesis of 1,10-phenanthroline-5,6-dione
8
  

1,10-phenanthroline-5,6-dione was synthesized from one equivalent of 1,10-phenanthroline 

(fw:198.23 g/mol, 1.164g, 0.008587 mol), 2.5 equivalents of potassium bromide (fw:119.01 

g/mol, 2.4889 g, 0.02091 mol,), 37.5 equivalents of sulfuric acid (d=1.84 g/mL;16.6 mL, 0.312 

mol), and 15 equivalents of nitric acid (d=1.42 g/mL;8.00 mL, 0.126 mol).  Sulfuric and nitric 

acid were added dropwise to the round bottom flask containing the dione and potassium 

bromide.  Orange bromine gas begins to form and is continually purged with argon.  The reaction 

was heated at reflux until the formation of bromine gas dissipated.  The solution was poured into 

an ice bath and brought to a neutral pH using 6M sodium hydroxide to form a yellow solution.  

The solution was extracted with dichloromethane and dried with magnesium sulfate.  The 

solution was then filtered to remove the magnesium sulfate and rotovapped, yielding a yellow 

solid product.  The crude product was dissolved in chloroform, and recrystallized from 

chloroform to hexanes.  Yield:  4.4 g (84 %).  
1
H-NMR (CDCl3, 300MHz): δ 9.06 (d, 2H), 8.44 

(d, 2H), 7.55 (dd, 2H) ppm.  FTIR (ATR): 1718, 1687 cm
-1

.   

2.2.2 Synthesis of Dipyrido[3,2-a:2’,3’-c]phenazine (DPPZ)
17

 

N

N

O

O

+

NH2

NH2

N

N

N

N

NCH3

i) stir at RT 24 h

 

Scheme 1.  Reaction scheme for dipyrido[3,2-a:2’,3’-c]phenazine (DPPZ). 
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DPPZ was synthesized from one equivalent of 1,10-phenanthroline-5,6-dione (fw: 210.19 g/mol, 

0.1171 g, 0.557 mmol) and one equivalent of o-phenylene diamine (fw: 108.14 g/mol, 0.0614 g, 

0.568 mmol).  Dichloromethane (6.00 mL) was added and allowed to stir until most of the 

starting material had gone into solution before acetonitrile (2.65 mL) was added.  The solution 

was allowed to stir for 24 hours, and rotovapped to give final product.  No further purification 

was done.  Yield:  0.116 g (76%).  
1
H-NMR (d6-DMSO, 300MHz): δ 9.54 (dd, 2H), 9.23 (dd, 

2H), 8.41 (dd, 2H), 8.09 (dd, 2H), 7.93 (dd, 2H) ppm. FTIR (ATR): 2943, 1480, 819, 737 cm
-1

.  

UV/vis (CH3CN ): λmax = 268 nm, 359 nm, 378 nm. Fluorescence (CH3CN, λex = 386 nm): λem = 

432 nm.   

2.2.3 Synthesis of Dipyrido[3,2-a:2’,3’-c]phenazine-11-methyl (DPPZ-CH3)  

N

N

O

O

+
NH2

NH2

CH3

CH
2
Cl

2

N

N

N

N

CH3

Scheme 2. Reaction scheme for dipyrido[3,2-a:2’,3’-c]phenazine-11-methyl (DPPZ-CH3). 

1,10-phenanthroline-3,4-diaminotoluene was synthesized from one equivalent of 1,10-

phenanthroline-5,6-dione (fw: 210.19 g/mol, 0.2275 g, 1.08 mmol), and one equivalent of 3,4-

diaminotoluene (fw: 122.17 g/mol, 0.1329 g, 1.09 mmol) in dichloromethane.  First, the dione 

was dissolved in dichloromethane (5 mL) before diaminotoluene was added.  The solution was 

gently heated overnight.  The solvent evaporated overnight.  Chloroform was added to the 

product and dissolved.  Recrystallization from chloroform to hexanes yielded small red crystals.  

No further purification was performed. 
1
H-NMR (CDCl3, 300MHz): δ 9.70 (dd, 2H), 9.36 (d, 

2H), 8.19 (dd, 2H), 7.88 (dd, 2H), 7.80 (dd, 1H), 2.73 (s, 3H) ppm. FTIR (ATR): 2943, 1480, 
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819, 737 cm
-1

.  UV/vis (DMSO): λmax = 273 nm, 367 nm, 387 nm. Fluorescence (DMSO, λex = 

330 nm): λem = 413 nm. 

2.2.4 Synthesis of Ethyl 3,4-diaminobenzoate  

NH2

NH2

O

OH

NH2

NH2

O

OCH3

EtOH, H
2
SO

4

reflux 4 h

 

Scheme 3.  Reaction scheme for ethyl-3,4-diaminobenzoate. 

3,4-diaminobenzoic acid (fw: 152.15 g/mol, 1.5090 g, 9.92 mmol) was dissolved in boiling 

ethanol (EtOH, 90 mL).  Concentrated sulfuric acid (3 mL) was added dropwise to the solution, 

and heated at reflux for four hours.  Solvent was then removed under vacuum.  Crude product 

was dissolved in water (~60 mL), and the pH was adjusted to 10 via addition of 3M NaOH.  The 

aqueous layer was extracted by multiple washes with CHCl3, and washing of the organic layer 

with brine and water, evaporation of chloroform yielded a yellow solid product.  No further 

purification was performed.  The product was dissolved in EtOH (~120 mL) and refrigerated, to 

prevent possible polymerization of the product.  No further characterization was performed 

because of this being an intermediate.  Yield: 1.57 (86 %) 
1
H-NMR:  (D2O, 300MHz): δ 7.67 (m, 

2H), 7.07 (d, 1H), 4.559 (qt, 2H), 1.598 (t, 3H). 

2.2.5 Synthesis of Dipyrido[3,2-a:2’,3’-c]phenazine-11-ethyl ester (DPPZ-COOEt) 

NH2

NH2

O

OCH3
EtOH

phendione

N

N

N

N

O

O

CH3

 

Scheme 4.  Reaction scheme for dipyrido[3,2-a:2’,3’-c]phenazine-11-ethyl ester (DPPZ-COOEt). 
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One equivalent of 1,10-phenanthroline-5,6-dione (fw: 210.19 g/mol, 0.3647 g, 1.74 mmol) was 

added to EtOH (15 mL) and CHCl3 was added until solid dissolved.  Once dissolved, one 

equivalent of ethyl 3,4-diaminobenzoate-EtOH solution (30 mL, 0.33 g, 1.83 mmol) was added 

dropwise to the boiling solution.  A brownish tan precipitate was formed during the mixing.  The 

mixture was heated at reflux for ~30 minutes.  Crude product was collected via vacuum 

filtration.  Solid product was recrystallized from chloroform to hexanes. Yield:  0.380 g (82 %). 

1
H-NMR (CDCl3, 300MHz): δ 9.65 (dd, 2H), 9.31 (dd, 2H), 9.09 (d, 1H), 8.47(dddd, 2H), 7.84 

(dd, 2H), 4.55 (qt, 2H), 1.52 (t, 3H) ppm. FTIR (ATR): 3016, 2943, 1711,1406  1204, 738 cm
-1

.  

UV/vis (CHCl3): λmax = 277 nm, 366 nm, 386 nm. Fluorescence (CHCl3, λex = 386 nm): λem = 

435 nm.   

2.2.6 Synthesis of Dipyrido[3,2-a:2’,3’-c]phenazine-11-carboxylic acid (DPPZ-COOH)  

 

Scheme 5.  Reaction scheme for dipyrido[3,2-a:2’,3’-c]phenazine-11-carboxylic acid (DPPZ-COOH). 

Method a.  The synthesis of the carboxylic acid functionalized dppz was synthesized from one 

equivalent of 1,10-phenanthroline-5,6-dione (fw: 210.19 g/mol, 0.1534 g, 0.730 mmol) with one 

equivalent of 3,4-diaminobenzoic acid (fw: 152.15 g/mol, 0.1110 g, 0.730 mmol).  1,10-

phenanthroline-5,6-dione was added to boiling EtOH (~20 mL) and CHCl3 was added until solid 

dissolved, and 3,4-diaminobenzoic acid was dissolved in boiling EtOH (~10 mL).  Once both 

solutions had completely dissolved the starting materials, the solutions are mixed together and 

heated at reflux for 10 minutes.  A greyish tan precipitate began to form.  After cooling, the 
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precipitate was vacuum filtered and washed with ethanol to remove impurities and dried under 

vacuum.  The crude product consisted of a mixture of starting material and product that was 

difficult to separate.  Yield:  0.298 g (81 %).  H
1
 NMR (d6-DMSO, 300MHz): δ 9.58 (dd, 2H), 

9.24 (dd, 2H), 8.84 (d, 1H), 8.50 (dd, 2H), 8.08 (dd, 2H), 3.45 (s, 1H) ppm.  FTIR (ATR): 3345, 

3050, 2945, 1727, 1089, 1045, 724 cm
-1

. 

Method b.  The syntheisis of DPPZ-COOH was synthesized by base hydrolosis of DPPZ-

COOEt.  DPPZ (.0.2168g, 0.612 mmol) was brought to reflux in 65ml of THF and 10ml water.  

6M KOH (1.0 ml, 0.612mmol) was added to the reaction vessel and the reaction was allowed to 

reflux for 30 minutes.  The reaction was allowed to cool and stirred at ambient temperature 

overnight.   The THF was removed by rotary evaporation.  The reaction was diluted with 20 ml 

of water and the pH adjusted to 3 with 2M HCl.  The white solid product was isolated by vacuum 

filtration, rinsed with ethanol and dried under vacuum.  The product produced was sufficiently 

pure for further use.   Yield:  0.1744 g (88 %).  H
1
 NMR (d6-DMSO, 300MHz): δ 9.58 (dd, 2H), 

9.24 (dd, 2H), 8.84 (d, 1H), 8.50 (dd, 2H), 8.08 (dd, 2H), 3.45 (s, 1H) ppm.  FTIR (ATR): 3345, 

3050, 2945, 1727, 1089, 1045, 724 cm
-1

.  UV/Vis (DMSO): λmax = 275 nm, 369 nm, 388 nm. 

Fluorescence (DMSO, λex = 320 nm): λem = 521 nm.   

2.2.7 Synthesis of Dipyrido[3,2-a:2’,3’-c]phenazine-11-carboxamide,N –[3-triethoxy)propyl] 

(DPPZ-Si) 

N

N

N

N

OH

O

excess SOCl
2

reflux 4 h

N

N

N

N

Cl

O
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Scheme 6. Reaction scheme for dipyrido[3,2-a:2’,3’-c]phenazine-11-carboxamide,N –[3-triethoxy)propyl] (DPPZ-

Si). 

DPPZ-Si was synthesized via a two-step process.  First, DPPZ-COOH (0.1025 g, 0.314 mmol) 

was dissolved in excess SOCl2 (3 mL) and refluxed for 4 h.  The excess SOCl2 was removed 

under a stream of argon until dry.  The tan acid chloride intermediate, DPPZ-COCl (0.1314, 

0.381 mmol) was dissolved in anhydrous diethyl ether (15 mL) and placed under inert 

atmosphere.   3-aminopropyltriethoxysilane (APS= -Si, 0.18 mL, 0.769 mmol ) and pyridine 

(0.07 mL, 0.858 mmol) were mixed in anhydrous diethyl ether (3 mL), and this solution was 

added dropwise to the DPPZ-COCl mixture.  The resulting solution was stirred for 4 h under 

argon at room temperature.  Pyridinium hydrochloride salt precipitate was vacuum filtered out of 

solution followed by evaporation of diethyl ether and pyridine that led to a red oily residue.  

Upon further purification, the residue was redissolved in anhydrous diethyl ether and vacuum 

filtered.  The solid product was washed off of the filter paper and dissolved in chloroform.  

Precipitate that did not dissolve was separated via gravity filtration, and evaporation of solvent at 

room temperature yielded a clear yellow oil.  Yield:  0.873 g (43%).  H
1
 NMR (CDCl3, 

300MHz): δ 9.63 (t, 2H), 9.31 (dd, 2H), 8.71 (d, 1H), 8.38 (dd, 2H), 7.84 (dd, 2H), 3.89 (q, 6H), 

3.61 (t, 2H), 1.88 (t, 1H), 1.25 (t, 9H), 0.84 (dd, 4H) ppm.  FTIR (ATR): 3274, 3075, 2963, 1640, 

1618, 1547, 1099 cm
-1

.  UV/Vis (CHCl3): λmax  = 269 nm, 367 nm, 385 nm. Fluorescence 

(CHCl3, λex = 349 nm): λem = 439 nm.   
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2.3 Europium Dipyridophenazine Functionalized Complex Preparation 

2.3.1 Synthesis of Eu(tta)3(H2O)2  

Thenoyltrifluoroacetone (tta, 0.7548 g, 3.41 mmol) was added to an aqueous solution of NaOH 

(0.1342 g, 3.36 mmol in 20 mL H2O).  The solution was allowed to stir for 10 minutes.  The 

resulting clear solution was then added to an aqueous solution of EuCl3·6H2O (0.4144 g, 1.13 

mmol in 12 mL of H2O) to form a white precipitate, and allowed to stir under nitrogen at 60°C 

for 30 min and at room temperature for an additional 3 h.  The precipitate was filtered off, 

washed with cold water (2x100 mL), hexane (3 mL) and dried under vacuum for 12 h.  

Recrystallization of the product from acetone:ethanol (v/v 1:1). The remaining product was 

dissolved in acetone (30 mL) Yield: 0.3639 g (38 %).  UV/vis (CHCl3): λmax = 275 nm, 343 nm. 

Fluorescence (CHCl3, λex = 275 nm): λem = 614 nm, 594 nm, 580 nm, 652 nm.   

2.3.2 Synthesis of Eu(tta)3DPPZ 

DPPZ (0.0158 g, 0.056 mmol in 10 mL acetonitrile) was added to a solution of Eu(tta)3(H2O)2 

(0.0478 g, 0.055 mmol in 4 mL of acetone) and allowed to stir for 30 min at 60°C.  Subsequent 

stirring was done at room temperature for 12 h.  The solution was filtered and allowed to 

evaporate at room temperature yielding the pure product.  UV/vis (CH3CN ): λmax = 272 nm, 341 

nm, 356 nm, 375 nm. Fluorescence (CH3CN, λex = 342 nm): λem =613 nm, 592 nm, 580 nm, 652 

nm..  Fluorescence quantum yield (λex= 342 nm, reference: cresyl violet in MeOH with Φ = 

0.54): 7.68 ± 0.06%. 

2.3.3 Synthesis of Eu(tta)3DPPZ-CH3 

DPPZ-CH3 (0.0137 g, 0.046 mmol in 2 mL DMSO) was added to a solution of Eu(tta)3(H2O)2 

(0.0437 g, 0.051 mmol in 3.6 mL of acetone) and allowed to stir for 30 min at 60°C.  Subsequent 

stirring was done at room temperature for 12 h.  The solution was filtered and allowed to 
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evaporate at room temperature yielding the pure product.  UV/vis (DMSO): λmax = 272 nm, 347 

nm, 364 nm, 384 nm. Fluorescence (DMSO, λex = 349 nm): λem = 616 nm , 592 nm, 581 nm, 555 

nm, 652 nm.  Fluorescence quantum yield (λex= 349 nm, reference: cresyl violet in MeOH with 

Φ = 0.54): 0.59 ± 0.02%. 

2.3.4 Synthesis of Eu(tta)3DPPZ-COOH 

DPPZ-COOH (0.0241 g, 0.074 mmol in 5 mL DMSO) was added to a solution of Eu(tta)3(H2O)2 

(0.0630 g, 0.074 mmol in 5.20 mL of acetone) and allowed to stir for 30 min at 60°C.  

Subsequent stirring was done at room temperature for 12 h.  The solution was filtered and 

allowed to evaporate at room temperature yielding the pure product.  UV/vis (DMSO): λmax = 

273 nm, 346 nm. Fluorescence (DMSO, λex = 349 nm): λem = 615 nm, 592 nm, 581 nm, 556 nm, 

652 nm.  Fluorescence quantum yield (λex= 349 nm, reference: cresyl violet in MeOH with Φ = 

0.54): 0.61± 0.07%. 

2.3.5 Synthesis of Eu(tta)3DPPZ-Si 

DPPZ-Si (0.0091 g, 0.0171 mmol in 5 mL chloroform) was added to a solution of Eu(tta)3(H2O)2 

(0.0149 g, 0.0170 mmol in 1.20 mL of acetone) and allowed to stir for 30 min at 60°C.  

Subsequent stirring was done at room temperature for 12 h.  The solution was filtered and 

allowed to evaporate at room temperature yielding the pure product.  UV/vis (CHCl3): λmax = 279 

nm, 346 nm, 363 nm, 382 nm. Fluorescence (CHCl3, λex = 347 nm): λem = 613 nm, 592 nm, 580 

nm, 652 nm.  Fluorescence quantum yield (λex= 347 nm, reference: cresyl violet in MeOH with 

Φ = 0.54): 0.65± 0.04%. 

2.3.6 Synthesis of Eu(tta)3DPPZ-COOEt 

DPPZ-COOEt (0.0248 g, 0.070 mmol in 5 mL chloroform) was added to a solution of 

Eu(tta)3(H2O)2 (0.0615 g, 0.072 mmol in 5 mL of acetone) and allowed to stir for 30 min at 
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60°C.  Subsequent stirring was done at room temperature for 12 h.  The solution was filtered and 

allowed to evaporate at room temperature yielding the pure product.  UV/vis (CHCl3): λmax = 275 

nm, 346 nm, 363 nm, 383 nm. Fluorescence (CHCl3, λex = 347 nm): λem = 614 nm, 592 nm, 580 

nm, 652 nm.  Fluorescence quantum yield (λex= 347 nm, reference: cresyl violet in MeOH with 

Φ = 0.54): 1.04 ± 0.05%. 

2.3.7 Synthesis of Eu(tta)3DPPZ-Si Silica Nanoparticles 

Eu(tta)3DPPZ-Si (20 mg, 0.0336 mmol) was added to 50 mL of EtOH and allowed to stir at 30°C 

for 30 min.  TEOS (3 mL, 0.0133mmol), NH4OH ( 1 mL, 28%),  and nanopure H2O (2 mL) was 

added to the mixture, heated to 55°C and allowed to stir for 18 h.  The solution was centrifuged 

at 4000 rpm for 20 min, the supernatant fluid was decanted, and the remaining solid particles 

were allowed to dry at room temperature.  
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CHAPTER 3: RESULTS AND DISCUSSION 

 

One goal of this project was to develop phenazine based ligands that can absorb light and 

transfer the energy to the complexed lanthanide (III) ion.  In pursuing this goal a number of 

phenazine ligands were synthesized which contained both electron-donating and electron-

withdrawing groups.  The hypothesis was that the addition of these groups would perturb the 

electronic properties of the phenazine ligands and affect their ability to transfer energy to the 

Eu(III).  The goal was to rationally develop a ligand that would be able to optimize the quantum 

yield of the Eu(III) complex.  As of yet, no clear trend suggests itself in regard to the effect of 

electron donating and withdrawing groups on the quantum yields of the Eu(III) complexes 

studied.    

3.1 Dipyrido[3,2-a:2’,3’-c]phenazine Ligand and Eu
3+

 Complex. 

3.1.1 Fourier Transform Infrared Spectroscopy Studies 

 The IR spectrum for dipyrido[3,2-a:2’,3’-c]phenazine (DPPZ) shows absorption band at 

around 3080 cm
-1

 belongs to the aromatic C-H stretch of DPPZ (Figure 8).  The absence of 

absorption bands below the 3000 cm
-1

 is indicative that all the C-H stretches are aromatic in 

nature with no methyl or methylene groups present.  Weak aromatic overtones are apparent in the 

2000 cm
-1

 region. The absorption bands from 1400- 1600 cm
-1

 are indicative of C=C ring 

stretches.  The in plane C-H stretches at 1028 and 1074 cm
-1

, as well as the out of plane C-H 

stretch at 735 cm
-1

 are a good indication of a successful synthesis of an un-functionalized DPPZ 

ligand. 
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Figure 8.  IR spectrum for DPPZ. 

The formation of the complex Eu(tta)3DPPZ via the displacement of water (from 

Eu(tta)3(H2O)2, Figure 9) resulted in changes/shifts in the observed vibrational frequencies of 

DPPZ.  The bands observed between 1400- 1600 cm
-1

 due to the absorption of C=C and C=N 

ring stretches in DPPZ moved to lower wavenumbers and became more prominent at 1298, 

1412, 1538, 1700 cm
-1

 respectively. The absorption band at 2922 cm
-1

 can be attributed to the 

absorption of C-H stretches (methylene) from tta.  While the absorption bands at 1602 and 1132 

cm
-1

 belongs to the diketonate carbonyl stretches (C=O) and trifluorene (CF3) groups from tta 

respectively.  The absorption bands at 736 and 714 cm
-1

 are indicative of the C-H out of plane 

bending modes for DPPZ. 
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Figure 9.  IR spectrum of Eu(tta)3DPPZ. 

3.1.2 Ultraviolet-Visible Absorption Spectroscopy Studies 

 The UV-visible spectra for the ligand (DPPZ) and the complex (Eu(tta)3DPPZ) as well as 

the starting materials are presented in Figure 10 below.  The ligand shows strong absorption 

spectra with a transition located at 268 nm, with weaker absorption bands occurring at 359 nm 

and 378 nm regions.  The π→π* transition causing the absorption band at 268 nm belongs to the 

phenanthroline portion of the ligand, while the π→π* transition responsible for the absorption 

bands at 359 nm and 378 nm are phenazine based.  Upon complexation with Eu(tta)3(H2O)2 

(displacing water), an absorption band characteristic of tta appears at 341 nm.  The 

phenanthroline portion of the ligand responsible for the π→π* transition causing the absorption 

band at 268 nm shifted to 272 nm.  While, the phenazine portion of the ligand responsible for the 

π→π* transition causing the absorption band at 359 nm and 378 nm experiences a shift to 356 

nm and 375 nm respectively, upon complexation.
13

    



26 

 

 

Figure 10. UV-Vis spectra for the ligand (DPPZ), its complex and precursors. 

3.1.3 Fluorescence Spectroscopy Studies 

The free DPPZ ligand (Figure 11) displayed a fluorescence maximum at around 432 nm (λex= 

386 nm) while emitting over a range from ~ 400-580 nm. 

 

Figure 11.  Fluorescence spectrum for DPPZ. 

Fluorescence spectra for the Eu(tta)3DPPZ complex (Figure 12) were measured with 342 nm as 

the excitation wavelength shows the presence of two emissive states.  The narrow peaks 
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observed in the spectra are the transitions between the 
5
D0 excited state of Eu

3+
 and the different 

J levels of the ground term 
7
F (

7
FJ=0-3).  

 

Figure 12.  Emissive state transitions for Eu(tta)3DPPZ. 

The 
5
D0-

7
F2 transition at λ=613 nm exhibits the strongest emission due to its induced 

electric dipole transition from its highly polarizable environment around the Eu
3+

 ion. This is the 

emission is responsible for the bright red luminescence imparted by Eu
3+

 complexes. The 

intensity of the 
5
D0-

7
F1 transition at λ=592 nm is significantly weaker than that of the 

5
D0-

7
F2 

transition due to its independence of the coordination environment as well as primarily being a 

magnetically induced transition. The 
5
D0-

7
F0  (λ=580 and 

5
D0-

7
F3 (λ=652) are even weaker than 

the 
5
D0-

7
F1 transition due to their inability to induce a magnetic or electric dipole transition.   

 The broad emission ranging from 375 nm to 525 nm originates from the energy absorbed 

by the DPPZ ligand in the complex as observed in Figure 11.  When in comparison to the 

complex fluorescence spectra, the DPPZ ligand was able to transfer energy more efficiently (in 

comparison to the other functionalized DPPZ ligands) to the Eu( III) ion (Figure 13).  No 

transitions starting from the 
5
D1 state were observed for this complex.  
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Figure 13. Fluorescence spectra for DPPZ and Eu(tta)3DPPZ. 

3.2 Dipyrido[3,2-a:2’,3’-c]phenazine-11-methyl  Ligand and Eu
3+

 Complex 

3.2.1 Fourier Transform Infrared Spectroscopy Studies 

 The IR spectrum for dipyrido[3,2-a:2’,3’-c]phenazine-11-methyl (DPPZ-CH3, Figure 14) 

shows an absorption band at around 3050 cm
-1

 that belongs to the aromatic C-H stretch of DPPZ, 

while the absorption bands in the 2918 cm
-1

 region belong to the saturated methyl C-H stretches.  

Weak aromatic overtones are apparent in the 1700-2000 cm
-1

 region. The absorption bands from 

1400- 1600 cm
-1

 are indicative of C=C ring stretches.  The in plane C-H stretches at 1031 and 

1071 cm
-1

, as well as the out of plane C-H stretch at 739 cm
-1

 are indicative of a successful 

grafting of the methyl group to DPPZ ligand.   
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Figure 14.  IR spectrum for DPPZ-CH3. 

The formation of the complex Eu(tta)3DPPZ-CH3 via the displacement of water (from 

Eu(tta)3(H2O)2) was not obtained. 

3.2.2 Ultraviolet-Visible Absorption Spectroscopy Studies 

 The UV-visible spectra for the ligand (DPPZ-CH3) and the complex (Eu(tta)3DPPZ-CH3) 

as well as the starting materials are presented in Figure 15 below.  The ligand shows strong 

absorption spectra with a transition located at 273 nm, with weaker absorption bands occurring at 

367 nm and 387 nm.  The π→π* transition causing the absorption band 273 nm belongs to the 

phenanthroline portion of the ligand, while the π→π* transition responsible for the absorption 

bands at 367 nm and 387 nm regions are phenazine based.  Upon complexation with 

Eu(tta)3(H2O)2 (displacing water), an absorption band characteristic of tta appears at 347 nm.  

The phenanthroline portion of the ligand bound to the metal center responsible for the π→π* 

transition is shifted to 272 nm.  While, the phenazine portion of the ligand responsible for the 

π→π* transition causing the absorption band at 367 and 387 nm shifts to 366 and 386 nm 

respectively upon complexation.
13
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Figure 15.  UV-Vis spectra for ligand (DPPZ-CH3), its complex and precursors. 

3.2.3 Fluorescence Spectroscopy Studies 

The free DPPZ-CH3 ligand (Figure 16) displayed a fluorescence maximum at around 413 nm 

(λex= 330 nm) while emitting over a range from ~ 375-650 nm. 

 

Figure 16.  Fluorescence spectrum for DPPZ-CH3. 

Fluorescence spectra for the Eu(tta)3DPPZ-CH3 complex (Figure 17) were measured with 349 

nm as the excitation wavelength shows the presence of two emissive states.  The narrow peaks 
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observed in the spectra are the transitions between the 
5
D0 excited state of Eu

3+
 and the different 

J levels of the ground term 
7
F (

7
FJ=0-3).  

 

Figure 17.  Emissive state transitions for Eu(tta)3DPPZ-CH3. 

 The 
5
D0-

7
F2 transition at λ=616 nm exhibits the strongest emission due to its induced 

electric dipole transition from its highly polarizable environment around the Eu
3+

 ion.  This is 

emission is responsible for the bright red luminescence imparted by Eu
3+

 complexes.  The 

intensity of the 
5
D0-

7
F1 transition at λ=592 nm is significantly weaker than that of the 

5
D0-

7
F2 

transition due to its independence of the coordination environment as well as primarily being a 

magnetically induced transition.  The 
5
D0-

7
F0  (λ=581) and 

5
D0-

7
F3 (λ=652) are even weaker than 

the 
5
D0-

7
F1 transition due to their inability to induce a magnetic or electric dipole transition. 

Transitions starting from the 
5
D1 state were also observed for this complex at 537 nm (

5
D1-

7
F1) 

and 555 nm (
5
D1-

7
F2) due to energy transfer from the singlet excited state of the ligand to the 

Eu
3+

 excited state associate with the 
5
D1 energy level.

27
  

 The broad emission ranging from 350 nm to 525 nm originates from the energy absorbed 

by the DPPZ-CH3 ligand in the complex as observed in Figure 16.  When in comparison to the 
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complex fluorescence spectra, the DPPZ-CH3 ligand was able to transfer minimal energy to the 

Eu( III) ion (Figure 18) which is indicative of a lower triplet energy state than that of europium.  

 

Figure 18.  Fluorescence spectra for DPPZ-CH3 and Eu(tta)3DPPZ-CH3. 

3.3 Dipyrido[3,2-a:2’,3’-c]phenazine-11-carboxylic acid  Ligand and Eu
3+

 Complex 

3.3.1 Fourier Transform Infrared Spectroscopy Studies 

 The IR spectrum for dipyrido[3,2-a:2’,3’-c]phenazine-11-carboxylic acid (Figure 19) 

shows a broad absorption band in the range of 2500-3250 cm
-1

 that can be attributed to an O-H 

stretch.   The absorption band at 1713 cm
-1

 belongs to the asymmetric carbonyl (C=O) stretch of 

the carboxylic acid.  This, along with the O-H stretch, is indicative that the carboxylic acid group 

was successfully attached at site 11 of the DPPZ ligand. 
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Figure 19.  IR spectrum for DPPZ-COOH. 

The infrared spectrum of the formation of the complex Eu(tta)3DPPZ-COOH via the 

displacement of water (from Eu(tta)3(H2O)2) was not obtained.   

3.3.2 Ultraviolet-Visible Absorption Spectroscopy Studies 

 The UV-visible spectra for the ligand (DPPZ-COOH) and the complex (Eu(tta)3DPPZ-

COOH) as well as the starting materials are presented in Figure 20 below.  The ligand shows 

strong absorption spectra with a transition located at 275 nm, with weaker absorption bands 

occurring at 369 nm and 388 nm.  The π→π* transition causing the absorption band at 275 nm 

region belongs to the phenanthroline portion of the ligand, while the π→π* transition responsible 

for the absorption bands in the 369 nm and 388 nm regions are phenazine based.  Upon 

complexation with Eu(tta)3(H2O)2 (displacing water), an absorption band characteristic of tta 

appears at 346 nm.  The phenanthroline portion of the ligand bound to the metal center 

responsible for the π→π* transition experiences a shift to 273 nm.  While, the phenazine portion 

of the ligand responsible for the π→π* transition causing the absorption band at 369 nm and 388 

nm appears to have disappeared upon complexation.
13
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Figure 20.  UV-Vis spectra for ligand (DPPZ-COOH), its complex and precursors. 

3.3.3 Fluorescence Spectroscopy Studies 

The free DPPZ-COOH ligand (Figure 21) displayed a fluorescence maximum at 521 nm (λex= 

320 nm) while emitting over a range from ~ 380-625 nm. The broad emission ranging from 375 

nm to 500 nm from the energy absorbed by the DPPZ-COOH ligand in the complex as observed 

in Figure 21.  It was determined that the large peak at 521 nm for the ligand was the result of an 

excimer, which explains why DPPZ-COOH has a different emission spectrum in comparison to 

the other functionalized DPPZ ligands. 

 

Figure 21.  Fluorescence spectrum for DPPZ-COOH. 
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Fluorescence spectra for the Eu(tta)3DPPZ-COOH complex (Figure 22) were measured with 349 

nm as the excitation wavelength shows the presence of two emissive states.  The narrow peaks 

observed in the spectra are the transitions between the 
5
D0 excited state of Eu

3+
 and the different 

J levels of the ground term 
7
F (

7
FJ=0-3).  

 

Figure 22.  Emissive state transitions for Eu(tta)3DPPZ-COOH. 

 The 
5
D0-

7
F2 transition at λ=615 nm exhibits the strongest emission due to its induced 

electric dipole transition from its highly polarizable environment around the Eu
3+

 ion.  This is 

emission is responsible for the bright red luminescence imparted by Eu
3+

 complexes.  The 

intensity of the 
5
D0-

7
F1 transition at λ=592 nm is significantly weaker than that of the 

5
D0-

7
F2 

transition due to its independence of the coordination environment as well as primarily being a 

magnetically induced transition.  The 
5
D0-

7
F0  (λ=581 and 

5
D0-

7
F3 (λ=652) are even weaker than 

the 
5
D0-

7
F1 transition due to their inability to induce a magnetic or electric dipole transition. 

Transitions starting from the 
5
D1 state were also observed for this complex at 537 nm (

5
D1-

7
F1) 

and 556 nm (
5
D1-

7
F2) due to energy transfer from the singlet excited state of the ligand to the 

Eu
3+

 excited state associated with the 
5
D1 energy level.
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 When in comparison to the complex fluorescence spectra, the DPPZ-COOH ligand weak 

emission was able to transfer minimal energy to the Eu( III) ion (Figure 23) which is indicative 

of a lower triplet energy state than that of europium.  

 

Figure 23.  Fluorescence spectra for DPPZ-COOH and Eu(tta)3DPPZ-COOH. 

3.4 Dipyrido[3,2-a:2’,3’-c]phenazine-11-ethyl ester Ligand and Eu
3+

 Complex 

3.4.1 Fourier Transform Infrared Spectroscopy Studies 

 The IR spectrum for dipyrido[3,2-a:2’,3’-c]phenazine-11-ethyl ester (DPPZ-COOEt, 

Figure 24).  The absorption band at 1713 cm
-1

 that was apparent in DPPZ-COOH belonging to 

the asymmetric carbonyl stretch of the carboxylic acid has shifted to 1711 cm
-1

 for the 

asymmetric carbonyl stretch of the ethyl ester.  The absorption band corresponding to a C(=O)-O 

stretch at 1204 cm-1, along with the asymmetric carbonyl stretch is indicative of a successful 

grafting of the ethyl ester functional group to the DPPZ ligand.  Aromatic C-H stretches from are 

responsible for the absorption band at 3016 cm
-1

.  While the absorption bands in the 2943 region 

are responsible for the C-H stretches of the methyl and methylene portions of the ethyl group 

attached to the carbonyl.  The C-C stretch at 1406 cm
-1

 along with the absorption bands 
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corresponding to the C-H stretches of the ethyl group is further evidence of a successful 

substitution of the ethyl ester to the DPPZ ligand. 

 

Figure 24.  IR spectrum for DPPZ-COOEt. 

The formation of the complex Eu(tta)3DPPZ-COOEt (Figure 25) via the displacement of water 

(from Eu(tta)3(H2O)2) resulted in changes/shifts in the observed vibrational frequencies of 

DPPZ-COOEt.  The bands observed at 1711 and 1204 cm
-1

 due to the absorption of C=O and 

C(=O)-O stretches in DPPZ-COOEt were shifted up field to 1719 and downfield to 1184 cm
-1

 

respectively. The aromatic C-H stretches from DPPZ-COOEt and tta are responsible for the 

absorption band at 3091 cm
-1

.  The C-H stretches at 2943 cm
-1

 (methyl, DPPZ-COOEt) were 

shifted to 2957 cm
-1

, and the stretches around 2930 cm
-1

 (methylene, DPPZ-COOEt) are 

responsible for the increase in absorption for this region. The absorption bands at 1597 and 1133 

cm
-1

 belong to the diketonate carbonyl stretches (C=O) and the trifluorene (CF3) groups from tta 

respectively.  These absorption bands are indicative of a successful coordination of DPPZ-

COOEt and tta to the complex. 
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Figure 25.  IR spectrum for Eu(tta)3DPPZ-COOEt. 

3.4.2 Ultraviolet-Visible Absorption Spectroscopy Studies 

 The UV-visible spectra for the ligand (DPPZ-COOEt) and the complex (Eu(tta)3DPPZ-

COOEt) as well as the starting materials are presented in Figure 26 below.  The ligand shows 

strong absorption spectra with a transition located at 277 nm, with weaker absorption bands 

occurring at 366 nm and 386 nm.  The π→π* transition causing the absorption band at 277 nm 

region belongs to the phenanthroline portion of the ligand, while the π→π* transition responsible 

for the absorption bands at 366 nm and 386 nm are phenazine based.  Upon complexation with 

Eu(tta)3(H2O)2 (displacing water), an absorption band characteristic of tta appears at 346 nm 

region.  The phenanthroline portion of the ligand responsible for the π→π* transition causing the 

absorption band at 277 nm experiences a shift to 275 nm.  While, the phenazine portion of the 

ligand responsible for the π→π* transitions causing the absorption bands at 366 and 386 nm 

experience a shift to 363 and 383 nm upon complexation.
13
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Figure 26.  UV-Vis spectra for the ligand (DPPZ-COOEt), its complex and precursors. 

3.4.3 Fluorescence Spectroscopy Studies 

The free DPPZ-COOEt ligand (Figure 27) displayed a fluorescence maximum at around 435 nm 

(λex= 386 nm) while emitting over a range from ~ 400-570 nm. 

 

Figure 27.  Fluorescence spectrum for DPPZ-COOEt. 

Fluorescence spectrum for the Eu(tta)3DPPZ-COOEt complex (Figure 28) were measured with 

347 nm as the excitation wavelength shows the presence of two emissive states.  The narrow 
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peaks observed in the spectra are the transitions between the 
5
D0 excited state of Eu

3+
 and the 

different J levels of the ground term 
7
F (

7
FJ=0-3).  

 

Figure 28.  Emissive state transitions for Eu(tta)3DPPZ-COOEt. 

 The 
5
D0-

7
F2 transition at λ=614 nm exhibits the strongest emission due to its induced 

electric dipole transition from its highly polarizable environment around the Eu
3+

 ion.  This is 

emission is responsible for the bright red luminescence imparted by Eu
3+

 complexes.  The 

intensity of the 
5
D0-

7
F1 transition at λ=592 nm is significantly weaker than that of the 

5
D0-

7
F2 

transition due to its independence of the coordination environment as well as primarily being a 

magnetically induced transition.  The 
5
D0-

7
F0  (λ=580) and 

5
D0-

7
F3 (λ=652) are even weaker than 

the 
5
D0-

7
F1 transition due to their inability to induce a magnetic or electric dipole transition.   

While the broad emission ranging from 400 nm to 570 nm originates from the energy 

absorbed by the DPPZ-COOEt ligand in the complex as observed in Figure 27.  When in 

comparison to the complex fluorescence spectra, the DPPZ-COOEt ligand was able to transfer 

more energy to the Eu( III) ion than all of the other complexes except Eu(tta)3DPPZ (Figure 29). 

No transitions starting from the 
5
D1 state were observed for this complex.  The significant 
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decrease in quantum yield in comparison to Eu(tta)3DPPZ  suggests that the triplet state energy 

level for DPPZ-COOEt is still lower than that of the Eu (III) ion.   

 

Figure 29.  Fluorescence spectra for DPPZ-COOEt and Eu(tta)3DPPZ-COOEt. 

3.5 Dipyrido[3,2-a:2’,3’-c]phenazine-11-carboxamide,N –[3-triethoxy)propyl]Ligand, Eu
3+

 

Complex, and Eu(tta)3DPPZ-Si silica bound nanoparticles. 

3.5.1 Fourier Transform Infrared Spectroscopy Studies 

 The IR spectrum for dipyrido[3,2-a:2’,3’-c]phenazine-11-carboxamide,N –[3-

triethoxy)propyl] (DPPZ-Si, Figure 30).  The absorption band at 1713 cm
-1

 that was apparent in 

DPPZ-COOH belonging to the asymmetric carbonyl stretch of the carboxylic acid is replaced by 

bands at 1653 and 1638 cm
-1

 due to the absorption of amide groups.  This indicates that APTS 

was successfully coupled to the DPPZ ligand.  The secondary amide stretching at 3278 cm
-1

 and 

bending at 1547 cm
-1

, the Si-C stretching at 793 cm
-1

 as well as the Si-O stretching vibration at 

1070 cm
-1

, the alkoxy C-H stretches at 2963 cm
-1

 (methyl) and 2930 cm
-1

 (methylene) also gives 

the expected vibrational modes indicative of the successful addition of APTS to DPPZ.
14 
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Figure 30.  IR spectrum of DPPZ-Si. 

 The formation of the complex Eu(tta)3DPPZ-Si (Figure 31) via the displacement of water 

(from Eu(tta)3(H2O)2) resulted in changes/shifts in the observed vibrational frequencies of 

DPPZ-Si.  The broad absorption band observed for Eu(tta)3(H2O)2 around 3000-3500cm
-1

 

belonging to the water molecules bound to the complex are absent, confirming they have been 

replaced by the bidentate donors of DPPZ-Si.  The bands observed at 1653 and 1638 cm
-1

 due to 

the absorption of amide groups in DPPZ-Si were blue shifted to 1622 and 1602 cm
-1

 respectively. 

The secondary amide stretching at 3278 cm
-1

 and bending at 1547 cm
- 
observed for the ligand 

was found to be weakly absorbing at 3212 cm
-1

  and 1538 cm
-1

 respectively.  The Si-O stretching 

vibration at 1070 cm
-1

 dissipated upon coordination to the complex, and became more prominent 

at 1090 cm
-1

.  The reduction of absorption could be attributed to the less overall concentration of 

the ligand in the complex, and the shift downfield is indicative of the lack of involvement in the 

phenazine portion of the ligand in the coordination to the Eu
3+

 ion.  The alkoxy C-H stretches at 

2963 cm
-1

 (methyl) were shifted to 2954 cm
-1

,  and the stretches around 2930 cm
-1

 (methylene) 

showed a shift to 2918 cm
-1

 as well as an increase in absorption which could be attributed to the 
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absorption of C-H stretches (methylene) from tta.  The absorption band at 1716 cm
-1

 belongs to 

the diketonate carbonyl stretches (C=O) from tta.  The Si-C absorption band at 798 cm
-1

 

indicates that the silane coupling agent maintained its bonds with DPPZ during the coordination 

process.
14

 

 

Figure 31.  IR spectrum of Eu(tta)3DPPZ-Si. 

The addition of TEOS, ethanol, and water to Eu(tta)3DPPZ-Si in the formation of the silica 

nanoparticle (Figure 32) is responsible for the changes in the IR spectra due to the hydrolysis and 

condensation of TEOS and DPPZ-Si.  The intense broad absorption band around 1110 cm
-1

 is 

indicative of the formation of siloxane (Si-O-Si) bonds between TEOS and DPPZ-Si, and the Si-

C bond at 796 cm-1 is indicative of the silane coupling agent still being bound to the ligand.  

This is expected since no Si-C bond cleavage is supposed to occur during hydrolysis and 

subsequent condensation reactions.  Due to the absence of intense absorption bands, 

characteristic of O-H stretching (from Si-OH, EtOH or H2O) in the range of 3200-3700 cm
-1

, 

there is no silanol or water present within the silica matrix.  The absorption band at around 950 

cm
-1

 is likely due to Si-O-C2H5 vibrations.
20

 Since no Si-C bond cleavage occurs during 

hydrolysis/condensation, it is believed that unbound Eu(tta)3DPPZ-Si is encased within the 
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nanoparticle matrix.  Also, with the lack of prominent absorption bands (as discussed for 

Eu(tta)3DPPZ-Si) apparent, the formation of a thick, multi-layered silica matrix is thought to 

have occurred.  This would explain the lack of absorption observed due to the evanescence 

field’s ability to achieve a penetration depth of only a few microns (0.5-2) into the sample.            

 

Figure 32.  IR spectrum of Eu(tta)3DPPZ-Si silica nanoparticle. 

3.5.2 Ultraviolet-Visible Absorption Spectroscopy Studies 

 The UV-visible spectra for the ligand (DPPZ-Si) and the complex (Eu(tta)3DPPZ-Si) as 

well as the starting materials are presented in Figure 33 below.  The ligand shows strong 

absorption spectra with a transition located at 269 nm, with weaker absorption bands occurring 

in the 367 nm and 385 nm.  The π→π* transition causing the absorption band at 269 nm region 

belongs to the phenanthroline portion of the ligand, while the π→π* transition responsible for the 

absorption bands in the 367 nm and 385 nm regions is phenazine based.  Upon complexation 

with Eu(tta)3(H2O)2 (displacing water), an absorption band characteristic of the electronic 

transition of the aromatic rings in the β-diketonate (tta) appears at 346 nm.  The phenanthroline 

portion of the ligand responsible for the π→π* transition causing the absorption band at 269 nm 

is shifted to 279 nm, and the phenazine portion of the ligand responsible for the π→π* transition 
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causing the absorption band at 367 and 385 nm shifts to 363 and 383 nm respectively upon 

complexation.
13

    

 

Figure 33.  UV-Vis spectra for the ligand (DPPZ-Si), its complex and precursors. 

3.5.3 Fluorescence Spectroscopy Studies 

The free DPPZ-Si ligand (Figure 34) displayed a fluorescence maximum at around 440 nm (λex= 

349 nm) while emitting over a range from ~ 375-625 nm. 

 

Figure 34.  Fluorescence spectrum for the free ligand DPPZ-Si. 
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Fluorescence spectrum for the Eu(tta)3DPPZ-Si complex (Figure 35) were measured with 347 

nm as the excitation wavelength shows the presence of two emissive states.  The narrow peaks 

observed in the spectra are the transitions between the 
5
D0 excited state of Eu

3+
 and the different 

J levels of the ground term 
7
F (

7
FJ=0-3).  

 

Figure 35.  Emissive state transitions for Eu(tta)3DPPZ-Si. 

 The 
5
D0-

7
F2 transition at λ=613 nm exhibits the strongest emission due to its induced 

electric dipole transition from its highly polarizable environment around the Eu
3+

 ion.  This is 

emission is responsible for the bright red luminescence imparted by Eu
3+

 complexes.  The 

intensity of the 
5
D0-

7
F1 transition at λ=592 nm is significantly weaker than that of the 

5
D0-

7
F2 

transition due to its independence of the coordination environment as well as primarily being a 

magnetically induced transition.  The 
5
D0-

7
F0  (λ=580) and 

5
D0-

7
F3 (λ=652) are even weaker than 

the 
5
D0-

7
F1 transition due to their inability to induce a magnetic or electric dipole transition.   

 While the broad emission ranging from 375 nm to 550 nm originates from energy 

absorbed by the DPPZ-Si ligand in the complex as observed in Figure 34.  When in comparison 

to the complex fluorescence spectra, the DPPZ-Si ligand weak emission was able to transfer 
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more energy to the Eu( III) ion than Eu(tta)3DPPZ-CH3 and Eu(tta)3DPPZ-COOH, but less than 

Eu(tta)3DPPZ-COOEt and Eu(tta)3DPPZ, which is indicative of a lower triplet energy state than 

that of europium. No transitions starting from the 
5
D1 state were observed for this complex.     

 

Figure 36.  Fluorescence Spectra ofDPPZ-Si and Eu(tta)3DPPZ-Si. 

The addition of TEOS, ethanol, ammonium hydroxide (28% NH4OH) and water to 

Eu(tta)3DPPZ-Si in the formation of the silica nanoparticle exhibited no induced magnetic or 

electric dipole transitions characteristic of Eu
3+

 complexes.  There are multiple factors that could 

contribute to the inefficiency of the nanoparticle.  Under the conditions of base catalysis large 

sol-gel particles are believed to have formed, thus leading to light scattering occurring as 

indicated by the IR spectrum in Figure 32. 

To decrease the size of the nanoparticle, the amount of Eu(tta)3DPPZ-Si added was 

increased from 20 mg to 50 mg.  To correct for the possibility of light scattering a solvent 

(DMSO, n=1.479) with a similar refractive index to that of the silica matrix in a silica 

nanoparticle (n=1.475) was used instead of water (n=1.333).  Neither solution resulted in 

transitions characteristic of Eu
3+

 complexes. 
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Other factors possibly contributing to the lack of emission by the silica nanoparticle 

include:  fluorescence quenching by unbound Eu(tta)3DPPZ-Si encased inside the nanoparticle, 

and an inefficient silane coupling agent. 

3.6 Comparison of the UV-Vis and Fluorescence Measurements of the Ligands and Eu
3+

 

Complexes 

The unfunctionalized DPPZ ligand was the basis for which the variations in the electronic 

properties of the other functionalized DPPZ ligands were determined.  DPPZ gives us a baseline 

from which to discern a relationship upon the substitution of either electron donating or 

withdrawing functional groups to the ligand.  As discussed earlier, DPPZ exhibits absorption 

events at 268, 359, and 378 nm.  Upon the substitution of an electron donating methyl group to 

the DPPZ ligand (DPPZ-CH3), a red shift to 273, 367, and 387 nm occurs.  With the substitution 

of electron withdrawing groups (-COOEt, -Si, -COOH) to the DPPZ ligand, a red shift also 

occurs for DPPZ-COOEt (277, 366, and 386nm), DPPZ-Si (269, 367, and 385 nm) and DPPZ-

COOH (275, 369, and 388 nm).  The UV-Vis spectra for the ligands (Figure 37) showed that both 

the electron donating and electron withdrawing groups experienced a red shift in comparison to 

DPPZ.
28
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                                                Figure 37. UV-Vis spectra of the various DPPZ ligands. 

Upon complexation, the Eu(tta)3DPPZ complex served as the basis for which the 

variations in the electronic properties of the other coordination complexes were determined.  

Eu(tta)3DPPZ exhibit absorption events at 272, 341, 356, and 375 nm.  The band gap between 

the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO) is expected to narrow in the presence of an electron withdrawing substituent which 

would result in a red shift to lower energies (higher wavelengths). The electron withdrawing 

substituted complexes all exhibited red shifts when compared to Eu(tta)3DPPZ.  Eu(tta)3DPPZ-

COOEt (275, 346, 363, 383 nm), Eu(tta)3DPPZ-Si (279, 346, 363, 382 nm), and Eu(tta)3DPPZ-

COOH (273, 346, 369, 388 nm).
28
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Figure 38. Various UV-Vis spectra of Eu(tta)3DPPZ complexes. 

It was believed that the electron donating Eu(tta)3DPPZ-CH3 complex would experience a higher 

band gap (higher energy = lower wavelengths) due to the methyl substituent switching the 

LUMO character to that of tta π* orbitals, but it exhibited a red shift like all of the other 

complexes (Figure 38) did which is indicative of maintaining its respective  π* orbitals. 

 From the UV-Vis measurements, along with trial and error, the excitation wavelength for 

the fluorescence measurements were determined to be at various wavelengths in the 340 nm 

region for all of the complexes. The most efficient excitation energy for the fluorescence 

measurements in the 340 nm region correspond to the absorption events associated with tta.  This 

is indicative of the S1 state for most of the complexes being inhabited as a result of the 

promotion of an electron from tta based π orbitals to DPPZ based π* orbitals via ligand-to-ligand 

charge transfer.  This also corresponds to the red shifts in the absorptions observed for the 

electron withdrawing ligands and complexes.  The efficiency of intersystem crossing (ISC) and 

energy transfer (ET) is essential in achieving a complex with a good quantum yield.  The 

electron withdrawing complexes (Eu(tta)3DPPZ-COOEt, Eu(tta)3DPPZ-Si, and Eu(tta)3DPPZ-Si) 

inability to adequately sensitize the Eu (III) ion can be attributed to their lower triplet state 
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energy not being able to transfer energy to the 
5
D0 level efficiently which is why they experience 

a dramatically decreased quantum yield with respect to Eu(tta)3DPPZ.  The electron donating 

complex (Eu(tta)3DPPZ-CH3), being the least efficient, must have a high intersystem crossing 

value (more energy required) as well as a lower triplet energy state in order to explain its 

decrease in quantum yield when compared to Eu(tta)3DPPZ.  Figure 39  shows how efficient 

each ligand was at transferring energy to the Eu (III) ion.  Eu(tta)3DPPZ-CH3 transferred the 

least amount of energy to the 
5
D0-

7
F2 centered emission for europium based off the ligands 

retention of energy, with more intense emissions originating from the 
5
D1 and 

5
D0-

7
F1 transitions 

explaining why its quantum yield was the lowest among all of the other complexes.  While the 

electron withdrawing groups were able to transfer similar amounts of energy to the Eu (III) ion, 

Eu(tta)3DPPZ-COOH had minimal energy to transfer from the ligand to begin with, transferred 

the second least amount of energy to the Eu (III) ion.  With more intense emissions originating 

from the 
5
D1 and 

5
D0-

7
F1 transitions explaining why its quantum yield was the second lowest 

among all of the other complexes.  Eu(tta)3DPPZ-Si and Eu(tta)3DPPZ-COOEt transferred 

almost identical amounts of energy to the complex (according to their residual ligand emissions), 

but Eu(tta)3DPPZ-COOEt was able to transfer more energy to the 
5
D0-

7
F2 centered transition than 

Eu(tta)3DPPZ-Si.  Thus making them the second and third most efficient complexes respectively.  

Eu(tta)3DPPZ was able to transfer the most energy to the  
5
D0-

7
F2 centered transition compared to 

the rest of the complexes which explains why it was the most efficient complex, giving it the 

highest quantum yield.       
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Figure 39. Various Eu(tta)3DPPZ functionalized complexes fluorescence spectra. 

3.7 Quantum Yield Calculations  

 For the Eu
3+

 complexes a variety of solvents were utilized.  Eu(tta)3DPPZ, Eu(tta)3DPPZ-

CH3/Eu(tta)3DPPZ-COOH, and Eu(tta)3DPPZ-COOEt/Eu(tta)3DPPZ-Si measurements were 

made in acetonitrile (n=1.3441), DMSO (n=1.4793), and chloroform (n=1.4458) respectively. 

The excitation wavelength ranges from 342-349 for the various complexes, while the emission 

range used to calculate the integrated fluorescence intensity for the complexes was from 550-664 

nm.  Baseline absorption and emission spectra of pure solvents were also collected (at their 
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respective excitation wavelengths) to be subtracted from the measured absorption and emission 

spectra to correct for background absorption or emission imparted by the solvents.  Table 1 

summarizes the values used (after correction) as well as the quantum yields for each complex.  

Table 1:  Summary of quantum yield calculations and values used for Eu
3+

 complexes. 

Complex 
λexc. 

(nm) Abs. I Abs.Ref. I Ref. n n Ref. 
QY 
Ref. QY (%) 

Eu(tta)3DPPZ 342 0.073802 3732.718 0.06006 21608.99 1.3441 1.3284 0.54 7.68±0.06  

Eu(tta)3DPPZ-CH3 349 0.081592 290.4587 0.06006 21608.99 1.4793 1.3284 0.54 0.59±0.02 

Eu(tta)3DPPZ-COOEt 347 0.096549 616.373 0.06006 21608.99 1.4458 1.3284 0.54 1.04±0.05 

Eu(tta)3DPPZ-COOH 349 0.049836 180.5463 0.06006 21608.99 1.4793 1.3284 0.54 0.61±0.07 

Eu(tta)3DPPZ-Si 347 0.093714 375.5567 0.06006 21608.99 1.4458 1.3284 0.54 0.65±0.04  
 

The results show that the complex capable of more efficient ligand to metal energy transfer was 

the un-functionalized DPPZ complex (Eu(tta)3DPPZ).  Based on the complexes quantum yield 

value (7.68 %), it was the most efficient out of the complexes observed due to its HOMO being 

primarily tta π* in nature allowing for more efficient ligand-to-ligand transfer of energy.
28

 Upon 

substitution of DPPZ with electron withdrawing functional groups (-COOEt, -Si, -COOH), as 

well as the electron donating group (-CH3), a significant decrease in quantum yield was 

observed.  Eu(tta)3DPPZ-COOEt was found to be the second most efficient complex based off of 

its quantum yield (1.04 %).  These two complexes were the only ones found to have a quantum 

yield higher than that of Eu(tta)3(H2O)2 (0.73 %).  While Eu(tta)3DPPZ-Si (0.65 %), 

Eu(tta)3DPPZ-COOH (0.61 %) and Eu(tta)3DPPZ-CH3 (0.59 %) all experienced a similar 

decrease in quantum yield which showed a diminished quantum yield from that of the dihydrate 

species.  The decrease in quantum yield for the electron withdrawing complexes can be attributed 

to lower triplet energy states than that of the Eu (III) ion leading to an inefficient transfer of 

energy from the ligand to the metal ion.  The electron donating complex (Eu(tta)3DPPZ-CH3), 

being the least efficient, must have a high intersystem crossing value (more energy required) as 
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well as a lower triplet energy state in order to explain its decrease in quantum yield when 

compared to Eu(tta)3DPPZ.
28

  Another factor possibly causing the decrease in quantum yield for 

all of the complexes could be due to either C-H (Eu(tta)3DPPZ-COOEt, Eu(tta)3DPPZ-Si, 

Eu(tta)3DPPZ-CH3), N-H (Eu(tta)3DPPZ-Si), or O-H (Eu(tta)3DPPZ-COOH) oscillators being in 

close proximity to the Eu
3+

 metal center which quenches the luminescence via a vibrational (non-

radiative) relaxation pathway
.2

  Other factors possibly affecting the ability of the ligands to 

efficiently transfer energy to the Eu
3+

 ion could be the polarity of the solvents, either via 

hydrogen bonding, direct intermolecular bonding (excited species) or dipole-dipole interactions 

with the ligand 

3.8 Conclusion 

In this project, the luminescence properties of dipyridophenazine precursors and their 

respective Eu
3+

 complexes, as well as one of the complexes (Eu(tta)3DPPZ-Si) encased into the 

silica matrix of a nanoparticle were probed to determine the efficiency of ligand to metal energy 

transfer while exploring the effect different electron withdrawing or donating functional groups 

had on the quantum yield of the complexes.  The ligands were characterized using different 

spectroscopic techniques to confirm their structure and functionalization.  The complexes optical 

properties were calculated from absorption and fluorescence measurements. 

It was believed that the substitution of solvent molecules from Eu(tta)3(H2O)2 with the 

bidentate nitrogen ligands of the functionalized and un-functionalized DPPZ ligands would lead 

to an increase in luminescence quantum yields. Furthermore, it was believed that the variation in 

complex luminescence upon substituent substitution of the ligand would increase with electron 

donating groups, and decrease with electron withdrawing groups.  The unfunctionalized 

complex, Eu(tta)3DPPZ, exhibited the highest quantum yield value (Q.Y.= 7.68 %).  It was the 
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most efficient out of the complexes observed due to its HOMO being primarily tta π* in nature 

allowing for more efficient ligand-to-ligand transfer of energy.
28

 The data confirmed a significant 

decrease in quantum yield upon the addition of electron withdrawing groups in Eu(tta)3DPPZ-

COOEt (Q.Y.= 1.04 %), Eu(tta)3DPPZ-Si (Q.Y.= 0.65 %), and Eu(tta)3DPPZ-COOH (Q.Y.= 0.61 

%) which was attributed to the complexes having lower triplet state energies not being able to 

transfer energy to the 
5
D0 level of the Eu (III) ion efficiently.  However, the addition of the 

electron donating methyl group in Eu(tta)3DPPZ-CH3 (Q.Y.= 0.59) did not exhibit an increase in 

quantum yield as expected, but was instead the least efficient of all the complexes observed due 

to a lower energy state and a high intersystem crossing value . In conclusion, the un-

functionalized DPPZ complex, Eu(tta)3DPPZ, was the only complex to show enhanced 

luminescent properties capable of potential applications in biomedical imaging. 

3.9 Future Work 

 In continuing this work, a crystallographic and computational study should be conducted 

in order to verify the structural data and better investigate the energy transfer process between 

the ligands (tta and functionalized DPPZ complexes), and the metal center ion (Eu
3+

).  The 

molecular data acquired from the crystallographic study could determine if site to site 

inhomogeneities are causing luminescence quenching or not, while a computational study will 

help better determine which functional groups will tune the DPPZ ligand energy levels to where 

they are more conducive to efficient energy transfer to the Eu
3+

 ion.  Substitution of complexes 

containing C-H, N-H, O-H oscillators with more conducive energy transfer groups (aromatic, 

trifluorene, etc) could be probed to see if there is an increase in quantum yield or not.   

 Also, future studies should account for potential quenching effects due to solvent 

interaction with the complexes.  Complexes optical properties should be characterized using 
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various polar and non-polar solvents to determine whether or not there are significant changes in 

the absorption or emission spectra.  In doing a solvent polarity study, one could also use a 

deuterated solvent to ensure that there is no luminescence quenching due to hydrogen bonding 

between to solvent and complexes during the excitation process.   

 For future silica nanoparticle synthesis and characterization, since acidic catalysis could 

lead to a dissociation of the Eu
3+

 β-diketonate complex and protonation of the phenantroline 

portion of the DPPZ ligand and basic catalysis lead to the development of large sol-gel particles, 

it is suggested that either further permeations of the DPPZ-Si:APTS:TEOS:H2O and base 

concentration be explored or a neutral pH method be implemented to achieve a successful sol-gel 

composition capable of luminescing. A different silane coupling agent should also be probed due 

to the low quantum yield of the Eu(tta)3DPPZ-Si complex. Dipodal silanes could be an 

interesting substitute due to their impact on substrate bonding (capable of six bonds instead of 

three) and hydrolytic stability.  
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S 2. NMR Spectra for DPPZ-CH3. 
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S 3. NMR Spectra for DPPZ-CH3. 

 

 

 

 

 

 

 

 

 

S 4. NMR Spectra for DPPZ-COOEt. 

 

 

 

 DPPZ-CO2ETH.spc

10 9 8 7 6 5 4 3 2 1

Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o
rm

a
li
z
e
d
 I
n
te

n
s
it
y

3.212.122.031.001.020.962.022.05

1
.5

0
1
.5

3
1
.5

5

3
.5

7

4
.5

2
4
.5

4
4
.5

7
4
.5

9

5
.3

0

7
.2

6

8
.0

3
8
.0

4
8
.0

4
8
.0

5

8
.0

8
8
.4

4
8
.4

4
8
.4

7

8
.5

7
8
.6

0
9
.1

2
9
.1

2
9
.5

4
9
.5

6

9
.8

3
9
.8

59
.8

6
9
.8

6

7 

8 

H2O 

CDCl3 

N

N

N

N

O

O

1

2

3

4

5

6

7
8

1'
2'

3'

 

N

N

N

N

CH3

1

2

3

4

5

6

7

1'

2'

3'

 1d spectrum Dppz-CH3 in CDCl3 wlr.spc

Chemical Shift (ppm)
9.5 9.0 8.5 8.0 7.5

N
o

rm
a

liz
e

d
 I
n

te
n

si
ty

0

0.05

0.10

0.15

3.000.940.952.012.00

9
.6

5
9

.6
2

9
.3

0
9

.2
9

9
.2

8
9

.2
7

8
.2

4
8

.2
2

8
.1

1

7
.8

3
7

.8
1

7
.8

0
7

.7
9

7
.7

8
7

.7
7

7
.7

5
7

.7
4



63 

 

 

 

 

 

 

 

 

 

 

S 5. NMR Spectra for DPPZ-COOEt. 

 

 

 

 

 

 

 

 

 

 

S 6. NMR Spectra for DPPZ-Si. 
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S 8. NMR Spectra for DPPZ-COOH. 


