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ABSTRACT 

 

EFFECTS OF NEST QUALITY ON INCUBATION AND REPRODUCTIVE SUCCESS IN 

CAROLINA CHICKADEES (POECILE CAROLINENSIS) 

 

Traci Erin Ballance, M.S. Biology 

Western Carolina University (March 2018) 

Director: Dr. Barbara Ballentine 

 

The effects of parental care on reproductive success is well studied. Nest building is an important 

aspect of parental care in birds, but it is not well understood how variation in nest building 

behavior impacts their reproductive success. In this study, I address the effects of nest 

dimensions on incubation behavior and reproductive success in female Carolina chickadees 

(Poecile carolinensis). In Carolina chickadees, only females build nests, incubate eggs, and 

brood young nestlings. Larger, well-constructed nests can reduce the negative effects of cooling 

on eggs and nestlings as extensive cooling can result in delayed embryonic development, 

hatching asynchrony, or failure to hatch. However, larger nests are more energetically 

demanding for females to construct. Females therefore face tradeoffs between self-maintenance 

and incubation. In this study, I tested my hypothesis that nest quality would change incubation 

behavior and that investment in high quality nests would result in higher reproductive success in 

Carolina chickadees, a common breeding bird in western North Carolina. Throughout spring and 

summer 2016, I monitored nest boxes in Jackson and Macon counties, N.C. for reproductive 

activity. I quantified nest height, nest cup depth, and the amount of moss underneath the nest cup 

as nest dimensions. Incubation periods (on-bouts and off-bouts) were measured using iButtons 
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(thermal data loggers) located both inside the nest cup and inside the nest box that collected nest 

temperature and ambient temperature every 5 minutes. Incubation behavior was quantified as 

total off-bout time and mean off-bout time. Reproductive success was quantified as the number 

of nestlings that fledged from individual nest boxes. I found statistically significant relationships 

between nest dimensions and reproductive success as well as non- statistically significant 

relationships between nest dimensions and incubation behavior. Together, my results suggest 

that females that invest in building high quality nests benefit by fledging more young and that 

females that build poor quality nests do not compensate by increasing incubation behavior.  
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INTRODUCTION 

 

  The complex nests of birds provide protection for eggs and young allowing bird species 

to occupy most terrestrial habitats (Collias 1997). Many studies have focused on how nest 

diversity influences success across species of birds (Major and Kendal 2000; Guillette and Healy 

2015; Hilton et al. 2004). However, less is known about how variation within species in nest 

architecture contributes to reproductive success (Ardia et al. 2009; Windsor et al. 2013; Cooper 

and Voss 2013; Rodriguez and Barba 2016). Because eggs exchange heat with the nest 

environment (Collias and Collias 1984), features of nest architecture that contribute to a stable 

thermal environment may influence hatching and survival rates of nestlings (Møller 1984; 

Lombardo 1994; Alvarez and Barba 2008; Ardia et al. 2009). During incubation, parents actively 

exchange body heat with eggs and young to maintain temperature thresholds that ensures proper 

development of embryos and young (Webb 1993). A well-constructed nest can buffer eggs and 

young from cooling when parents are away from the nest (Ardia 2009).  Thus, it is likely that 

nest architecture and incubation together contribute to nestling survival. In this study, I 

investigate how variation in nest quality impacts variation in incubation behavior and nestling 

survival.  

  Patterns of nest investment observed between species may have important implications 

for patterns of nest investment within species. Birds in environments with colder temperatures 

build larger nests while nests are smaller in warmer environments across species (Soler et al. 

1998) because the nest environment provides a thermal buffer against low temperatures 

(Windsor et al. 2013). Across bird species, eggs and nestlings of altricial species are particularly 

vulnerable to temperature fluctuations in the nest, and high quality nests likely influence success 
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by providing a stable thermal environment for eggs and nestlings (Collias and Collias 1984; 

Pereyra and Morton 2000). Investing in high quality nests may allow parents to reserve their own 

energy and resources by spending less time on the nest warming eggs or young and allowing 

more time for foraging. Well- constructed, thermally stable nests require significantly more time 

to build than do poorly- constructed, less thermally stable nests (Collias 1997; Hepp 2005; 

Pereyra and Morton 2000). A well-constructed nest can reduce exposure of eggs and young that 

may lead to arrested development or failure to thrive (Windsor et al. 2013). For example, 

nestlings are incapable of thermoregulation until they are 3 to 4 days old (Winkler 1993; Webb 

1993; Rodriguez and Barba 2016; Pereyra and Morton 2000) and depend on incubation or heat 

and on insulatory properties of the nest to maintain heat when incubation is not possible (Webb 

1993). To help compensate for periods of off-bouts by the female, Webb and King (1983) found 

that nestlings use a beneficial technique of huddling together to transfer heat between them. 

Females that invest time in building a thermally stable nest may be able to spend more time on 

self-maintenance and less time incubating (Møller 1987; Reid et al. 2000) or may benefit by 

increased reproductive success (Windsor 2013 et al.; Møller 1987; Reid 2000). Understanding 

how the environment of the nest influences incubation behavior of parents and proper 

development of young provides insight into how parents balance the costs of current and future 

reproduction (Reid et al. 2002). In this study, I investigate whether variation in nest quality 

within species provides benefits to females by allowing for less time invested in incubation, 

increased reproductive success, or both.           

 Incubation is energetically demanding but important because maintaining constant egg 

temperature above a minimal threshold is crucial to proper embryonic development (Hilton et al. 

2004; Caragh 2013; Rodriguez and Barba 2016). Normal embryonic development requires that 
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eggs remain at constant temperatures of around 100°F (Heenan et al. 2015; Voss 2002; Conway 

and Martin 2000 a; Conway and Martin 2000 b). For example, improper incubation can lead to 

hatching asynchrony which typically results in later hatched nestlings that are much smaller and 

less competitive than older nestlings (Magrath 1988). In most bird species, females are primarily 

responsible for incubation or brooding by transferring body heat to the eggs or young 

(McClintock et al. 2014; Webb 1993) via a highly vascularized and featherless area of the breast 

(brood patch) that allows for direct contact between females and eggs or young and for more 

efficient transfer of heat (Turner 1997; Webb 1993). Thus, incubation requires a large investment 

of time and energy from females to maximize reproductive success.  

 Energy investment by females in current reproduction can result in less energy available 

to invest in future reproduction (Hilton et al. 2004; Caragh 2013; Reid et al. 2000; Mainwaring 

and Hartley 2013). Nest building, egg production, and parental care are costly in terms of energy, 

especially for females. Trade-offs may arise because females must strike a balance between 

investing in current versus future broods (Windsor et al. 2013; Weathers et al. 2003). Investing in 

nest building and incubation may represent a compromise between self-maintenance and 

maintaining proper temperatures for developing eggs and nestlings (Carter et al. 2014; Hepp 

2005; Alvarez and Barba 2008). Females can help mitigate some of the costs of incubation by 

investing in high quality nests; though, energy constraints may force some females to invest in 

constructing smaller, less thermally stable nests to allow more time for foraging (Collias 1997). 

Thus, females may face a trade-off between the cost of investing in nest building and the cost of 

investing in incubation and may not be able to invest in both.   

 In this study, I investigate how nest quality might predict incubation behavior and 

reproductive success in Carolina chickadees (Poecile carolinensis). Larger nests, with deeper 
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nest cups and thicker walls, result in thermal stability (Alvarez and Barba 2008; Collias and 

Collias 1984; Hilton et al. 2004; Pinowski et al. 2006) but require a larger investment of time and 

energy. Females who are unable to invest in high quality nests could compensate by increasing 

incubation time. Furthermore, females who invest in high quality nests may be able to reduce 

investment in incubation and increase self-maintenance during the incubation period. If there is a 

trade-off between investment in nest quality and incubation, then I predict that females with low 

quality nests will exhibit increased investment in incubation and that females with high quality 

nests will exhibit decreased investment in incubation, with both scenarios allowing for the 

maintenance of a high reproductive output. Alternatively, high quality females could invest in 

both high quality nests and incubation to maximize reproductive success. If there is not a trade-

off between nest building and incubation, and if variation in nest quality reflects variation in 

female quality, then I predict that high quality nests will influence reproductive success but not 

incubation behavior.   

 Carolina chickadees are an excellent species to test hypotheses about the relationship 

between nest quality, incubation, and reproductive success. They are cavity nesting birds that are 

common breeders in western North Carolina. They will take readily to artificial cavities (nest 

boxes) (Grubb and Bronson 1995; Christman and Dhondt 1997) that provide suitable habitat for 

Carolina chickadees and provide them easy access to their nests (Purcell et al. 1997). Females 

are solely responsible for nest building, for incubating eggs and nestlings, and for brooding 

young (Moreno et al. 2008; Moreno et al. 2010; Lambrechts et al. 2012). In this study, I tested 

whether investment in high quality nests by Carolina chickadees is evidence of a trade-off by 

measuring nest quality, incubation behavior, and nestling survival.  
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METHODS 

 

Study Sites 

 In total, 150 nest boxes were dispersed across western North Carolina in the general areas 

of Glenville, (35.1684°N, 86.1278°W) Jackson County, N.C., Cashiers, (35.1119°N, 83.0996°W) 

Jackson County, N.C., Sapphire, (35.1084 °N, 83.0118°W) Jackson County, N.C., and 

Highlands, (35.0526°N, 83.1968°W) Macon County, N.C. (Figure 1). The majority of nest boxes 

were located in residential areas with varying amounts of trees, shrubs, grass, and moss present. 

Other nest boxes were located on commercial property such as golf courses and public schools 

though were still placed in close proximity to trees and shrubs.  All nest boxes were built to the 

same dimensions (9” front height x 11 ¼” back height x 6" width x 6" depth x 1” depth) and 

installed on location by fastening each nest box to 5 foot sections of ½ inch aluminum conduit 

poles. Each nest box was assigned a unique nest identification number. Predator guards were not 

installed on nest boxes unless heightened risks of predation, such as snakes near a nest box, were 

observed. Beginning in March 2016, nest boxes were checked for signs of Carolina chickadee 

nesting materials and eggs. To ensure that all nest boxes were monitored effectively, I monitored 

nest boxes weekly. Early signs of Carolina chickadee nesting materials included small pieces of 

moss or fur in the bottom of the nest box cavity. Once nest building had begun, each nest box 

showing activity was checked every 4 days to look for the addition of nesting materials in the 

nest box. As nests were expected to be completed within 3 weeks of building activity (Hamilton 

Jr. 1943), active nests were checked daily nearing completion of building.  I considered nests to 

be complete when they contained a bottom layer of moss with a nest cup typically consisting of 

woven grasses often topped with one or several materials such as fur, plant material(s), and 

pieces of animal hair (Andreas 2010).  
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Nest Quality (Dimensions) 

Nest dimensions were quantified as nest height, nest cup depth, and the amount of moss 

underneath the nest cup. I recorded measurements of nest height and nest cup depth for each 

completed nest. As all nest boxes were built to the same dimensions, only the height of the nest 

and the nest cup depth varied among nests. Measurements were taken in centimeters using a 

small plastic ruler. The ruler was held up to the outside portion of the nest for outer 

measurements, and was placed inside the nest cup for depth measurements. As the height of 

many nests were uneven laterally at the nest’s surface edge, 3 measurements were taken for nest 

height. The ruler was held to the front side of the moss nest, and a height measurement was taken 

on the left, center, and right edge of the front side, and then the average of the 3 measurements 

was calculated. The average height measurement was used in analysis. This technique for 

measuring nest height was used for all nests regardless if they were even or uneven laterally at 

the nest’s surface edge. To quantify nest quality (referred to as nest dimensions), nest height, nest 

cup depth, and the amount of moss underneath the nest cup were used. The amount of moss 

underneath the nest cup was calculated by taking the height of the nest and subtracting from it 

the depth of the nest cup. After the nestlings fledged, each nest was collected in an individual 

storage bag, labeled, and stored at Highlands Biological Station until I could transfer all nests to 

Western Carolina University for further analysis.  

Incubation Behavior 

 Upon completion of nest building, I checked nest boxes daily for eggs. Female Carolina 

chickadees typically lay one egg each morning until they have laid their full egg clutch. Carolina 

chickadee clutch sizes can range from 3 to 10 eggs (Tekiela 2004). The average clutch size of 

Carolina chickadees seen throughout this study was 5 eggs. Therefore, as soon as nests had at 
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least 4 eggs in them, I installed Thermochron iButton DS1921 data loggers (iButtons) in the nest 

box. iButtons record temperatures with built-in memory of the device and store the temperature 

data until downloaded. Each nest box received two iButtons. The first iButton was inserted in the 

nesting material flush with the bottom of the nest cup and secured with a zip-tie around the 

perimeter of the iButton. The zip-tie allowed for easy removal and re-insertion of the iButton 

from the nest cup for the purpose of data downloading. To record ambient temperature inside the 

nest box, a second iButton, inserted into a fob, was installed inside the nest box using a zip-tie 

and was hung from a ventilation hole in the upper corner of the inside of the nest box. The zip-tie 

allowed for quick removal and re-installation of the iButton for the purpose of data downloading 

and did not interfere with the activities of the adults in the nest box. I simultaneously programed 

each iButton to record temperatures constantly in 5 minute intervals. To insure simultaneous 

activity, each iButton was programmed to begin recording temperatures at the same time. When 

installing iButtons, to minimize the influence of human body temperature on data recording, I 

placed each iButton on a 10 minute time delay before they began collecting temperature data. 

Using these parameters, each iButton could record data for 7 consecutive days, and data from the 

iButtons was downloaded every 6 days until the eggs hatched. The iButton program Thermodata 

Viewer was used to download each iButton’s temperature data. The accessibility of downloading 

iButtons at the nest box site allowed for quick removal and re-insertion of the iButtons to the 

nest boxes to minimize any disturbance to the females or to the nestlings during incubation. 

 Female Carolina chickadees incubate their eggs for a period of 12-16 days (Tekiela 

2004). Therefore, as the end of the incubation period approached, I checked each active nest box 

daily for signs of hatching. Hatching typically began in early morning hours and would continue 

throughout the day until each egg had hatched. Circumstances including inviability and 
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asynchrony resulted in some eggs either not hatching or hatching a day later than all other 

nestlings. Upon hatching completion, I removed each iButton from both the nest and the nest 

box. 

 Temperature data from inside each nest and nest box allowed me to calculate periods of 

incubation by comparing the changes in nest temperature to ambient temperature (Hartman and 

Oring 2006). I quantified incubation behavior as mean off-bout time, and total off-bout time. 

Mean off-bout referred to the average amount of time in minutes that each female spent off of 

the nest per off-bout during the period of incubation. Total off-bout referred to the average 

amount of time as a proportion that each female spent off the nest per day during the period of 

incubation. I calculated mean off-bout and total off-bout individually by comparing the initial 

off-bout times per day of incubation per female with the final off-bout times per day of 

incubation per female. Identifying these two forms of incubation separately allowed for 

comparisons between the overall time that females spent incubating throughout the entire day 

verses the specific lengths of off-bout times throughout the day.  

  For analysis of incubation data, I used Raven Pro 1.4 and Rhythm (Cooper and Mills 

2005) in conjunction with one another. Rhythm converts text files from iButtons into formatted 

files which can be opened using Raven (Cooper and Mills 2005). Raven allows analysis of data 

collected at consistent time intervals to depict off-bout and on-bout periods by incubating 

females (Cooper and Mills 2005). In relation to steady ambient temperatures, periods of 

decreasing nest temperatures indicated periods of off-bouts by the incubating female while 

periods of increasing nest temperatures indicated periods of on-bouts by the incubating female 

(Cooper and Mills 2005). Likewise, large spans of consistent nest temperatures during evening 

hours corresponded to the female incubating her eggs throughout the night (Cooper and Mills 
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2005). I used Raven to identify off-bouts in the incubation data and then visually inspected the 

data and made edits only when necessary. Necessary edits included predicted off-bout periods by 

Raven which were identified as non- off-bout periods by my written documentation of notes 

during nest box monitoring. When off-bouts were too long or when off-bouts were not identified 

at all in Raven, I also verified specific off-bout periods by my notes from nest box monitoring. 

iButton pairs remained in each nest box for the duration of incubation of the eggs.  

 To verify the accuracy of iButton data in showing incubation, a sample video was 

recorded during the period of incubation, and the video data was compared to the iButton 

incubation data of the nest box that had been recorded. I used a small PV 500 DVD player and 

button camera to collect the video imaging. The camera was secured to the top of the inside of 

the nest box using double sided Velcro to allow for viewing of nest activity.  The recorder was 

secured to the nest box pole at the base of the nest box and connected to the camera via vents in 

the nest box. I collected sample video imaging on 2 different nest boxes. The cameras used 

would collect video imaging for a total of 6 hours. Once video data had been recorded, I would 

remove nest incubation iButtons from the nest and download them. The video data and the nest 

incubation iButton data were then compared to validate that off-bout periods detected by 

iButtons corresponded to periods when females were off the nest.  I found that iButton data 

accurately estimated off-bout periods. 

Reproductive Success 

 Carolina chickadee nestlings typically remain in the nest for 15-22 days (Gowaty and 

Plissner 1997). At day 12 after hatching, I re-installed both iButtons into each nest to record 

fledging data; such disturbances after day 12 can cause premature fledging of the nestlings. 

iButtons were used to accurately estimate fledging date. During the late nestling period, an 
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iButton in the nest would record the presence of nestlings as being consistently warm (30- 35°C). 

Fledging was assumed to have occurred when the nest iButton temperature was correlated with 

the iButton measuring ambient temperature. The same method of video monitoring and analysis 

used for verifying incubation was also conducted during periods of fledging to test the accuracy 

of iButton fledging data collection. I compared the video data and the nest fledge iButton data to 

one another to check for accuracy. I found accuracy in the fledging iButton data collected as 

decreasing iButton temperatures correlated with video data fledging time. After re-installing both 

iButtons into each nest, I checked nest boxes bi-weekly for signs of nestling fledging. Visual 

evidence of fledging included fledglings on the ground near the box, feces on the inside and 

outside of nest box walls, a compacted nest cup, and adult Carolina chickadees feeding young in 

a nearby area. After nestling fledging had completed, I removed iButtons from the nest and 

download them. Thus, I felt confident that I was able to identify fledging versus predation if 

nestlings were in the box for at least 18 days and/or there was clear evidence of fledging. I used 

the number of fledglings as my measure for reproductive success in all of my analyses. 

Statistical Analyses 

  I used the statistical software R for data analysis (R Core Team 2013). Using R, I 

constructed general linear models (GLM) representing the variables of nest dimensions, 

incubation behavior, and reproductive success. To analyze the relationship between reproductive 

success and nest dimensions, I constructed a GLM using the number of nestlings that fledged as 

the dependent variable, and using the height of the nest, the depth of the nest cup, and the 

amount of moss underneath the nest cup as co-variates. To understand the relationship between 

nest dimensions and incubation behavior, I constructed a GLM using the height of the nest as the 
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independent variable and using the mean off-bout time and the total off-bout time as dependent 

variables.  
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RESULTS 

 

 I monitored a total of 150 nest boxes. Of the 150 nest boxes monitored, 61 nest boxes 

were found to be occupied by Carolina chickadees and 89 were occupied by other species 

including eastern bluebirds (Sialia sialis), house wrens (Troglodytes aedon), and tree swallows 

(Tachycineta bicolor). The Carolina chickadee nest boxes were continually monitored whereas 

the remaining nest boxes containing other species were not continually monitored. Of the 61 

Carolina chickadee nest boxes, 31 fledged with an average clutch size of 5.2, an average number 

of eggs hatched of 4.2, and an average number of fledglings per nest of 3.8. The nesting period 

was from the time of hatching to the time of fledging and averaged a total of 17.5 days. Thirty of 

the Carolina chickadee nests failed due to predation of eggs or nestlings by house wrens, bears, 

snakes, or failing to hatch, or nestling death, or abandonment for unknown reasons. As predated 

nests resulted in having no eggs to be considered for hatching, only nest boxes which contained 

successful nestling hatching were then considered for analysis of fledging success. Therefore, the 

sample size for reproductive success was 31. As incubation data, collected via iButtons, was 

gathered on 5 of the nest boxes that faced predation later in the brooding season, the sample size 

for incubation behavior was 36.  

 I checked the normality of my models by looking at the Normal Q-Q Plot and checked 

the assumption of homogeneity by looking at the Scale-Location Plot. I found that nest height 

was positively correlated with the number of nestlings that fledged the nest (Table 1, Figure 2a; 

GLM: t = 3.883, P = 0.000574, N = 31). Nest cup depth was negatively correlated with the 

number of nestlings that fledged the nest (Table 1, Figure 2b; GLM: t = -2.375, P = 0.024634, N 

= 31). The amount of moss underneath the nest cup was negatively correlated to nest cup depth 
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(Table 2, Figure 3; GLM: t = -13.01, P = < 0.0001, N = 31). The amount of moss underneath the 

nest cup was positively correlated to the number of nestlings that fledged the nest (Table 3, 

Figure 4; GLM: t = 2.072, P = 0.04729, N = 31). Nest height was not correlated to total off-bout 

time (Table 4, Figure 5; GLM: t = 0.531, P = 0.60025, N = 36). Nest height was not correlated to 

mean off-bout time (Table 5, Figure 6; GLM: t = 1.196, P = 0.243, N = 36).  
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Table 1 

Individual results for overall GLM on nest dimensions and reproductive success. Nest 

dimensions are measured as nest height and nest cup depth. Reproductive success is measured as 

the number of nestlings that fledged the nest. There is a positive relationship between nest height 

and the number of nestlings that fledged the nest and a negative relationship between nest cup 

depth and the number of nestlings that fledged the nest. 

 

  Estimate Std. Error t-value p-value df 

Intercept -0.2698 1.3065 -0.207 0.83788 29 

Height 0.7061 0.1819 3.883 0.00057 29 

Cup depth -0.32 0.1347 -2.375 0.02463 29 

 

 

 

 

 

 

Figure 2 

 

 

a.) Statistically significant positive linear regression result comparing nest height to the number 

of nestlings that fledged the nest (GLM: t = 3.883, P = 0.000574, N = 31). 

 

 b.) Statistically significant negative linear regression result comparing nest cup depth to the 

number of nestlings that fledged the nest (GLM: t = -2.375, P = 0.024634, N = 31). 
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Table 2 

 

Individual results for overall GLM on nest dimensions. Nest dimensions are measured here as 

the amount of moss underneath the nest cup and nest cup depth. There is a negative relationship 

between the amount of moss underneath the nest cup and nest cup depth. 

 

 Estimate Std. Error t-value p-value df 

Intercept 7.2736 0.3188 22.81 < 0.0001 29 

Undercup -7.0649 0.5431 -13.01 < 0.0001 29 

 

 

 

 

 

 

Figure 3 

 

 
 

 

Statistically significant negative linear regression result comparing the amount of moss 

underneath the nest cup to the nest cup depth (GLM: t = -13.01, P = < 0.0001, N = 31).  
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Table 3 

 

Individual results for overall GLM on nest dimension and reproductive success. Nest dimension 

is measured here as the amount of moss underneath the nest cup. Reproductive success is 

measured here as the number of nestlings that fledged the nest. There is a positive relationship 

between the amount of moss underneath the nest cup and the number of nestlings that fledged the 

nest. 

 

 Estimate Std. Error t-value p-value df 

Intercept 2.678 0.6557 4.084 0.00032 29 

Undercup 2.3136 1.1167 2.072 0.04729 29 

 

 

 

 

Figure 4 

 
 

Statistically significant positive linear regression result comparing the amount of moss 

underneath the nest cup to the number of nestlings that fledged the nest (GLM: t = 2.072, P = 

0.04729, N = 31).  
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Table 4  

 

Individual results for overall GLM on nest dimension and incubation. Nest dimension is 

measured here as nest height. Incubation is measured here as total off-bout time. There is no 

relationship between nest height and the total off-bout time. 

 

                    Estimate                Std. Error  t- value    p- value   df 

Intercept        0.26028 0.06216 4.187 0.00031 25 

Height           0.00398 0.0075 0.531 0.60025 25 

      

 

 

 

 

 

  

Figure 5 

 

 
 

Non- statistically significant linear regression result comparing nest height to the total off-bout 

time (GLM: t = 0.531, P = 0.60025, N = 36). 
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Table 5 

 

Individual results for overall GLM on nest dimension and incubation. Nest dimension is 

measured here as nest height. Incubation is measured here as mean off-bout time. There is no 

relationship between nest height and the mean off-bout time. 

 

                    Estimate                   Std. Error    t- value   p- value df 

Intercept        9.5512 5.5387 1.724 0.097 25 

Height           0.7991 0.6681 1.196 0.243 25 

      

 

 

 

Figure 6 

 
 

Non- statistically significant linear regression result comparing nest height to the mean off-bout 

time (GLM: t = 1.196, P = 0.243, N = 36).  

 

         

 

  

0

5

10

15

20

25

30

35

40

4 5 6 7 8 9 10 11

Nest Height (cm)

M
ea

n
 O

ff
-b

o
u

t 
(m

in
) 



 

 

20 

 

DISCUSSION 

 

 I studied the effects of nest quality on incubation behavior and reproductive success in 

Carolina chickadees. I assayed nest quality by measuring nest dimensions; larger nests are 

considered higher quality nests (Alvarez and Barba 2008; Collias and Collias 1984; Hilton et al. 

2004; Pinowski et al. 2006). I measured incubation behavior over most of the incubation period 

using thermal data loggers (iButtons).  Incubation behavior was quantified in two ways: 1- 

average length of off-bouts per day; and 2- average amount of time spent off the nest per day. I 

predicted that quality of nest construction would change incubation behavior and that these 

changes would contribute to reproductive success. I found no correlation between nest quality 

and incubation behavior. I also predicted that high quality nest construction would influence 

reproductive success. I found a positive correlation between high quality nest construction and 

reproductive success. Nest height and the amount of moss underneath the nest cup predicted 

reproductive success, but there was no relationship between incubation behavior with 

reproductive success. Together, my results suggest that females that invest in building high 

quality nests benefit by fledging more young and that females that build poor quality nests do not 

compensate by increasing incubation behavior.  

Nest Quality and Reproductive Success 

 In this study, the relationship between nest quality, measured here as the height of the 

nest, and reproductive success, measured here as the number of nestlings that fledged the nest, 

resulted in a significant positive relationship (Table 1, Figure 2a). Therefore, nest height predicts 

reproductive success in the Carolina chickadee. The second measure of nest quality I used was 

nest cup depth. In a study of great tits (Parus major), a close relative of Carolina chickadees, 

Alvarez and Barba (2008), found that nests with deeper cups were higher quality and more 
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thermally stable than nests with shallow nest cups, as additional nest material would help provide 

more nest insulation. Nest insulation, which contributes to nest quality, is also an important 

factor in fledgling success. Better insulation in nest construction enables eggs and hatchlings to 

be kept warm in cold temperatures (Conway and Martin 2000 a; Conway and Martin 2000 b; 

Alvarez and Barba 2008). Consistency of proper temperature in the nest is necessary for 

successful hatching, development, and fledging (Alvarez and Barba 2008; Rodriguez and Barba 

2016). Nest insulation is also important for the cushioning and protection of eggs and nestlings in 

the nest (Voss 2002; Collias and Collias 1984) and for thermal conductivity. If nests become 

wet, thermal conductivity increases (Hilton et al. 2004). Increased conductivity of nesting 

materials may have an adverse effect on eggs and nestlings because they will experience cooling 

at a faster rate. Many bird species will choose nesting materials that are less prone to absorbing 

water and will strategically place those materials in the nest box in a particular arrangement to 

reduce their exposure to water (Hilton et al. 2004). Similarly, material arrangement within the 

nest box can trap air layers to help aid in insulating the nest (Møller 1984). Trapped air layers 

can be significant for the nest (Deeming and Biddle 2015) similar to how animal down and 

animal fur function. The collected nests from my study differed mainly in the nest height and in 

the amount of moss underneath the nest cup. Animal fur and plant material(s), interlaced with 

moss, made-up the majority of the nests’ outer composition, while the nest cups were lined with 

moss and animal fur to produce a soft and warm environment in the nest cup. This illustrates 

material selection by the female in nest construction. Biddle et al. (2015), found that common 

blackbirds (Turdus merela) used thicker, heavier materials for the outer nest wall compared to 

the interior of the nest cup which was composed of smaller, lighter materials. Heavier materials 

were also used at the base of the nest cup compared to the upper portions of the nest cup. 
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Likewise, in a study on bullfinches, material selection of thicker, heavier materials was used for 

the outer nest wall compared to the interior of the nest cup suggesting non-random material 

placement (Biddle et al. 2017). The chickadee nests in my study followed similar nest 

construction with heaviest, thickest materials to the outer-lower portion of the nest while the 

inside of the nest cups were built with finer, lighter materials. Bailey et al. (2014), found that 

material selection was influenced by the experience of the bird. This would suggest that nest 

quality and reproductive success would improve with the age and experience of the female 

chickadee.    

 As other researchers found that deeper nest cups were higher quality and helped provide 

more nest insulation contributing to fledgling success, I expected to find a positive correlation 

between nest cup depth and fledging success in my results. Instead, I found a statistically 

negative relationship between nest cup depth and fledging success (Table 1, Figure 2b). To 

explain my result, I suggest nest cup depth may not be the relevant factor for reproductive 

success, but rather, a similar form of nest quality may be. As nests lacking adequate insulating 

material at the bottom of the nest cup would make young birds more susceptible to heat loss 

(Voss 2002; Collias and Collias 1984), I chose to investigate the relevance of the amount of 

nesting material located below the nest cup. The statistical comparison of nest cup depth and the 

amount of moss underneath the nest cup resulted in a significant negative relationship (Table 2, 

Figure 3) indicating the amount of moss underneath the nest cup may be an important factor in 

nest quality. To further investigate nest quality in relation to reproductive success, I statistically 

compared the amount of moss underneath the nest cup to the number of nestlings that fledged the 

nest and found a significant positive relationship (Table 3, Figure 4). The positive relationship 

found emphasizes the amount of moss underneath the nest cup is an important factor in nest 
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construction. In my study, shallower nest cups were found to provide better thermal insulation 

than deeper nest cups due to the larger amounts of moss present underneath the nest cup. More 

insulation between a shallow nest cup and the bottom of the nesting cavity results in increased 

thermal stability, in cushioning, and in protection of developing eggs and nestlings. Therefore, in 

relation to nest quality, my results indicate the amount of moss underneath the nest cup may be 

the relevant factor in reproductive success. As Carolina chickadees have only one brood per 

nesting season, females may choose to optimize their use of nesting materials and material 

placement to better cushion and insulate their clutch. In my study, placement of nesting materials 

was beneficial as 31 nest boxes had successful fledging with an average number of 3.8 fledglings 

per nest.    

Nest Quality and Incubation Behavior 

 Incubation is demanding energetically for females in multiple ways (Rodriguez and 

Barba 2016). Energetic costs to females include the process of re-warming eggs and nestlings 

after returning from each off-bout (Collias and Collias 1984; Hilton et al. 2004). Energy 

demands on the female would also be related to female quality with higher energy expenditures 

associated with higher quality females. Age, and thus parental experience, would impact female 

quality and their energy demands for incubation and nest building (Conway and Martin 2000 a; 

Conway and Martin 2000 b; Collias and Collias 1984). 

 In my study, I found no correlation between nest dimensions and incubation behavior. I 

also found that nest quality had no effect on the amount of time Carolina chickadee females 

spent off their nest during the period of incubation (Table 4, Figure 5; Table 5, Figure 6). 
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Time Investment for Foraging and Incubation 

 

 Though adequate incubation is crucial to the development of eggs and nestlings, females 

must maintain their health and energy levels by procuring sufficient nutrients. They must spend 

time off the nest to satisfy their energy needs (Walters et al. 2016; Conway and Martin 2000 a; 

Conway and Martin 2000 b). To offset their time investment between incubation and foraging, 

different females have developed different techniques. In their study on Mediterranean great tits 

(Parus major), Rodriguez and Barba (2016) reported that, regardless of dropping temperatures, 

females did not increase the time that they spent incubating and instead continued to forage as 

needed. Similar findings to Rodriguez and Barba (2016) were reported by Møller (1987) and 

Reid et al. (2000). In their work, females spent more time off the nest foraging than they did on 

the nest incubating. Other females have chosen to build deeper nests which have greater 

insulatory properties when compared to shallower similar nests (Alvarez and Barba 2008). In 

some works, the females investing in the construction of deeper, better insulated nests spent less 

time on the nest incubating and more time off the nest foraging when compared to females that 

built shallow nests (Møller 1987; Reid et al. 2000). In my work with the Carolina chickadee, I 

found that the females invest more time on their nest incubating their eggs than they do off the 

nest participating in activities which may include foraging for self-maintenance.  

 Females have a variety of investment strategies that they can use to manage the trade-off 

between self-care and incubation/brooding. Females can invest solely in building a high quality 

nest, or in themselves by foraging more often and for longer periods of time, or they can 

maximize both self-care and care of their young. In my study, females that built more thermally 

stable, higher quality nests, created the possibility of leaving their nest more frequently and for 

longer periods of time and spending more time foraging than on incubation. However, my results 
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show that female Carolina chickadees do not have more frequent off-bouts or for extended time 

periods based on the quality of their nests. If high quality females build high quality nests and 

continue to give high quality care until nestlings fledge, high quality females may be rewarded 

with higher reproductive success. It is possible that quality may vary between females or that 

females improve with age. I did not have the data to test that hypothesis, but this should be the 

subject of future studies.   

Possible Investigations 

 Future work could involve investigation of nests by looking at characteristics of nest 

building materials such as, their composition, their quantity, and their location inside the nest 

box (Tomás et al. 2006; Hilton et al. 2004). Nests could be examined for their insulating 

properties and then compared to fledging success to determine if there is a correlation of nesting 

success to insulation characteristics of the nest. In their study on tree swallows (Tachycineta 

bicolor), Lombardo et al. (1995) found a relationship between reproductive success and nest 

quality where incubation behavior increased in nest boxes that had feather lining removed. 

Likewise, as well insulated nest cups positively influence the thermal properties of the nest for 

developing eggs and nestlings (White and Kinney 1974), it is understandable why Møller (1982) 

found decreased rates of hatching in barn swallows (Hirundo rustica) in smaller nests than in 

larger built nests. Through their work with rufous bush robins (Cercotrichas galactotes), 

Palomino et al. (1998) reported the thickness of the nest wall and nest bottom may be a key 

component in the thermoregulatory abilities of the nest environment. Interestingly, Palomino et 

al. (1998) and Alvarez and Barba (2008) did not find a positive relationship between 

reproductive success and the thickness of the nest bottom, though in my study of Carolina 

chickadees, I did find a positive result. My research resulted in a significant positive relationship 
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between the amount of moss underneath the nest cup and the number of nestlings that fledged the 

nest. This result may show evidence that Carolina chickadees rely more heavily on the amount of 

moss underneath the nest cup for reproductive success than do other species of birds.  

 Furthermore, in contrast to my study, collection of nest measurements, incubation data, 

and reproductive success data, needs to be carried out more than once for the same female to 

establish repeatability. Repeatability serves as an approximate measure of heritability of behavior 

(Boake 1989), and females should exhibit repeatability in their nest measurements for each 

nesting attempt per brooding season (Stanback et al. 2013). Knowing a particular female’s birth 

year would allow for tracking that female through repeated breeding seasons using identification 

banding and would permit investigation into whether female Carolina chickadee’s age, quality, 

or both are related to nest quality. Two questions that could be answered are, 1- do female 

Carolina chickadees get better at nest building as they get older, and 2- do higher quality females 

build higher quality nests as indicated by variation in nest quality? In my study, the ages of the 

females were unknown, so no predictions could be made about the health and overall quality and 

breeding history of the females. Overall however, my study had beneficial implications in the 

study of Carolina chickadees as I found support that investment in high quality nest construction 

influences reproductive success while there was no support indicating a trade-off between 

incubation behavior and nest quality.  
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