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ABSTRACT

EFFECTIVENESS OF COOPERATIVE AND COMPETITIVE SHARED CON-
TROL

Kevin Babecki, M.S.T.

Western Carolina University (April 2014)

Director: Martin L. Tanaka, Ph.D.

Advances in technology place ever increasing demands for effective interactions be-

tween humans and machines. Human-machine interaction (HMI) that incorporates

shared control, in which the human and machines both simultaneously influence the

outcome, may lead to a more natural interaction between people and machines. This

natural interaction could be particularly beneficial in assistive devices that are used

to increase, maintain, or improve capabilities of individuals.

An interactive computer simulation of an inverted pendulum which takes input from

artificial and human controllers was programmed in Matlab to determine the effec-

tiveness of cooperative shared control. A proportional-derivative (PD) controller was

used as the artificial/computer side of the shared control. Input from a human op-

erator was obtained using an Xbox 360 controller, with biofeedback provided by a

flat panel display. The artificial controller and human worked together to balance the

inverted pendulum vertically and prevent it from falling below the horizontal axis.

Random perturbations were provided to destabilize the system. The amount of time

in which a participant could maintain stability was used as a performance measure-

ment.

In competitive shared control the computer assists the human in completing the pri-

mary task. However, in addition, the human works to achieve a secondary task while



working symbiotically with the artificial controller. This may result in conditions

where the human is competing with the artificial controller to achieve different goals.

Note that this type of shared control is different than the winner takes all competitive

control because influence from each source is always present. The amount of time the

pendulum is balanced and how long the pendulum remained within the target area

was used as a performance measurement.

A total of 20 participants for the cooperative shared control and 12 participants for

the competitive shared control were evaluated at 26 different testing conditions in

a pseudo-randomized order. Each test condition was repeated three times for each

participant and the result for each test condition was averaged. The results from both

the cooperative and competitive shared control testing were very promising. The

results showed that blended shared control can outperform a human and that higher

performance can be achieved by increasing the PD level. Blended shared control

can also perform better than an artificial PD controller alone when the difficulty

increases beyond the controller’s capabilities. This same observation can be made

when comparing blended shared control to additive performance. Competitive testing

was also able to show that giving the human a secondary task to complete did not

interfere with primary task completion. By lightening the load of a primary task,

blended shared control could enable someone to perform additional tasks or allow

them to perform them better than they could on their own.
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CHAPTER 1: INTRODUCTION

Advances in technology place ever increasing demands for effective interactions be-

tween humans and machines. This results in the need to improve human-machine

interaction (HMI) so that it can keep up with the current technology. Shared control

between human and machines is an area of research that could lead to improvements

in the way machines assist people at work, in the home, and in every aspect of our

daily lives. An automotive cruise control is an example of shared control where con-

trol is switched autonomously between an artificial controller and a human. When

the driver wishes to increase speed beyond the set cruising speed, the driver pushes

the gas pedal and assumes speed control of the vehicle without intervention from

the machine until the speed is reduced to the controller’s set point. Vehicle speed

control is then reverted back to the artificial controller. Shared control could lead

to better controller performance allowing certain portions of control to be automat-

ically controlled by an artificial controller while enabling humans to control higher

level functions. There are tasks that are too complex for either an artificial control

or human control alone. However, some of these tasks may be achievable if humans

and machines work together sharing the control. Using this approach, shared control

could allow machines to control certain aspects for which they are well adapted to

such as those that require high reaction speed or control of multiple degrees of free-

dom. Humans could then focus their control effort on aspects for which they are well

adapted such as high level logic, prediction, and strategy.

One area of technology that could benefit from using a shared control scheme is in the

development of assistive devices. These devices are designed to assist people rather

than control them. Shared control has been used to control the operation of a walker

for the elderly [1]. By using shared control the walker was able to provide assistance
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only when needed and do so in a natural way without causing instability of the user.

Other research shows that shared control may even be able to reduce the visual de-

mands of tasks such as driving [2].

In this research we study a new type of shared control called blended shared control

where humans and machines both simultaneously influence the outcome. This type of

control scheme may lead to a more natural interaction between people and machines.
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CHAPTER 2: LITERATURE REVIEW

2.1 Control Systems

Control systems are an important part of many disciplines of engineering as well as in

the natural world. A control system is a system that controls the operation of a system

to achieve a desired output [3]. Feedback provides the controller with knowledge of

the current state of the system. There are two types of control systems: open loop

and closed loop. Open loop systems do not use feedback to make control decisions so

the output of the system never affects the input. An automated sprinkler system is

an example of open loop system, because it turns on at a specific time regardless of

other conditions. It will turn on at a specific time even if the grass already has enough

moisture or if it is raining. Closed loop systems take advantage of knowing the output

state and use this knowledge to influence the system input so that the desired output

is achieved [3]. An oven is an example of a closed loop system. The oven is set to a

certain temperature and once the oven reaches this temperature the heat turns off.

When the thermometer measures that the oven is below the temperature set point, it

heats the oven again until the oven once again reaches the desired temperature. This

insures that the oven will maintain the set temperature.

2.2 PID Controllers

The most common type of feedback controller used in industry is a proportional-

integral-derivative (PID) controller [4]. The proportional aspect of PID provides a

gain that is proportional to the error in the controlled parameter. If the error is large,

then the gain will also be large. This is to insure quick reduction of error. However,

too large of a gain can lead to instability. The proportional gain can be reduced by

taking into account the rate of change in the error, or the derivative part of a PID

controller. The derivative gain slows the response by simultaneously incorporating a
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controller gain corresponding to the rate of change in the error. When this gain is

tuned correctly, it will result in a slower transient response and will improve system

stability [3]. Integral gain may be used to eliminate steady state error. Integral gain

takes into account error that accumulates over time. It is often used in artificial

controllers to correct for very small errors that may still be present when the sum of

proportional gain and derivative gain is zero [3]. Although the use of PID control is

common in engineering systems, in the case of balancing an inverted pendulum, only

the proportional and derivative components are essential for system stability [5].

2.3 Assistive Devices

Assistive devices are items or equipment used to increase, maintain, or improve func-

tional capabilities of individuals [6]. Most people only think of assistive devices as

items, such as wheel chairs or hearing aids that help disabled people to regain lost

functions, such as their ability to walk or hear. However, night vision goggles are also

considered an assistive device, because they improve the vision of able bodied people.

PDAs and cell phones could also be considered assistive devices because they remind

people of appointments. Although not all assistive devices use a high degree of tech-

nology, additional research is being conducted to implement cutting edge technology

into assistive devices [1, 7, 8].

2.4 Shared Control

Employing shared control in assistive devices may be a better option than using arti-

ficial control alone. Blending the artificial assistance with human input could enable

assistive devices to be more effective [7]. Shared control is where two or more agents

influence the control of the system [9]. This thesis will refer to shared control in

which the agents are a human and an artificial controller. Traded control switches

sole control between two or more agents depending on the conditions. For example,
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a pilot will control the plane for takeoff and landings, while the autopilot operates

the plane while in the air [9]. Further studies in the area of shared control are being

conducted to find other applications as well as evaluating its effectiveness [1,2,7–14].

Although there are several published articles on shared control, few investigate the

various forms of coordination between humans and machines. Ronald Arkin [15] dis-

cusses two main categories: cooperative and competitive. Cooperative coordination is

described as a fusion of all controls, similar to superposition of vectors. Competitive

coordination is typically defined as winner takes all where two or more controls are

competing for dominance and only the winner will be utilized. Nunes [10] and Car-

reras [11] both propose hybrid control schemes that utilize aspects of both forms of

coordination. Nunes proposes using varying forms of coordination in his shared con-

trol scheme depending on the hierarchy of the command. Carreras’ hybrid approach

uses the most beneficial aspects of each type of coordination in order to improve

performance.

2.5 Studies of Shared Control in Assistive Devices

We are interested in using shared control on assistive devices; however we are not

the first. Glenn Wasson [1,8] developed the COOL-Aide (CO-Operative Locomotion

Aide), an intelligent walker for the elderly that uses shared control on wheeled walk-

ers. Unlike other intelligent walkers that aid the elderly, COOL-Aide senses when

assistance is needed and provides it as necessary. On-board sensors are used to de-

termine if walls or other obstacles are close so that braking or steering can be used

to avoid them. These sensors are also used to anticipate the user’s intended direction

and provide a balance between supporting the anticipated position and current posi-

tion of the user. This provides a more natural feel to the walker and does not make

the user feel like he/she is being led. Ana C. Lopes [7] designed and built a robotic
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wheelchair that uses a brain computer interface (BCI) and shared control to allow

people with severe motor disorders to regain mobility. Through BCI the user specifies

a certain location in the wheelchair’s memory or designates a general direction for the

wheelchair to travel. The robotic wheelchair receives the commands from the user

and safely navigates to that location or travels in the indicated direction. These two

examples use shared control to make adaptive decisions when sensing that assistance

is needed. They are a type of shared control in which the human controls higher

functions, like direction of travel, and the machine helps to determine the best path.

2.6 Studies of Simulated Shared Control

Besides using shared control in physical devices, it is also being used in simulated

environments to test controller efficiency. Navigation is often a complex problem

that requires a controller to adapt to various changing circumstances and conditions.

When determining the effectiveness of shared control, it is often tested against solely

human operation and autonomous control. Aaron Enes [9] used Zermelo’s navigation

problem where a simulated ship is navigated to a target location while traversing a

region of strong current. Enes tested a blended shared control that allowed a human

and artificial controller to simultaneously control the ship. The influence of human

and artificial controls changed depending on how much the command differed be-

tween the artificial controller and the human. If the difference was large, then control

was given to the human. This meant that sometimes the human had more influence

and at other times commands were given by the artificial controller. This method of

shared control resulted in faster completion times than a human navigating without

the assistance of an artificial controller.

Yukio Horiguchi [12] tested shared control of a simulated robot navigating a turn in a

corridor. The initial testing led to two conclusions; first, that the human was able to
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perform better when signaled by the robot to turn, and second, operation of the robot

by the human was difficult after the robot had decided to ignore human input. These

results led to a modification to the shared control that allowed the robot to adapt

and predict the human’s response to an autonomous movement and enabled better

coordination with the human inputs. Further testing showed that this modification

alleviated problems in the first test and resulting in improved performance when

compared to other forms of control. Gillespie and colleagues [2, 13, 14] investigated

shared control through the use of a haptic steering wheel. The artificial controller

was able to provide feedback to the human indicating the direction that the controller

wished the vehicle to be navigated. Multiple artificial controller schemes were used

to determine that haptic feedback can reduce the visual demand of driving. These

simulated tests were able to determine the effectiveness of shared control in navigation

and shows the benefit of future research using shared control in a variety of forms.

2.7 Blended Shared Control

This thesis research focuses on blended shared control, which is a form of control where

human and machine simultaneously influence the outcome of a system [9]. This new

form of shared control could lead to more natural interaction between humans and

machines. This was investigated in two ways: cooperatively and competitively.

1. Cooperative Shared Control: In the cooperative shared control the computer as-

sists the human in completing the primary goal, both the artificial controller and the

human work together to achieve the same goal.

2. Competitive Shared Control: In competitive shared control the computer assists

the human in completing the primary goal. However, in addition, the human works

toward a secondary goal while working with the artificial controller on the primary
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goal. This results in conditions where the human may need to compete with the arti-

ficial controller to achieve the secondary goal. Some published research investigated

how machines and humans worked together in a cooperative manner [1,2,7–14]. How-

ever, we are not aware of any published research investigating the effects of blended

shared control with a competitive nature.
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CHAPTER 3: METHODS

3.1 Development of a Cooperative Control Computer Simulation of
an Inverted Pendulum

An interactive computer simulation of an inverted pendulum which takes input from

artificial and human controllers was programmed in Matlab to determine the effec-

tiveness of cooperative shared control.

3.1.1 Description of Pendulum

The model of the planar inverted pendulum, shown in Figure 3.1 consists of a point

mass attached to a massless segment that rotates in a single plane around a fixed

location.

Figure 3.1: Model of Planar Inverted Pendulum

The position of an inverted pendulum is influenced by torque,

τ = mgL sin θ (3.1)
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where the mass, m, and distance from the center of rotation, L, are set to constant

values. The acceleration of gravity is g and θ is the angle from the upright vertical

position. The mass moment of inertia, I, is a function of both the mass and the

distance of the point mass from the center of rotation, where

I = mL2. (3.2)

With knowledge of the torque and the inertia, the angular acceleration, α, can be

found,

α =
τ

I
. (3.3)

The angular acceleration can then be used to determine the angular velocity, ω, and

the angular position. The angular acceleration and current angular velocity is used

to calculate the angular velocity at the next time step.

ωt+1 = ωt + αt+1∆t (3.4)

This angular velocity and the current angular position are used to calculate position

of the pendulum at the next time step.

θt+1 = θt + ωt+1∆t (3.5)

3.1.2 Control of the Inverted Pendulum System (PID and Human)

Figure 3.2 shows a block diagram of the feedback system used to control the inverted

pendulum. The desired position of the pendulum is fed back into the system then

input torque from both the human and PD control are used to change the position of

the pendulum. The output torque from the controller is also influenced by the system

noise. The human, PD controller, and noise torques are used to influences the physics

of the pendulum to change the pendulum’s position, velocity, and acceleration. The

actual position and actual velocity values are then fed back into the beginning of the

loop and used to influence the state of the pendulum at the next time step.
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Figure 3.2: Cooperative Block Diagram

The PD control torque, τPD, corrects for differences between the desired and actual

values of the angle and the angular velocity

τPD = KP (θd − θ) +KD(ωd − ω) (3.6)

where KP and KD are the proportional and derivative gain constants, respectively.

In this case the desired angle, θd, and angular velocity, ωd, will be zero. The propor-

tional gain constant controls how much torque is applied to correct for the difference

between the current and desired position. The derivative gain constant effects how

fast the pendulum will move by controlling the angular velocity. This helped to re-

duce overshooting the desired position [3].

In this study, a human uses an Xbox 360 controller, seen in Figure 3.3, to provide

input to the system. The left and right movement of the left thumb stick was used

to control the torque, τH , applied to the pendulum. The Simulink 3D Animation

toolbox in Matlab with the commands ‘joy = vrjoystick(1)’ and ‘read(joy)’ were used

to obtain a values from the human input on the controller. Values for the horizontal

axis of the left thumb stick (Figure 3.3) were used to affect the torque of the pendulum.

The axis is analog and generated a value from -1 to 1 that changed based on very

slight movements. This value from the axis was multiplied by a factor, called GH ,
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Figure 3.3: Xbox 360 Controller

and was used to calculate the amount of torque the human applied. Visual feedback

of the current pendulum position was provided using a custom animation program

displayed on a computer screen shown in Figure 3.4. The human used the visual

feedback of the plot of the pendulum to determine the amount of torque that was

needed.

τH = GHaxes(1) (3.7)

The noise torque, τN , provides instability of the system, representing natural distur-

bances in real systems. The noise torque was made by multiplying a random number,

generated by ‘randn’ in Matlab, by a noise factor, GN .

τN = GNrandn (3.8)

Equation (3.7) shows the summation of the torques used to determine the acceleration,

which when used with equations (3.4) and (3.5) results in a change in position of the

pendulum.

α =
τ + τPD + τN − τH

I
(3.9)
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Figure 3.4: Cooperative Pendulum Program Screen, which is used for human input

3.1.3 Cooperative Simulation Description

An interactive Matlab simulation was developed to implement blended shared con-

trol into an inverted pendulum. The initial conditions that remained constant for the

entire program were defined at the beginning of the program. These constants were

the desired position and the desired velocity of the pendulum as well as the derivative

gain, which remained 10. Next a loop was set to run continuously and only ended if

the pendulum fell below the x axis or if the maximum time limit was reached. The

time limit was initially set 5 minutes, or 300 seconds. In this loop the physics and

other inputs to the pendulum’s torque were calculated. The torque due to gravity was

calculated using equation (3.1). The PD control torque was calculated using equation

(3.6). The PD controller torque was calculated given the previous time step’s position



22

and the previous time step’s velocity of the pendulum to determine how much torque

needed to be applied. These torques were used by equations (3.4), (3.5) and (3.7) to

determine a new position for the pendulum.

The custom animation program worked by taking input data of the time and the theta

position of the pendulum and placed a red circle at the location of the pendulum and

a blue line was drawn from there to the origin of the figure. The ‘drawnow’ command

was used to immediately update the figure and allowed the program to update the

figure quickly enough for human eyes to see continuous movement of the pendulum.

Figure 3.5 shows the process of the cooperative computer program.

Figure 3.5: Cooperative Program Block Diagram

3.1.4 Sensitivity Analysis

A sensitivity analysis was performed by testing the artificial controller alone over a

wide range of noise and PD levels. Only the proportional gain constant was changed,

so the PD level indicates the value of KP while KD remained fixed at a level of 10.
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The noise level indicates the magnitude of GN used in equation (3.8) to determine the

magnitude of random torque noise. This test was used to determine an appropriate

range for human participant testing. An optimal region would show a plateau at high

performance indicating that the maximum testing time had been achieved. It would

also show a flat region of low performance indicating that the challenge was difficult

enough for even the highest performer to fail. Finally is would show the transition

surface between these two levels. The sensitivity analysis revealed that the region of

PD Control / Noise Space where the transition occurred was between a PD level of 0

and 250 and a noise level between 0 and 250 seen in Figure 3.6. Noise levels beyond

250 resulted in very low stability times . PD levels above 250 resulted in times that

exceeded 5 minutes except at higher noise. Performance was measured by the number

of seconds the controller could keep the pendulum inverted. In order to prevent the

test from going indefinitely, a maximum balancing time was placed in the program.

This amount of time was chosen to be 5 minutes or 300 seconds. This allowed enough

time to determine if a particular test condition was stable or if it would eventually

fail by falling below the horizontal axis.

This program was run multiple times for each testing condition. The results for each

test condition were averaged together and plotted as a 3D surface in Figure 3.6.

3.1.5 Experimental Protocol Design - Cooperative

We wanted to evaluate the effect of blended shared control (human and artificial con-

troller) over the full controller range of Noise and PD levels. Testing enough points

to make a 3D surface would require data collected at 11 different noise values and

11 values of PD. If each test condition was repeated three times, this would require

363 trials. Each trail could last up to five minutes equating to 1815 minutes or over

30 hours to complete a test. This amount of time would be too much of a commit-

ment for each participant, especially if he/she performed well which would prolong
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Figure 3.6: Results from Sensitivity Analysis, examining a range of PD and noise
from 0 to 250

the amount of time for testing. Therefore, we decided to evaluate cross-section of

conditions rather than the entire field. This cross section would allow enough data to

sufficiently investigate the transition region and allow cooperative performance to be

compared in various ways to highlight its benefits. Nine test conditions were selected

to show a transition from high to low values. Using a constant PD level of 100, the

noise level was varied from 0 to 200 in increments of 25. Nine test conditions were

also chosen at a constant noise level of 150 while the PD level was varied from 0

to 200 in increments of 25. In order to show human performance alone, nine more

testing conditions over the same range of noise and with a constant PD level of 0

were also chosen. This resulted in a shape resembling a . This resulted in three sets

of nine testing conditions (27 in total), would need to be tested on each participant;

however, two of these conditions are in multiple sets so it reduced the number of

testing conditions to 25. An average of five trials at each test condition was selected

to determine the participants performance.
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Initial testing was performed using these test conditions. The initial participant per-

formed as expected; however, five trials resulted in the test exceeding 4 hours. In

order to reduce the testing time, the maximum performance time was reduced to

three minutes and the number of trials at each testing condition was also reduced to

three. This new test protocol was tested and resulted in a test time between 2 and 3

hours.

Preliminary testing was conducted on two more participants. The results were signifi-

cantly lower than the initial participant and participants commented on the difficulty

of balancing the pendulum. It was found that the reaction time needed to balance

the pendulum made the task beyond the intended difficulty level. Initially a mass of

12 and length of one was chosen for the pendulum. An increase to the length of the

pendulum was used to slow down the pendulum and this decreased the task difficulty.

When evaluating how this would affect the results of the experiment the following

relationship was derived.

α =
τ + τPD + τN − τH

I
(3.10)

=
mgL sin θ + τPD + τN − τH

I
(3.11)

By doubling the length and leaving out the human torque, then the PD and noise

levels were doubled in order for the acceleration of the pendulum to be halved. By

reducing the acceleration to half the value, it made the balancing of the pendulum

easier for human participants.

α′ =
mg(2L) sin θ + τPD + τN

m ∗ (4L2)
(3.12)
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=
2τ + τPD + τN

4I
(3.13)

=
1

2

[τ + τPD + τN
I

]
(3.14)

α′ =
1

2
[α] (3.15)

It was determined that doubling the current values of noise and PD would insure a

transition region similar to the transition region seen with a pendulum of length one.

However since this meant a larger range of values, a sensitivity test was performed

again to determine the new location of the transitional region. Using the results from

the sensitivity analysis, it was decided that a PD and noise range of 100 to 300 with

increments of 25 should be used. Therefore this change meant that a range of PD

level from 100 to 300 would be tested at a constant noise of 250, a range of noise from

100 to 300 with a constant PD level of 225, and a range of noise from 100 to 300 with

a PD level of zero would be the testing conditions. Using this change in PD levels,

noise levels, and the change in the length of the pendulum, the two preliminary

participants which had difficulty, were tested again. This time they were able to

perform considerably better than before and the difficulty level was determined to be

sufficiently.
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3.2 Experimental Protocol - Cooperative

Description

Each participant was asked to use the Xbox 360 controller to balance the pendulum

vertically (at 0 degrees) for as long as possible. If the pendulum fell below the x-axis

that test was ended. PD level and noise level were used to the change assistance by

the computer and the difficulty of the test. These varied from one test to another.

There were 5 minute breaks regularly spaced throughout the testing. The experiment

lasted approximately 2 -3 hours.

Pre-Test

1. Find participants

2. There will be 10 males and 10 females

3. Inform participants that the experiment is approximately 2.5 hours long

4. Have participants sign up for an experimentation date

Test

5. Ask participant to sign the informed consent form

6. Ask participant demographic data

7. Ask participant to mark their gaming experience on the visual analog scale

8. Prepare Matlab for experiment

9. Inform participant how the simulation will work

a. Varying levels of difficulties

b. Varying levels of assistance

c. How Xbox controller works

10. Let Participant try at (150,0) , (150,150), (250,150)

11. Begin test on Matlab

12. Let participant have 5 min break after trial

13. Resume test on Matlab

14. Thank participant for their time and participation

15. Record data, labeled for each participant
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3.2.1 Participant Testing

Participants from Western Carolina University and the surrounding area were re-

cruited for testing. A total of 20 participants, 10 males and 10 females ranging from

ages 17 to 30 were tested for the cooperative testing. Each participant signed an

informed consent approved by the IRB prior to beginning testing. Weight and height

were also recorded for possible areas of comparison later during analysis. Participants

were asked to indicated how well they were feeling and how much gaming experience

he/she had by using a visual analog scale, which can be seen in Figure 3.7. The

Feeling ratio was calculated by measuring the visual analog scale from the left side,

xTerrible, to the participant’s mark, xP , and dividing it by the full length of the visual

analog scale line, from xExcellent to xTerrible, shown in equation (3.16). Gaming ratio

was calculated in the same way, shown in equation (3.17), with xNo experience being the

left side of the line,and xPlaying one right now being the right side of the line.

Feeling ratio =
|xP − xTerrible|

|xExcellent − xTerrible|
(3.16)

Gaming ratio =
|xP − xNo experience|

|xPlaying one right now − xNo experience|
(3.17)

Table 3.1 shows the demographic data, such as age and height, of the cooperative test

participants. Figure 3.7 shows the data sheet used to obtain the data in Table 3.1.
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Table 3.1: Cooperative Participant’s Demographic Information
Number Gender Age Weight

(lbs.)
Height
(in)

Feeling
ratio

Gaming
ratio

1 Female 21 105 63 0.78 0.58
2 Female 23 130 63 0.75 0.56
3 Female 24 125 63 0.71 0.73
4 Female 23 146 64 0.76 0.26
5 Male 25 154 70 0.52 0.51
6 Female 25 135 67 0.82 0.15
7 Male 23 208 75 0.64 0.65
8 Male 17 185 71 0.32 0.32
9 Male 17 153 70 0.54 0.42
10 Male 25 163 70 0.79 1.00
11 Female 19 120 64 0.71 0.15
12 Female 20 130 60 0.66 0.03
13 Male 23 160 67 0.56 0.75
14 Female 30 115 63 0.74 0.5
15 Female 21 170 64 0.37 0.14
16 Female 23 125 62 0.52 0.98
17 Male 24 155 67 0.79 0.67
18 Male 22 210 68 0.68 0.67
19 Male 18 210 71 0.92 1.00
20 Male 18 158 70 0.5 0.93
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Figure 3.7: Demographic Data Sheet, filled out by each participant
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3.3 Development of a Competitive Control Computer Simulation

The purpose for the study was to investigate the benefits of blended shared control

under potentially competitive conditions to evaluate its impact on the performance

of the primary and secondary goals. In the competitive simulation, the artificial con-

troller and the human worked together to achieve the primary goal of balancing the

inverted pendulum and stopping it from falling below the horizontal axis. The hu-

man also worked to achieve a secondary goal of holding the pendulum within a target

region that changed location at regular intervals. Like the cooperative simulation,

random perturbations were provided during the simulation that moved the pendu-

lum during testing. The amount of time in which a person maintained the pendulum

within the target area was used as the performance measurement for the secondary

goal. Note that this type of shared control is different than the ”winner takes all”

competitive control, because influence from each source is always present.

It was expected that the competitive shared control test would improve performance

of the primary goal yet decrease the performance of the secondary goal. This was

expected because the artificial controller was only working to achieve the primary

goal and may be fighting against the human when the human was working to achieve

the secondary goal.

3.3.1 Competitive Simulation Description

The program from the cooperative shared control simulation was modified for the

competitive shared control simulation. The animation program was modified to add

a shaded area to indicate the location of the secondary goal. The size of the target

was set to be 20 degrees wide. This target area can be seen as a green pie shaped

area in Figure 3.8.
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Figure 3.8: Competitive Pendulum Program Screen, which is used for human input

This target area’s location was randomized using the ‘rand’ function in Matlab. A

boundary was set at 75 degrees so that the random location was not too close to

the horizontal axis. This would cause the human to fail the test too quickly if the

area was randomly placed too close to the horizontal axis. The target area changed

location every 200 loops, approximately 3.5 seconds.

A score was generated by recording the number of times the pendulum was within

the target area during each loop of the program. After the program ended, this score

was then converted into the amount of time in the target area by multiplying the

score by the total time divided by the number of loop iterations. Figure 3.9 shows a

diagram of the competitive computer simulation.
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Figure 3.9: Competitive Program Block Diagram

3.3.2 Testing Protocol Design - Competitive

The same input parameters from the cooperative experiment were used in the com-

petitive experiment. This meant PD levels of range 100 to 300 with a constant noise

level of 250, a range of noise levels from 100 to 300 with a constant PD level of 225,

and a range of noise levels from 100 to 300 with a PD level of zero were used as testing

conditions.
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3.4 Experimental Protocol - Competitive

Description

Each participant was asked to use the Xbox 360 controller to complete the primary

goal of preventing the pendulum from falling below the x-axis while simultaneously

trying to achieve that secondary goal of keeping the pendulum within the target area.

Participants were tested over a range of PD and noise levels as described above. Five

minute breaks were regularly spaced throughout the testing. The experiment lasted

approximately 2-3 hours.

Pre-Test

1. Find participants

2. There will be 6 males and 6 females

3. Inform participants that the experiment is approximately 2.5 hours long

4. Have participants sign up for an experimentation date

Test

5. Ask participant to sign the informed consent form

6. Ask participant demographic data

7. Ask participant to mark their gaming experience on the visual analog scale

8. Prepare Matlab for experiment

9. Inform participant how the simulation will work

a. Varying levels of difficulties

b. Varying levels of assistance

c. How Xbox controller works

10. Let Participant try at (150,0) , (150,150), (250,150)

11. Begin test on Matlab

12. Let participant have 5 min break after trial

13. Resume test on Matlab

14. Thank participant for their time and participation

15. Record data, labeled for each participant
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3.4.1 Participant Testing

Participants from Western Carolina University and the surrounding area were re-

cruited for testing. A total of 12 participants, 6 males and 6 females ranging from

ages 18 to 30 were tested for the competitive control study. Each participant signed

an informed consent approved by the IRB prior to beginning testing. The same data

sheet used in the cooperative control study (Figure 3.7), was used for this study.

The Feeling ratio was calculated by using equation (3.16) and the Gaming ratio by

equation (3.17). The resulting demographic data and ratios are shown in Table 3.2.

Table 3.2: Competitive Participant’s Demographic Information
Number Gender Age Weight

(lbs.)
Height
(in)

Feeling
ratio

Gaming
ratio

1 Female 24 132 63 0.63 0.46
2 Female 21 105 63 0.76 0.62
3 Female 23 125 63 0.62 0.35
4 Female 26 135 67 0.76 0.20
5 Male 30 220 73 0.77 0.25
6 Male 23 147 72 0.96 0.94
7 Female 23 147 64 0.69 0.27
8 Male 19 172 71 0.80 0.65
9 Male 23 158 67 0.79 0.61
10 Male 18 140 67 0.92 0.67
11 Male 18 200 70 0.81 0.82
12 Female 23 115 62 0.51 0.81
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CHAPTER 4: RESULTS

4.1 Cooperative Shared Control

4.1.1 Influence of Increasing PD Level on Cooperative Performance

The results show that the human participants, at a noise level of 250, were able to

balance the inverted pendulum for an average of 13.7 seconds without assistance of

an artificial controller shown in Figure 4.1 and Table 4.1. When a PD controller

with a PD level of 100 was used to assist the participants, their average performance

increased to 60.8 seconds, which was an increase of over four times. Similar results

were observed for all PD levels. At the maximum PD level of 300, performance time

was increased over nine times.
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Table 4.1: Average Performance of All Participants – Cooperative Control Study
Noise PD Coop
level level (sec)
250 0 13.6950
250 100 60.8088
250 125 68.5419
250 150 70.6108
250 175 81.6798
250 200 101.5989
250 225 80.7118
250 250 105.6846
250 275 133.3748
250 300 126.3517

Figure 4.1: Cooperative Performance at Increasing Levels of PD
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A statistical analysis was performed on the data in Table 4.1 with the results shown

in Tables 4.2 and 4.3. A paired samples t-test was used to determine if human

performance was significantly improved when assisted by an artificial controller. The

t-test determines whether the means of two groups are statistically different from each

other. Table 4.3 shows the t value, t, the degrees of freedom, df, and the p-value,

p. The cooperative and human performances were compared at each level of PD.

The paired samples correlation results showed that for the condition pairs 1, 2, 3, 4,

and 6 the performance varied between each participant (Table 4.3). However, for the

condition pairs 5, 7, 8, and 9 indicated that performance was not impacted by the

participant contributing to the cooperative shared control. This means that as PD

level increases, the differences between individual performance capabilities has less

of an impact on the overall performance. The paired samples t-test indicated that

for every level of PD, blended shared control was significantly better (p=0.000) than

performance by a human alone (Table 4.3).
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Table 4.2: Paired Samples Statistics of Human Participant Performance – Cooperative
Control Study

Std.
Noise PD N Mean Deviation

Pair 1 Coop 250 100 20 60.8087 52.1844
Human 250 0 20 13.6950 27.3252

Pair 2 Coop 250 125 20 68.5419 51.2684
Human 250 0 20 13.6950 27.3252

Pair 3 Coop 250 150 20 70.6108 53.4791
Human 250 0 20 13.6950 27.3252

Pair 4 Coop 250 175 20 81.6798 58.2335
Human 250 0 20 13.6950 27.3252

Pair 5 Coop 250 200 20 101.5989 55.9579
Human 250 0 20 13.6950 27.3252

Pair 6 Coop 250 225 20 80.7118 50.1116
Human 250 0 20 13.6950 27.3252

Pair 7 Coop 250 250 20 105.6845 48.7928
Human 250 0 20 13.6950 27.3252

Pair 8 Coop 250 275 20 133.3748 49.7260
Human 250 0 20 13.6950 27.3252

Pair 9 Coop 250 300 20 126.3517 54.9396
Human 250 0 20 13.6950 27.3252
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Table 4.3: Paired Samples t-Test of Human Participants’ Performance – Cooperative
Control Study

Paired Samples
Correlations

Paired Samples
Test

Noise PD Correlation Sig. t df p
Pair 1 Coop 250 100 0.563 0.010 4.878 19 0.000

Human 250 0
Pair 2 Coop 250 125 0.558 0.011 5.762 19 0.000

Human 250 0
Pair 3 Coop 250 150 0.573 0.008 5.793 19 0.000

Human 250 0
Pair 4 Coop 250 175 0.467 0.038 5.904 19 0.000

Human 250 0
Pair 5 Coop 250 200 0.415 0.069 7.696 19 0.000

Human 250 0
Pair 6 Coop 250 225 0.447 0.048 6.646 19 0.000

Human 250 0
Pair 7 Coop 250 250 0.419 0.066 9.178 19 0.000

Human 250 0
Pair 8 Coop 250 275 0.305 0.192 10.944 19 0.000

Human 250 0
Pair 9 Coop 250 300 0.305 0.190 9.440 19 0.000

Human 250 0
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We were also interested in developing a better understanding of how increasing PD

levels influenced cooperative performance. A linear trendline with an R2 value equal

to 0.8557 was fit to the average of the participants’ cooperative performance over the

range of PD levels, shown in Figure 4.2. The coefficient of determination, R2, was

calculated in order to determine how well the model fits the data. A value of one

means the model is an exact match of the data. By looking at the y-intercept of

the cooperative performance, it can be seen that the trendline predicts that a human

participant with no assistance by an artificial controller will be able to balance the

pendulum on his/her own for 22.0 seconds. This is fairly close to the actual human

participant result which was 13.7 seconds.

Figure 4.2: Cooperative Trendline Over PD Level Range
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4.1.2 Performance of an Artificial Controller was Improved with Human Assistance

The results show that the artificial controller with a PD level of 225 was able to

balance the inverted pendulum very well at the lowest noise level for an average

of 170.6 seconds, as shown in Figure 4.3 and Table 4.4. As noise increased the

artificial controller’s performance fell off sharply and at the maximum noise level of

300, performance time was only 8.0 seconds. When the PD controller was assisted by a

human participant, the average performance at a noise level of 100 was 139.7 seconds.

As the noise level increased, cooperative performance of the artificial controller and

human participants working together decreased at a much slower rate than the PD

controller alone. At the maximum noise level of 300, performance time was 90.0

seconds, an increase of over 11 times when compared to the artificial controller alone.
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Table 4.4: Average Performance of the Artificial Controller Alone and the Artificial
Controller Working Along with Human Participants– Cooperative Control Study

PD Noise PD time Coop
level level (sec) (sec)
225 100 170.5948 139.768
225 125 112.4509 145.1179
225 150 57.5807 145.9698
225 175 35.1576 118.4025
225 200 22.7338 105.0486
225 225 14.2444 121.2332
225 250 12.2793 80.7118
225 275 11.7426 101.9527
225 300 8.0022 90.0054

Figure 4.3: Artificial Controller and Cooperative Performance Over Noise Range
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A statistical analysis was performed on the data in Table 4.4 with the results shown in

Table 4.5. An independent samples test indicated that at the lowest level of noise, the

artificial controller performed better than the blended shared control (p=0.007). At a

noise level of 125 the blended shared control was better (p=0.011) than performance

by the artificial controller alone. From a noise level of 150 to 300 the blended shared

control was also significantly better (p=0.000) than the artificial controller (Table 4.5).

Table 4.5: Group Statistics and Independent Samples Test of Artificial Controller
and Cooperative Performance

Group Statistics t-test for Equality
of Means

Std.
Noise PD N Mean Deviation t df p

Pair 1 Coop 100 225 20 139.7679 43.2488 -2.928 26 0.007
PD 100 225 60 170.5948 32.2411

Pair 2 Coop 125 225 20 145.1178 42.0354 2.63 49 0.011
PD 125 225 60 112.4508 62.8972

Pair 3 Coop 150 225 20 145.9698 49.0340 6.855 78 0.000
PD 150 225 60 57.5806 50.2250

Pair 4 Coop 175 225 20 118.4024 50.2532 7.046 23 0.000
PD 175 225 60 35.1575 28.2442

Pair 5 Coop 200 225 20 105.0485 55.3554 6.55 20 0.000
PD 200 225 60 22.7337 16.8495

Pair 6 Coop 225 225 20 121.2332 49.5899 9.543 19 0.000
PD 225 225 60 14.2444 12.7969

Pair 7 Coop 250 225 20 80.7118 50.1116 6.079 19 0.000
PD 250 225 60 12.2792 8.3526

Pair 8 Coop 275 225 20 101.9526 58.7127 6.834 19 0.000
PD 275 225 60 11.7425 10.5926

Pair 9 Coop 300 225 20 90.0053 57.1136 6.406 19 0.000
PD 300 225 60 8.0022 6.7590
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We were also interested in developing a better understanding of how increasing noise

levels influenced the performance of the artificial controller and cooperative control.

An exponential trendline with an R2 value equal to 0.9527 was fit to the average of the

artificial controller’s performance over the range of noise levels, shown in Figure 4.4.

A linear trendline with an R2 value equal to 0.7574 was fit to the average of the

cooperative performance over the range of noise levels (Figure 4.4). The exponential

trendline predicts that the artificial controller alone will only be able to balance the

pendulum effectively over a small range of noise levels. On the other hand, the linear

trendline of the cooperative shared control shows adequate performance over a much

larger noise level range.

Figure 4.4: Cooperative and PD Trendlines Over Noise Range
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4.1.3 Individual Additive Performance Compared to Cooperative Shared Control
Performance

The results show that the human participants, without assistance of an artificial

controller, were able to balance the inverted pendulum for a maximum time of 38.8

seconds and a minimum time of 14.3 seconds, shown in Figure 4.5 and Table 4.6.

These times correspond to the minimum and maximum levels of noise, respectively.

The artificial controller with a PD level of 225 was able to balance the inverted pendu-

lum very well at the lowest noise level of 100 for an average of 170.6 seconds. As noise

increased the artificial controller’s performance fell off sharply and at the maximum

noise level of 300, performance lasted only 8.0 seconds. The average results of the

human working alone and the artificial controller working alone were added at each

level of noise. This resulted in the additive performance time.

The additive performance at the lowest level of noise exceeded the maximum time of

180 seconds, therefore it was rounded down to 180.0 seconds. The additive perfor-

mance at the next noise level was also high with an average of 147.3 seconds. As noise

level continued to increase the additive performance fell sharply and at the maximum

noise level of 300, performance time was 14.27 seconds. When the human and artificial

controller worked together in a cooperative manner there was a much slower decline

in performance as noise level increased. At a noise level of 100, cooperative perfor-

mance was 139.7 seconds, considerably less than the additive performance. However

at the next noise level of 125, cooperative performance was 145.1 seconds and very

similar to the additive performance. At the maximum noise level of 300, performance

time was 90.0 seconds, an increase of over six times when compared to the additive

performance of the human and artificial controller working independently.
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Table 4.6: Average Performance of Human Alone, Artificial Controller Alone, the
Additive Performance of the Two Working Independently, and the Cooperative Per-
formance of the Two Working Together

Noise Human PD time Human+PD Coop
level (sec) (sec) (sec) (sec)
100 38.8420 170.5948 180.0000 139.7680
125 34.8721 112.4509 147.3230 145.1179
150 29.4240 57.5807 87.0047 145.9698
175 30.9817 35.1576 66.1393 118.4025
200 19.6651 22.7338 42.3989 105.0486
225 18.5855 14.2444 32.8299 121.2332
250 13.695 12.2793 25.9743 80.7118
275 10.5359 11.7426 22.2785 101.9527
300 6.2691 8.0022 14.2713 90.0054

Figure 4.5: Cooperative vs. Additive Over Noise Range
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A statistical analysis was performed on the data in Table 4.6 with the results shown in

Table 4.7. An independent samples test indicated that at the lowest level of noise, the

additive performance of the human and artificial controller working independently was

significantly better (p=0.001) than the blended shared control. At the next noise level

of 125, the additive and blended shared control had similar performance (p=0.401).

From a noise level of 150 to 300 the blended shared control was significantly better

(p ≤ 0.001) than the artificial controller (Table 4.7).

Table 4.7: Group Statistics and Independent Samples Test of Additive and Cooper-
ative Performance

Group Statistics t-test for Equality
of Means

Std.
Noise PD N Mean Deviation t df p

Pair 1 Coop 100 225 20 139.7679 43.2488 -3.894 19 0.001
Add 100 225 20 177.5309 3.1862

Pair 2 Coop 125 225 20 145.1178 42.0354 0.849 38 0.401
Add 125 225 20 135.7228 26.1219

Pair 3 Coop 150 225 20 145.9698 49.0340 4.175 38 0.000
Add 150 225 20 86.6521 40.4082

Pair 4 Coop 175 225 20 118.4024 50.2532 3.662 38 0.001
Add 175 225 20 64.3810 42.7390

Pair 5 Coop 200 225 20 105.0485 55.3554 4.325 32 0.000
Add 200 225 20 41.2619 35.8704

Pair 6 Coop 225 225 20 121.2332 49.5899 6.735 38 0.000
Add 225 225 20 32.8299 31.4136

Pair 7 Coop 250 225 20 80.7118 50.1116 4.289 29 0.000
Add 250 225 20 25.9743 27.3252

Pair 8 Coop 275 225 20 101.9526 58.7127 5.804 22 0.000
Add 275 225 20 22.2784 17.9514

Pair 9 Coop 300 225 20 90.0053 57.1136 5.870 19 0.000
Add 300 225 20 14.2713 8.2281
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We were also interested in developing a better understanding of how increasing noise

levels influenced the performance of the additive control and cooperative control. An

exponential trendline with an R2 value equal to 0.9864 was fit to the average of the

additive performance over the range of noise levels, shown in Figure 4.6. A linear

trendline with an R2 value equal to 0.7574 was fit to the average of the cooperative

performance over the range of noise levels (Figure 4.6). These trendlines are similar

to the trendlines in the previous section. Adding human alone performance to the

artificial controller alone performance did not result in a large difference in the trend-

lines. This meant that the cooperative trendline shows a much larger region in which

the pendulum could be balanced when compared to the additive performance.

Figure 4.6: Cooperative and Additive Trendlines Over Noise Range
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4.2 Competitive Shared Control Data

4.2.1 Influence of Increasing PD Level on Competitive Performance

For the competitive shared control data, the human participants and artificial con-

troller worked to achieve the primary goal of balancing the inverted pendulum for as

long as possible. The human participants also were working to keep the pendulum

within the target area. The results show that the human participants, at a noise level

of 250, were able to balance the inverted pendulum for an average of 14.3 seconds

without assistance of an artificial controller shown in Figure 4.7 and Table 4.8. When

a PD controller with a PD level of 100 was used to assist the participants, their av-

erage performance increased to 38.9 seconds, which was an increase of close to three

times. Similar results were observed for all PD levels. At the maximum PD level of

300, performance time was increased over seven times.
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Table 4.8: Average Performance of All Participants – Competitive Control Study
Noise PD Comp
level level (sec)
250 0 14.3014
250 100 38.9488
250 125 49.1482
250 150 68.7320
250 175 80.7666
250 200 126.1845
250 225 115.0430
250 250 108.7013
250 275 145.2630
250 300 148.0025

Figure 4.7: Cooperative Performance at Increasing Levels of PD
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A statistical analysis was performed on the data in Table 4.8 with the results shown

in Tables 4.9 and 4.10. A paired samples t-test was used to determine if human

performance was significantly improved when assisted by an artificial controller. The

competitive and human performance was compared at each level of PD. The paired

samples correlation results showed that for the condition pairs 1 - 3 the performance

varied between each participant (Table 4.10). However, for the condition pairs 4 - 9

indicated that performance was not impacted by the participant contributing to the

competitive shared control. This means that as PD level increases, the differences

between individual performance capabilities has less of an impact on the overall per-

formance. The paired samples t-test indicated that for every level of PD, blended

shared control was significantly better (p=0.000) than performance by a human alone

(Table 4.10).

Table 4.9: Average Performance of All Participants – Competitive Control Study
Std.

Noise PD N Mean Deviation
Pair 1 Comp 250 100 20 38.9487 32.6057

Human 250 0 20 14.3013 27.2595
Pair 2 Comp 250 125 20 49.1482 47.4998

Human 250 0 20 14.3013 27.2595
Pair 3 Comp 250 150 20 68.7320 52.8029

Human 250 0 20 14.3013 27.2595
Pair 4 Comp 250 175 20 80.7666 54.8872

Human 250 0 20 14.3013 27.2595
Pair 5 Comp 250 200 20 126.1845 41.7886

Human 250 0 20 14.3013 27.2595
Pair 6 Comp 250 225 20 115.043 48.5209

Human 250 0 20 14.3013 27.2595
Pair 7 Comp 250 250 20 108.7013 46.4105

Human 250 0 20 14.3013 27.2595
Pair 8 Comp 250 275 20 145.2629 43.4040

Human 250 0 20 14.3013 27.2595
Pair 9 Comp 250 300 20 148.0024 50.6149

Human 250 0 20 14.3013 27.2595
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Table 4.10: Paired Samples t-Test of Human Participants’ Performance – Competitive
Control Study

Paired Samples
Correlations

Paired Samples
Test

Noise PD Correlation Sig. t df p
Pair 1 Comp 250 100 0.845 0.001 4.893 11 0.000

Human 250 0
Pair 2 Comp 250 125 0.893 0.000 4.604 11 0.001

Human 250 0
Pair 3 Comp 250 150 0.676 0.016 4.737 11 0.001

Human 250 0
Pair 4 Comp 250 175 0.495 0.101 4.829 11 0.001

Human 250 0
Pair 5 Comp 250 200 0.244 0.445 8.814 11 0.000

Human 250 0
Pair 6 Comp 250 225 0.450 0.142 7.990 11 0.000

Human 250 0
Pair 7 Comp 250 250 0.507 0.093 8.137 11 0.000

Human 250 0
Pair 8 Comp 250 275 0.288 0.364 10.284 11 0.000

Human 250 0
Pair 9 Comp 250 300 0.253 0.428 9.070 11 0.000

Human 250 0
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We were also interested in developing a better understanding of how increasing PD

levels influenced the competitive performance of the primary goal, when the human

participant was also concerned about the secondary goal. A linear trendline with

an R2 value equal to 0.9047 was fit to the average of the participants’ competitive

performance over the range of PD levels, shown in Figure 4.8. In the competitive

study it can be seen there is much more deviation between the predicted and actual

human alone performances can be seen in the trendline, with the y-intercept being

-13.9 seconds and the actual being 14.3 seconds. This could possibly be a result of

having a secondary goal in the competitive control study.

Figure 4.8: Competitive Trendline Over PD Level Range
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4.2.2 Performance of an Artificial Controller was Improved with Human Assistance

The results show that the artificial controller with a PD level of 225 was able to

balance the inverted pendulum very well at the lowest noise level for an average of

170.6 seconds, shown in Figure 4.9 and Table 4.11. As noise increased the artificial

controller’s performance fell off sharply and at the maximum noise level of 300, per-

formance time was only 8.0 seconds. When the PD controller worked with human

participants, their average performance at a noise level of 100 was 165.6 seconds.

However as noise increased competitive performance of the artificial controller and

human participants working together decreased at a much slower rate. At the max-

imum noise level of 300, performance time was 93.5 seconds, an increase of over 11

times when compared to the artificial controller alone.
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Table 4.11: Average Performance of the Artificial Controller Alone and the Artificial
Controller Working Along with Human Participants– Competitive Control Study

PD Noise PD time Comp
level level (sec) (sec)
225 100 170.5948 165.5936
225 125 112.4509 144.0967
225 150 57.5807 151.5216
225 175 35.1576 131.9590
225 200 22.7338 142.7777
225 225 14.2444 119.8004
225 250 12.2793 115.0430
225 275 11.7426 106.9609
225 300 8.0022 93.4986

Figure 4.9: Artificial Controller and Competitive Performance Over Noise Range
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A statistical analysis was performed on the data in Table 4.11 with the results shown

in Tables 4.12. An independent samples test indicated that at the lowest level of

noise, the artificial controller and the blended shared control had similar performance

(p=0.625). At a noise level of 125 the blended shared control was better (p=0.014)

than performance by the artificial controller alone. From a noise level of 150 to 300 the

blended shared control was significantly better (p=0.000) than the artificial controller

(Table 4.12).

Table 4.12: Group Statistics and Independent Samples Test of Artificial Controller
and Competitive Performance

Group Statistics t-test for Equality
of Means

Std.
Noise PD N Mean Deviation t df p

Pair 1 Comp 100 225 12 165.5936 32.2336 -0.491 70 0.625
PD 100 225 60 170.5948 32.2411

Pair 2 Comp 125 225 12 144.0966 31.2165 2.609 32 0.014
PD 125 225 60 112.4508 62.8972

Pair 3 Comp 150 225 12 151.5215 47.2795 5.968 70 0.000
PD 150 225 60 57.5806 50.2250

Pair 4 Comp 175 225 12 131.959 45.2163 7.143 13 0.000
PD 175 225 60 35.1575 28.2442

Pair 5 Comp 200 225 12 142.7776 43.4208 9.436 12 0.000
PD 200 225 60 22.7337 16.8495

Pair 6 Comp 225 225 12 119.8004 54.7883 6.638 11 0.000
PD 225 225 60 14.2444 12.7969

Pair 7 Comp 250 225 12 115.043 48.5209 7.315 11 0.000
PD 250 225 60 12.2792 8.3526

Pair 8 Comp 275 225 12 106.9608 43.9897 7.455 11 0.000
PD 275 225 60 11.7425 10.5926

Pair 9 Comp 300 225 12 93.4985 60.4805 4.891 11 0.000
PD 300 225 60 8.0022 6.7590
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We were also interested in developing a better understanding of how increasing noise

levels influenced the performance of the artificial controller and competitive control.

An exponential trendline with an R2 value equal to 0.9527 was fit to the average of the

artificial controller’s performance over the range of noise levels, shown in Figure 4.10.

A linear trendline with an R2 value equal to 0.9142 was fit to the average of the

competitive performance over the range of noise levels (Figure 4.10). The trendlines

showed that although the human participants had a secondary goal, it did not impact

the primary goal very much. The artificial controller and human participant working

together were able to maintain stability of the pendulum over a much greater range

then the artificial controller working alone.

Figure 4.10: Competitive and PD Trendlines Over Noise Range
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4.2.3 Individual Additive Performance Compared to Competitive Shared Control
Performance

The results show that the human participants, without assistance of an artificial con-

troller, were able to balance the inverted pendulum for a time of 16.46 seconds at

the lowest level of noise and a minimum time of 7.5 seconds, shown in Figure 4.11

and Table 4.13. The maximum performance time of 23.3 seconds occurred at a noise

level of 150. The artificial controller with a PD level of 225 was able to balance the

inverted pendulum very well at the lowest noise level of 100 for an average of 170.6

seconds. As noise increased the artificial controller’s performance fell off sharply and

at the maximum noise level of 300, performance time was only 8.0 seconds. The

average results of the human working alone and the artificial controller working alone

was added at each level of noise. This resulted in the additive performance time.

The additive performance at the lowest level of noise exceed the maximum time of

180 seconds, therefore it was rounded down to 180.0 seconds. As noise level continued

to increase the additive performance fell sharply and at the maximum noise level of

300, performance time was 15.5 seconds. When the human and artificial controller

worked together in a competitive manner there was a much slower decline in perfor-

mance as noise level increased. At a noise level of 100, competitive performance was

165.6 seconds, similar to additive performance. At the maximum noise level of 300,

competitive performance time was 93.5 seconds, an increase of over 6 times when

compared to the additive performance of the human and artificial controller working

independently.
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Table 4.13: Average Performance of Human Alone, Artificial Controller Alone, the
Additive Performance of the Two Working Independently, and the Competitive Per-
formance of the Two Working Together

Noise Human PD time Human+PD Comp
level (sec) (sec) (sec) (sec)
100 16.4630 170.5948 180.0000 165.5936
125 17.6160 112.4509 130.0669 144.0967
150 23.3373 57.5807 80.9180 151.5216
175 13.5984 35.1576 48.7560 131.9590
200 12.5547 22.7338 35.2885 142.7777
225 13.0025 14.2444 27.2469 119.8004
250 14.3014 12.2793 26.5807 115.0430
275 8.7487 11.7426 20.4913 106.9609
300 7.5098 8.0022 15.5120 93.4986

Figure 4.11: Competitive vs. Additive Over Noise Range
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A statistical analysis was performed on the data in Table 4.13 with the results shown

in Table 4.14. An independent samples test indicated that at the two lowest levels of

noise, the additive performance of the human and artificial controller working inde-

pendently and the performance of the blended shared control were similar (p=0.259

and p=0.087). From a noise level of 150 to 300 the blended shared control was

significantly better (p ≤ 0.001) than the artificial controller (Table 4.14).

Table 4.14: Group Statistics and Independent Samples Test of Additive and Com-
petitive Performance

Group Statistics t-test for Equality
of Means

Std.
Noise PD N Mean Deviation t df p

Pair 1 Comp 100 225 12 165.5936 32.2336 -1.19 11 0.259
Add 100 225 12 176.7206 3.1287

Pair 2 Comp 125 225 12 144.0966 31.2165 1.813 17 0.087
Add 125 225 12 125.1816 18.2179

Pair 3 Comp 150 225 12 151.5215 47.2796 4.241 22 0.000
Add 150 225 12 82.1727 31.2058

Pair 4 Comp 175 225 12 131.959 45.2163 5.884 15 0.000
Add 175 225 12 47.3991 20.8344

Pair 5 Comp 200 225 12 142.7776 43.4208 7.569 22 0.000
Add 200 225 12 34.9529 23.4547

Pair 6 Comp 225 225 12 119.8004 54.7883 5.608 13 0.000
Add 225 225 12 26.1297 18.5974

Pair 7 Comp 250 225 12 115.043 48.5209 5.565 22 0.000
Add 250 225 12 25.4822 27.4499

Pair 8 Comp 275 225 12 106.9608 43.9897 6.845 11 0.000
Add 275 225 12 19.0656 6.5852

Pair 9 Comp 300 225 12 93.4985 60.4805 4.422 11 0.001
Add 300 225 12 15.0971 10.7257
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We were also interested in developing a better understanding of how increasing noise

levels influenced the performance of the additive control and competitive control,

when the human participant had a secondary goal. An exponential trendline with an

R2 value equal to 0.9573 was fit to the average of the additive performance over the

range of noise levels, shown in Figure 4.12. A linear trendline with an R2 value equal

to 0.9142 was fit to the average of the competitive performance over the range of noise

levels (Figure 4.12). These trendlines show a similar trend to the cooperative study

in which the two agents working simultaneously can balance the pendulum better

over the full range of noise when compared to the two agents working independently.

This again seems to indicate that the secondary goal did not interfere with primary

goal completion.

Figure 4.12: Competitive and Additive Trendlines Over Noise Range
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4.2.4 Secondary Goal Performance Over the Range of PD Levels

The results show that the human participants, at a noise level of 250, were able to

maintain the inverted pendulum within the target area for an average of 10.9 seconds

with assistance from an artificial controller shown in Figure 4.13 and Table 4.15. As

PD level increased their average performance increased to a maximum time of 48.2

seconds, which was close to five times greater. This maximum time was seen at the

highest level of PD.
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Table 4.15: Secondary Goal Performance Over Range of PD Levels
Noise PD Comp
level level (sec)
250 100 10.9492
250 125 12.8796
250 150 20.5019
250 175 26.7973
250 200 44.6813
250 225 38.7538
250 250 35.2984
250 275 42.4298
250 300 48.1751

Figure 4.13: Secondary Goal Performance Over Range of PD Levels
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We were also interested in developing a better understanding of how increasing PD

levels influenced the secondary goal performance. A linear trendline with an R2 value

equal to 0.8379 was fit to the average of the secondary goal performance over the

range of PD levels, shown in Figure 4.14. The linear trendline has a slope of 0.18 and

this will be compared to the trendline slope in the next section which investigates

secondary goal performance over a range of noise levels.

Figure 4.14: Competitive Secondary Goal Performance Trendline Over Range of PD
Levels
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4.2.5 Secondary Goal Performance of Range of PD Levels

The results show that the human participants, at a PD level of 225, were able to

maintain the inverted pendulum within the target area for an average of 70.4 seconds

with assistance from an artificial controller shown in Figure 4.15 and Table 4.16. As

noise level increased their average performance decreased to a minimum time of 27.7

seconds. This minimum time was seen at the highest level of noise.
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Table 4.16: Secondary Goal Performance Over Range of Noise Levels
PD Noise Comp
level level (sec)
225 100 70.4403
225 125 62.3897
225 150 61.0438
225 175 51.2379
225 200 55.5237
225 225 44.8732
225 250 38.7538
225 275 34.4619
225 300 27.7289

Figure 4.15: Secondary Goal Performance Over Range of Noise Levels



68

We were also interested in developing a better understanding of how increasing noise

levels influenced the secondary goal performance. A linear trendline with an R2 value

equal to 0.9642 was fit to the average of the secondary goal performance over the

range of noise levels, shown in Figure 4.16. The linear trendline over a range of noise

has a slope of -0.2. When this is compared to the trendline slope over the range of

PD levels, which is 0.18, a relationship may be observed. This seems to indicate that

if PD level is increased at the same rate as noise level is increased then a constant

level of performance can be achieved in the completion of the secondary goal.

Figure 4.16: Competitive Secondary Goal Performance Trendline Over Range of Noise
Levels
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4.2.6 Investigating Target Area Location Difficulty

The results were looked at to determine the position of the target area when a partici-

pant fails. It can be seen in Figure 4.17 that participants were more likely to fail when

the target area was closer to the horizontal axis. For this experiment the vertical axis

represents 0 degrees with the right of the axis being in the positive and the left of the

axis being in the negative direction. Figure 4.17 is a graph of the absolute value of

the degrees. Figure 4.18 shows the frequency of failures when the target area is in a

particular area.
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Figure 4.17: Histogram of Absolute Valued Positions of Target Area and the Number
of Failures Associated at Each Interval

Figure 4.18: Histogram of Positions of Target Area and the Number of Failures
Associated at Each Interval
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CHAPTER 5: DISCUSSION AND CONCLUSION

5.1 Discussion of Results

The cooperative control study showed very promising results. By using blended

shared control a human participant’s performance was shown to increase 4 to 9 times

that of human-only control. The amount of improvement depended on the PD level

of the artificial controller. Artificial controllers showed that, as noise increased, per-

formance of balancing the pendulum fell very quickly. However, by supplementing the

artificial controller with a human participant, performance dropped at a much lower

rate as noise increased. This can be seen at the highest level of noise which shows

that cooperative performance is over 11 times greater than the artificial controller

alone. Finally, the individual performance of the human participants working alone

and the performance of the artificial controller working alone was compared to the

cooperative performance of the two working together simultaneously. This showed

that cooperatively the two controllers were able to work much more efficiently, and

at the highest levels of noise performance, was increased by 2.5 - 6 times.

Performance in achieving the primary goal for the competitive control study showed

very similar results to the cooperative control study. Human alone performance could

be increased substantially by working with an artificial controller, and increasing the

PD level of the artificial controller enabled higher levels of performance to be achieved.

The same increase in performance could be seen by comparing an artificial controller

alone to an artificial controller working with a human participant. Additive control

was also outperformed by the two controllers working at the same time. This shows

that although the human had a secondary goal of maintaining the pendulum within

a target area, primary goal performance was not adversely affected. This may mean

that what was called competitive shared control was actually just an extension of
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cooperative control.

Secondary goal performance was influenced by the PD level of the artificial controller.

When a human participant worked with an artificial controller with a higher PD level,

secondary goal performance was increased. This means that even though the arti-

ficial controller was not aware of a secondary goal, it was actually able to increase

its performance. Secondary goal performance was also affected by two parameters,

the noise level and the target location. Increasing the noise level resulted in a de-

crease of secondary goal performance because the random perturbations produced a

torque which was too large and unpredictable to maintain the pendulum within the

target area for very long. Results showed that when the target region was closer to

the x-axis, participants were more likely to fail. This was possibly from the random

perturbations caused by noise which would make the human participant fail when the

pendulum was moved to the target areas close to the x-axis. This study was able to

show that blended shared control can increase performance of a primary goal while

also allowing a secondary goal to be achieved.

The results from both the cooperative and competitive shared control testing were

very promising. The results showed that blended shared control can outperform a

human and that higher performance can be achieved by increasing the PD level.

Blended shared control can also perform better than an artificial PD controller alone

when the difficult increases beyond the controller’s capabilities. This same observa-

tion can be made when comparing blended shared control to additive performance.

Competitive testing was also able to show that giving the human a secondary task to

complete did not interfere with primary task completion. By lightening the load of

a primary task, blended shared control could enable someone to perform additional

tasks or allow them to perform them better than they could on their own.
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5.2 Future Work

5.2.1 Modeling a Higher Order Inverted Pendulum

Future work on the topic of blended shared control and its benefits could be focused

in several areas. One area would be to investigate the effectiveness of shared control

on a 3D model of an inverted pendulum. This could greatly increase the complexity

of the pendulum and lead to using high order equations. While the motion of the pen-

dulum would be in three dimensions, the inputs to the model need only deal with two

dimensions to indicate torques in the x-z and y-z planes. This would mean the Xbox

360 controller could use both x and y components of the analog stick as human input.

A two dimensional pendulum that could be modeled is by using ordinary differential

equations or specifically delay differential equations. The most common type of math-

ematical model used is an ordinary differential equation [3]. An ordinary differential

equation (ODE) is an equation containing a function of one independent variable and

its derivatives. An example of an nth order ODE is F (x, y, y′, y(n)) = 0 where y is a

function of x and y′ is the derivative of y with respect to x [16]. A higher order ODE

can be simplified by turning it into a system of first order ODEs by introducing new

unknown functions; this allows the higher order ODE to be solved more easily. A

delay differential equation (DDE) is a specific type of ordinary differential equation

whose derivative depends on solutions at past times [17]. A simple example of a DDE

with only a single delay is d
dt
x(t) = f(x(t), x(t − τ)) where τ ≥ 0. Certain DDEs

can be transformed into a system of ordinary differential equations. Both types of

equations can be used to model the real world in various applications. For DDEs

the past values, or delays, can typically be measured in the physical world and may

be constant, a function of t, or a function of t and y [18]. ODEs and DDEs can be

compared in Table 5.1.

ODEs and DDEs can be solved several different ways depending on the characteristics
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Table 5.1: Comparison of ODE and DDE [18]
ODE Model DDE Model
Assumes: effect of any
changes to the system is in-
stantaneous (A principle
of causality)

Assumes: effect of any
change to the system is not
instantaneous. i.e. past
history is taken into account

Generates a system that is
finite dimensional

Generates a system that is
infinite dimensional

Needs an initial condi-
tion (to determine a unique
solution)

Needs an initial function
(to determine a unique solu-
tion
Advantage: Enables a
more accurate reflection of
the system being modeled
Disadvantage: The ana-
lytical theory is less well de-
veloped

of the equation. ‘ode45’ is typically the first and most commonly used method of

solving ODEs in Matlab; however, ‘ode23’ can also be used to obtain a solution of

lower accuracy. These codes use Runge-Kutta-Fehlberg method to solve first order

ODE or a system of first order ODEs. The 45 and 23 correspond to the use of 4th and

5th order formulas and 2nd and 3rd order formulas used in the Runge-Kutta method.

The Runge-Kutta method is able to automatically determine the necessary step size

to obtain a solution within the given tolerance, which is defaulted to 10−3. DDEs

can be solved using a code similar to ‘ode23’ which is called ‘dde23’ [17]. ‘dde23’ is

limited to solving problems with constant delays. The solutions of ODEs and DDEs

can be used by a PID controller to provide feedback to a system.

5.2.2 Implementing Various Artificial Controllers

Another modification to the program could be made by using a different type of arti-

ficial controller. A PD controller was chosen because they are common and relatively

simple to implement; however, a more complex artificial controller could be used. It
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was seen by observing the human participants that their input was sometimes influ-

enced by what they expected the PD controller to do. By utilizing this same idea,

an artificial controller could be able to anticipate human input and account for it.

Adaptive artificial controllers that employ a simple controller such as a PD controller

that adapts the level of PD could also be tested.
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APPENDIX A: SUPPLEMENTAL INFORMATION

A.1 Matlab and Xbox 360 Controller Interaction

The vrjoystick function enables Matlab to take input from up to 10 buttons and 5

axis. There are two thumbsticks on the controller, both of which have an x and y

component that is on a range from -1 to 1 depending on the direction and amount of

movement applied to the thumbstick in that direction. The left and right triggers also

use an analog system that allows Matlab to determine how much each trigger is held

down. The triggers share the same axis, where pressing on the left trigger indicates a

negative value on the axis and the right trigger indicates a positive value. If both are

completely held down the resulting value for that axis is 0. There are a total of 10

buttons on the Xbox 360 controller that are able to interact with Matlab. They are

momentary push buttons that when held down send a 1 and when left untouched send

a 0. The directional pad, or d-pad, uses what is called POV in Matlab. A -1 is sent

to Matlab if the d-pad is not touched. There are 8 directions that Matlab recognizes

when pressed, with straight up sending a 0. Pressing the d-pad to the upper-right

sends a 45. Each additional direction in a clockwise motion, of the 8 which can be

chosen, adds 45 to the value sent to Matlab, with the upper-left having a value of 315.

Referring to Figure A.1, buttons (1& 3) are the left and right thumbsticks, respec-

tively. There is also a directional pad (2), or d-pad. Buttons 5-10, 13, and 14 are

normal momentary buttons. The Xbox home button (4) but it has no functionality

in Matlab. Analog triggers (11 & 12) function as an axis in Matlab.
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Figure A.1: Layout of Xbox 360 Controller with Labeled Buttons


