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1. INTRODUCTION 

 

1.1 Forecasting 

 

Forecasting is an activity to calculate or predict some future event or condition, 

usually as a result of rational study or analysis of pertinent data. Forecasting is widely 

used today in many fields, especially in industry, marketing, economy and finance. Such 

as in consumable product manufacturing, an accurate prediction of the future demand is 

very helpful in providing precise inventory, reducing transportation costs, then increasing 

profit (Markridakis, 1996).  

 

Forecast methods may be broadly classified into qualitative and quantitative 

techniques. Qualitative methods are intuitive, largely educated guesses that may or may 

not depend on the past data. Quantitative methods use mathematical or statistical models 

to generate a reasonable prediction from the information of the past. Compared to 

qualitative methods, quantitative methods have the advantage of being supported by 

mathematical and statistical theory, and can be fully reproduced by any forecaster.  

 

In general forecasting, especially time series forecasting, a primary type of data in 

business and economics, the quantitative methods are widely applied. A time series is a 

set of observations{ : 1,2, , }ty t T . Usually, time series is considered as discrete series 

which observations are recorded at predetermined, equal-interval time point such as 

hourly, daily, monthly, quarterly or yearly. 
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There are many quantitative forecast methods available today. In the M3-

Competition (Makridakis 2002), the examined 24 methods are classified into six 

categories, which are naïve/simple, explicit trend models, decomposition, Autoregressive 

and Moving Average (ARIMA), expert system, and neural networks.   Basically, the 

naïve/simple and explicit trend models are considered as simple forecasting methods 

while the ARIMA and neural networks are defined as statistically sophisticated and 

mathematically complex methods. In this paper, we explore these statistically 

sophisticated methods which are Dynamic Linear Model (DLM), ARIMA Model and 

Back Propagation Neural Networks (ANNs). . 

 

1.2 The M3 Competition and Discussion 

 

Reid (1969, 1972), Newbold and Granger (1974) published the first major papers 

regarding the forecasting method evaluation via a competition paradigm. These studies 

compared a large number of common time series with a limited number of paradigms to 

determine their post-sample forecasting accuracy. Makridakis and Hibon (1979) brought 

the forecasting competition to open debate with their paper.  In this paper, they first 

compared a large number of quantitative forecasting methods across multiple time series. 

Since that time, many additional and larger studies have appeared, including the M-

Competition (Makridakis et al., 1982), the M2-Competition (Makridakis et al., 1993), to 

determine which forecasting paradigm outperform others. Following the M and M2 trials, 

Spyros Makridakis and Michele Hibon presented their third forecasting study known as 

the M3-Competition at 1997. The M3-Competition utilizes a common database, which 
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contains 3003 mostly business and economic time series. An open invitation was given to 

all researchers willing to generate forecasts for all series. Their forecast results were then 

compiled and evaluated with various accuracy methods using a holdout sample 

observations. The purpose of the M3-Competition was to evaluate four hypotheses-the 

conclusions of the M and M2 competitions.  Makridakis and Hibon (2000) concluded that 

the result of the M3-Competition confirmed the original conclusions of the last two M-

Competition (Makridakis, 1982). The four confirmed conclusions are: (1) Statistically 

sophisticated or complex methods do not necessarily produce more accurate forecasts 

than simpler ones; (2) The rankings of the performance of the various methods vary 

according to the accuracy measure being used; (3) The accuracy of the combination of 

various methods outperforms, on average, the specific methods being combined and does 

well in comparison with other methods; (4) The performance of the various methods 

depends upon the length of the forecasting horizon.  

 

The M3 project involved a large number of forecast paradigms in an attempt to be 

comprehensive. However, due to the fact they were limited in resources and relied on 

external researchers to provide their analysis of the series using researcher chosen 

paradigms, some paradigms were omitted.  Many researchers chose to use commercially 

available implementations of various paradigms instead of standard textbook methods.  

For instance, there are a variety of designs and learning techniques available for 

forecaster to choose in the Neural Network paradigm. But in M-3 Competition, the 

Automated Artificial Neural Network was the only type of Artificial Neural Network 

paradigm that was involved. Moreover, neither the network architecture nor the training 
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algorithm of this Automated Artificial Neural Network was mentioned in the paper. In 

addition, some paradigms such as Dynamic Linear Model (DLM) were not included in 

M-3 Competition. In our research, we repeat the M-3 Competition among three types of 

paradigms: ARIMA, DLM, and ANNs and detail them. Some up-to-date technologies 

and different algorithms of these three paradigms will be employed in an attempt to 

improve the forecasting accuracy. One big discussion of the M-3 Competition 

conclusions is in the forecasting accuracy evaluation. To decide whether one method is 

better than the others, comparing only the average of the values of one accuracy measures 

is not convincible (Stekler, 2001). Hence we will apply standard statistical methodology, 

Mixed linear model, to identify the difference among different paradigms for various 

forecast horizons.  

  

1.3 The M3 Data  

 

The M3-Competition consists of 3003 series, which includes various types of 

time series data (micro, industry, macro, etc.) and different seasonal characters (yearly, 

quarterly, etc.).  Table 1 shows the classification of the 3003 series. The yearly and 

monthly data contain time series from all catalogs which indicate that the forecast range 

of these two classifications are wider than the other two (Makridakis, 2000). The result of 

the M3-Competition shows that extending the application region of a specific forecast 

paradigm may decrease the forecast accuracy. Table 2 shows the detail of all the seasonal 

catalogs. The quarterly and the other data share the same forecast horizon as eight while 

the monthly need to be forecasted eighteen horizons ahead. Mostly, the short term 
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forecasting is more precise than the long term forecasting, such that the forecast result of 

the monthly data are supposed to be worse than the other three. The data length decides 

how much past information can be used to forecast ahead. The yearly data have a short 

average data length which looks much worse than the other data that has a long average 

data length but only need forecast eight horizons ahead. The seasonal periodic inside the 

quarterly and the monthly data provide more information for modeling, such that a 

seasonal adjustment should be considered and will help the model catch the real pattern.  

 

Table 1. The classification of the 3003 time series. 

 

Table 2. Data detail of all the seasonal catalogs. 

 

1.4 Forecasting Approach 

 

The forecasting process is an error-driven iterative approach consisting of four 

distinct phases: collect data for forecasting; identify a possible forecast model; estimate 

Time interval 

between 

successive 

observations 

Types of time series data 

Micro Industry Macro Finance 
Demogr

aphic 
Other Total 

Yearly 146 102 83 58 245 11 645 

Quarterly 204 83 336 76 57  756 

Monthly 474 334 312 145 111 52 1428 

Other 4   29  141 174 

Total 828 519 731 308 413 204 3003 

 

Seasonal 

Type 

Data detail 

Total 

Series 

Min 

Length 

Median 

Length 

Max 

Length 

Average 

Length 

Forecast 

Horizon 

Yearly 645 14 19 41 22 6 

Quarterly 756 16 44 64 41 8 

Monthly 1428 48 115 126 99 18 

Other 174 60 63 96 69 8 
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parameters in tentative forecast model; and diagnostic checking (Figure 1). After the data 

was collected and the forecasting question was specified, a quick glance at the data 

structure and pattern characters should be applied to identify a possible suitable model. 

Once a model is identified, the chosen model is then diagnostically checked against the 

historical data to determine if it accurately describes the time series. For instance, in the 

ARIMA model, the diagnostic involves checking the residuals between the forecast and 

actual series and determine if they are small, randomly distributed, and uncorrelated, if so 

the chosen ARIMA model is said to be a good fit. However, if the chosen model is not 

satisfactory, the process will move backward to the identify stage and repeated with 

another model to replace the original one. This process is iterated until a satisfactory 

model is found.  
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Figure 1. Forecasting Approach 

 

1.5 Forecast Accuracy Measures  

 

One of the conclusions confirmed by the M3-Competition is that the ranking of 

the performance of the various methods vary according to the accuracy measure being 

used. Regarding the accuracy measures used to evaluate which method gives the most 

accurate forecast; statisticians have given out a lot of heuristic comments. Koehler (2001) 

detected the asymmetry of the symmetry measures used in the M3-Competition and 

suggested that bounds on the forecast errors should be applied to evaluate how statistical 
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accurate the forecast is believed to be. Stekler (2001) indicated the necessity of 

performing statistical tests to determine whether there is any significant difference in the 

accuracy of the different forecasting methods.  Following Stekler‟s suggestion, Koning et 

al (2004) finished research in using statistical multiple-comparison to test the significance 

among the results of various forecasting methods. They discovered that there are 

significant differences among the results obtained from the various accuracy measures 

that have been used in the M3-Competition.  

 

                   We agree that rigorous statistical tests are necessary in the evaluation of the 

forecast results.  In this paper, to make a valuable comparison between our forecasting 

results and the conclusions of the M3-Competition, we only employed one accuracy 

measures which was used in the M3-Competition: Symmetric mean absolute percentage 

error (SMAPE).  Then, we used single mixed linear model to identify the differences 

among all the forecasting results in every forecasting horizon.  

The SMAPE is defined as: 

                                                 
1 | |

100
( ) 2Series

X F

n X F
                                                     1.1 

Where X  is the real value and F  is the forecast value, n  is the number of the time 

series. The SMAPE is the average across all forecasts made for a given horizon in a 

specific type of time series data. Makridakis and Hibon (2000) considered that the 

SMAPE could help to avoid the problem of large errors when the actual values, X , are 

close to zero and the large difference between the absolute percentage errors when X is 

greater than F and vise versa. But actually, this SMAPE is not absolute symmetrical-it 

penalizes low forecasts more than high forecasts (Koehler, 2001). In the M3-Competition, 
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all time series data are strictly positive. To avoid the problem in the various SMAPE 

measures, a test was done on all the forecasted values, and all the negative value was 

substituted by zero to give a SMAPE as 200 (Makridakis, 2000). 

 

 

2. THE OVERVIEW OF ARIMA 

 

One mathematical approach to forecasting time series is known as the Box-

Jenkins method and was suggested by Box and Jenkins (1970). Technically, the Box-

Jenkins technique is an integration of the autoregressive and the moving average methods, 

so it is also named ARIMA (Autoregressive, Integrated, Moving Average) model. Since 

its first introduction, this ARIMA approach has become widely used in many fields such 

as specification, estimation, and diagnostic (Thomas 1983).  

 

The ARIMA methodology is a statistical method for analyzing and building a 

forecasting model which best represents a time series by modeling the correlations in the 

data. In the empirical research, many advantages of the ARIMA model were found and 

support the ARIMA as a proper way in especially short term time series forecasting (Box, 

1970; Jarrett, 1991).   Taking advantage of its strictly statistical approach, the ARIMA 

method only requires the prior data of a time series to generalize the forecast. Hence, the 

ARIMA method can increase the forecast accuracy while keeping the number of 

parameters to a minimum. Some major disadvantages of ARIMA forecasting are: first, 

some of the traditional model identification techniques for identifying the correct model 

from the class of possible models are difficult to understand and usually computationally 
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expensive. This process is also subjective and the reliability of the chosen model can 

depend on the skill and experience of the forecaster. Second, the underlying theoretical 

model and structural relationships are not distinct as some simple forecasts models such 

as simple exponential smoothing and Holt-Winters (Thomas 1983). Moreover, the 

ARIMA models, as all forecasting methods, are essentially „backward looking‟. Such that, 

the long term forecast eventually goes to be straight line and poor at predicting series 

with turning points.  In the next chapter, we briefly review the Autoregressive model and 

the moving average model, and then move foreword to ARIMA model.   

 

2.1 Autoregressive Model 

 

Autoregressive model are based on the assumption that each value of the time series  tY  

depends only on the weighed sum of the product of the previous values 1 2, , ,t t t pY Y Y  

and the regression coefficient 0 1 2, , , , p  plus residual t . An autoregressive model 

can be considered as a p-order autoregressive model, which takes the following form:  

                                              0 1 1 2 2 ...t t t p t p tY Y Y Y                                 2.1 

where tY   is value of the series at time t, 1 2, , ,t t t pY Y Y  are dependent on the previous 

values of the variable at specified time periods, 0 1 2, , , , p  are the regression 

coefficients and t  is the residual term that represents random events not explained by 

model. 
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The Autoregressive model is capable in a wide variety of time series forecasting 

by adjusting the regression coefficients p . The difference between the Autoregressive 

models and other conventional regression models is with respect to the assumption of the 

independence of the error term. Since the independent variables are time-lagged values 

for the dependent variable, the assumption of uncorrelated error is easily violated.  

 

2.2 Moving-Average Models  

 

The basic idea of Moving-Average model is firstly finding the mean for a 

specified set of values and then using it to forecast the next period and correcting for any 

mistakes made in the last few forecasts.  It takes this form: 

                                          0 1 1 2 2 ...t t t t q t qY w w w w                                  2.2 

where tY  is the value of the series at time t, 0 1 2, , , , qw w w w  are the weights applied to 

1 2, , ,t t t q  previous forecast errors and t  is the residual error. 

 

To specify a Moving-Average, the number and the value of the q  moving average 

parameter 1w  through qw  have to be decided subject to the certain restrictions in value in 

order for the process to be stationary. The Moving-Average model works well with 

stationary data, a type of time series without trend or seasonality.  

 

2.3 ARIMA Models  
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The AR and MA model can be mixed and, provide a third class of general models 

called ARMA, a particular ( ,0, )ARIMA p q  model. With non-seasonal differences d  

added to the model, the ( , , )ARIMA p d q  model has the capability to handle the variety 

kind of time series forecasting questions. Here p  is the number of autoregressive terms, 

d  is the number of non-seasonal differences, and q  is the number of lagged forecast 

errors in the prediction equation.  

                0 1 1 2 2 1 1 2 2t t t p t p t t t q t qy y y y w w w                2.3 

The ( , , )ARIMA p d q  model use combinations of past values and past forecasting 

errors and offer a potential for fitting models that could not be adequately fitted by using 

an AR or an MA model alone.  Furthermore, the addition of the differencing eliminates 

most non-stationarity in the series. 

 

A significant difference between the ARIMA methodology and previous methods 

is that ARIMA does not make assumptions about the number of terms or the relative 

weights to be assigned to the terms. To specify the model, the analyst first selects the 

appropriate model, including the number of , ,p d q terms; then calculates the coefficients 

and gives a refined suggestion of the model parameters by using a nonlinear least squares 

method (Hanke, 1995; Thomas, 1983). The Best ARIMA function in R utilizes Akaike 

Information Criterion (AIC) to choose the  , ,p d q  value and identify the best ARIMA 

model. 

 

2.4 Akaike Information Criterion (AIC)  
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The appropriate choice of , ,p d q  terms of ( , , )ARIMA p d q  model has the 

potential of improving forecast accuracy. There are two ideas for the model selection: one 

is select one appropriate model for the series under consideration, the other is use a 

general selection methodology which will select the appropriate model for each series 

from a group of candidate models. Empirical Information Criterion (EIC) is a model 

selection method that is designed to be used in forecasting a large number of time series. 

There are many EIC available for forecaster to choose, one popular criterion is Akaike 

Information Criterion (AIC). In this paper, in order to choose the best ( , , )ARIMA p d q  

model for each time series, the AIC is applied in the model selection procedure. For a 

fitted ARIMA time series of length n, the AIC is defined to be: 

                                                2

,
ˆln( ) 2( ) /p qAIC p q n                                              2.4 

where 2

,
ˆ

p q   is the residual error variance from the fitted model. When comparing fitted 

models, the basic idea is the smaller the AIC, the better the fit.  Note that the AIC 

penalizes for additional model complexity with the addition of 2( ) /p q n . The degree of 

differencing d is manually set subject to the seasonal pattern of the time series. The 

approach of these Information Criterion methods is that of penalized likelihood 

(Sakamoto,1986). 

 

3. THE OVERVIEW OF BAYESIAN STATISTICS AND DLM 

 

The basic assumption of Bayesian statistics is that all uncertainties should be 

represented and measured by probabilities. The extension of the Bayesian presupposition 

is that, in forecast field, the true of the future could be represented by the past with a 
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measurable probability. Bayesian methodology offers a comprehensive way of routine 

learning that is not dependent on any particular assumption, Such that, it provides 

consistent and intuitional results in forecasting.  

 

Suppose a dynamic model M constructed by number models M , such that the 

prior probability ( )P M describing the likely of M  to be selected in forecasting an 

uncertain quantity Y . Also, a conditional probability distribution ( | )P Y M is used to 

specify the likelihood of each member model M  giving out a correct future value 

of Y conditional upon that particular M . By probability law, these two sets of 

probabilities combine to provide a joint probability distribution as:  

                                               ( , ) ( | ) ( )p Y M p Y M p M .                                               3.1 

From Bayesian theory 

                              ( | ) ( , ) / ( ) ( | ) ( ) / ( )p Y M p Y M p M p M Y p Y p M                          3.2 

and Therefore 

                                           ( | ) ( | ) ( ) / ( )p M Y p Y M p M p Y .                                         3.3 

When Y is deserved to take a valueY , the updated probability distribution for M given 

Y Y is defined by the conditional density 

                                                ( | ) ( | ) ( )p M Y p Y M p M                                             3.4 

which is often expressed as 

Posterior Observed likelihood prior  

The DLM is a Bayesian paradigm for time-series analysis detailed in Pole et al. 

(1994) and West and Harrison (1997). Generally, DLM is defined as a 
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quadruple , , ,t t t tF G V W , which contains four components: regression vector tF , 

evolution matrix tG , observation variance tV , and evolution variance tW . In order to 

specify a DLM, these four components must be specified for each period t . In the 

following chapter, from simple to complex, we first outline the First Order Polynomial 

Model, and then generalize the High Order Polynomial Model and the Dynamic Linear 

Model (West 1997).  

 

3.1 Polynomial Model 

 

The simplest and most widely used DLM, so called First Order Polynomial Model, 

is characterized by the quadruple  1,1, ,t tV W  . At time t , tY  represents the corresponding 

value of the time series; t represents the level of the series. The observational error tv  

and the evolution error t  are internally independent, mutually independent, and 

independent of 0 0( | )D , the initial level 0  given the initial information set 0D  which is 

the information we have form the outside of the time series before we do the forecasting. 

In the first order polynomial model, the variance sequences tV  and tW  are known 

constants of the existing information. In brief, the time evolution is modeled as a simple 

random walk upon a locally constant mean t . 

Observation equation:        ~ [0, ]t t t t tY v v N V  3.5  

System equation:               1 ~ [0, ]t t t t tN W  3.6 

Initial information:              0 0 0 0( | ) [ , ]D N m C                                                             3.7 
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This First order polynomial model is used effectively in numerous applications, 

particularly in short-term forecasting for production planning and stock control.  

 

To extend to the Second Order Polynomial Model, a growth component, which 

itself also drifts over time, was added to the local level of the First Order Polynomial 

Model. Therefore, the second order model equations can be formed as below. 

Observation equation:         1, ~ [0, ]t t t t tY v v N V      3.8 

System equation:                 1, 1, 1 1, 2 1, ~ [0, ]t t t t t tN W     3.9    

The tF   and tG  are risen to corresponding 2 2 matrix: 

                                        
1

0
tF ,                  

1 1

0 1
tG                                    3.10 

Following this idea, the n
th

 order polynomial model could be produced by 

extending straightforward from the formulations above. The regression vector tF  and the 

evolution matrix tG  of the n
th

 order polynomial model are written as 

                               

1, 1,1 1,

, ,1 ,

t t

t t

n t n n t

F G G

F G

F G G



   



,                             3.11 

where ,i jF and ,i jG could be any number (West 1997).   

 

3.2 The Dynamic Linear Model 

 

                Based on the fundamental concepts and important features of the general class 

of normal dynamic linear models and simple regression models, we go to the general 
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normal dynamic model (DLM).  The general normal dynamic model (DLM) is 

characterized by a quadruples.  

},,,{},,,{ ttttt WVGFWVGF
   

for each time t, where 

(a) tF  is a known ( )n r matrix; 

(b) tG  is a known ( )n n matrix; 

(c) tV  is a known ( )n n variance matrix; 

(d) tW  is a known ( )n n variance matrix. 

This quadruple defines the model relating tY  to the 1n parameter vector t  sequence 

through time, the equations are as below. 

 

Observation equation:            ' ~ [0, ]t t t t t tY F v v N V                     3.12 

System equation:                   1 ~ [0, ]t t t t t tG w w N W                    3.13             

 

The error sequence tv and tw  are internally and mutually independent. Defined by the 

observation equation, the sampling distribution for tY  is conditional on the quantity t . 

For time t 

(1) tF  is the design matrix of known values of independent variable; 

(2) t is the state, or system, vector; 

(3) t = '

tF t  is the mean response, or level; 

(4) tv is the observational error; 
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(5) tG  is the evolution, system, transfer or state matrix; 

(6) tw  is the system, or evolution, error with evolution variance tW ; 

 

The table below shows that the  algorithm of the univariate DLM (Table 3) which is 

the foundation of our Matlab program.  The tF  matrix displays the correlation of the 

known values which is the system inputs. Generally, for nonseasonal time series, each 

past data is considered to contribute a equal weight to the future, hence ijF in tF  are all 

take the value as one; for seasonal time series, the tF  need to be identified as a proper 

matrix that represents the seasonal circle, e.g. tF =[1,0,0,0]
t
 may fit the quarterly data. 

Considering the seasonal characteristic, a rotation matrix was picked for the transfer 

matrix tG  . The first system input vector tm usually comes from the mean of certain past 

data, but in seasonal model, tm vector takes the average of two data that are separated by 

one seasonal circle distance. The other parameters exist in the DLM model, such 

as 1, , ,t t tw d S W , are optimized by utilizing a grid optimization method to seek the 

minimum values of the mean square error. In the grid optimization, we offer a wild range 

of members as candidates to the parameters being optimized, and then we test all the 

interactions and select the best one for each series.    
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Univariate DLM: unknown, constant variance V= 1    

 

 

Observation:             ' ~ [0, ]t t t t t tY F v v N V          

  System:                     
11 ~ [0, ]

tt t t t t n tG w w T W                

      

  

 Information:                  1 -1 1 -1 -1(  | )  [ , ]t t n t tD T m C  

                                       -1 1 1
-1(  | ) ,  

2 2

t t t
t

n n s
D G  

   

Forecast:                        -1 1( | ) ,t t t t tY D T f Q  

                                       -1 1( | ) [ , ]t t t tD T a R  

 

where                       

    '

-1 -1               t t t t t t t tR G C G W a G m                                         
' '

-1                   t t t t t t t tQ F R F S f F a  

 

Updating Recurrence Relationships: 

 

                                               ( | ) ,
2 2

t t t
t

n n s
D G  

                                               ( | ) ,
tt t n t tD T m C  

 

              With                          t t te Y f         and         /t t t tA R F Q                                        

                                                -1 1t tn n  

                                               
2

-1
-1  1t t

t t

t t

s e
S S

n Q
 

                                                t t t tm a Ae                               

                                                '

-1

 ( - )t
t t t t t

t

S
C R A AQ

S
                                          

Forecast Distributions:             k 1  

( | ) [ ( ),  ( )]
tt k t n t tD T a k R k  

( | ) [ ( ),  ( )]
tt k t n t tY D T f k Q k  

Table 3. Univariate DLM 
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4. THE OVERVIEW OF ANTIFICIAL NEURAL NETWORKS (ANNs) 

 

ANNs may be defined as “an information processing technology inspired by 

studies of the brain and nervous system” (Klimasauskas, 1991). In computer science, 

ANNs is a processor made up of massively parallel distributed simple processing units, 

which has a natural propensity for storing experiential knowledge, doing logical and 

quantitative analysis, and generalize new information from acquired knowledge. It is 

similar to the brain in two respects: 

1. Acquire knowledge from its environment through a learning process. 

2. Using synaptic weight to store the acquired knowledge.  

The working of the ANNs may vary from different structures of the network, generally a 

series of connecting neuron weights are assigned to each inputs signal and are adjusted to 

fit this series of inputs to another series of known outputs which are the network target. 

When the weight of a particular neuron is continually updated to improve the network 

performance, it is said that the neuron is learning. The training is the process that neural 

network learns. A properly trained network tends to give reasonable answers when 

presented with inputs that they have never seen.  

              The most important advantage of neural networks is in solving problems that are 

too complex for conventional techniques. These kinds of problems include pattern 

recognition and data forecasting. Today ANNs has been widely applied to many real 

world problems: business, physical system control, engineering, statistics, also medical 

and biological fields (Haykin, 1994).  
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4.1 ANNs in Forecasting 

 

The science of Artificial Neural Network (ANNs) has a history of about five 

decades but has been solid in application for only the past fifteen years. The first artificial 

neuron was produced in 1943 by the neurophysiologist Warren McCulloch and the 

logician Walter Pitts. But the technology available at that time did not allow them to do 

any deep research. Today, with the further understanding of human brain and the huge 

progress of computer science, significant progress has been made in ANNs algorithms. 

Currently, ANNs are being used for a wide variety of tasks in many different fields of 

business, industry and science (Widrow, 1994).sd 

 

One major area of application for ANNs is time series forecasting such as 

predicting stock price, future inventory, and sales marketing (Sharda, 1994). As a 

nonlinear, sophisticated forecasting method, ANNs has several special features which 

make it an attractive alternative tool for both forecasting researchers and practitioners.  

 

ANNs are data-driven self-adaptive methods with few prior assumptions. They 

learn from existing information and capture faint relationships among the data even if the 

underlying relationships are unknown or difficult to describe in closed form. Therefore, 

ANNs is appropriate for problems whose solutions require knowledge that is difficult to 

specify but have enough data or observations available (White, 1898; Ripley, 1993). The 

adaptability, reliability and robustness of an ANNs only depend on the source, range, 

quantity and quality of the given data set. ANNs can generalize from learning the data 
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presented to them, similar to the human brain. ANNs can often correctly catch and infer 

the unseen part of a population, even if the sample data given contains noisy information 

(Perambur 1994). ANNs is a universal function approximation system; it can be set to 

approximate any continuous function to any desired accuracy (Cybenko, 1989; Funahashi, 

1989). ANNs can do nonlinear data-driven approach; therefore it is not necessary to make 

any assumptions of the underlying distribution of the data. This important feature 

overcomes the weakness of the conventional approaches such as ARIMA that stands in 

the assumption that the given time series is generated from a linear process which is not 

always true for real world systems (Haykin, 1994). ANNs has the capability of 

performing nonlinear regression without knowing the relationship between input and 

output variables. This makes it a general and flexible modeling tool for the real data 

forecasting. 

 

When using the ANNs in forecasting, we should always be aware of some 

disadvantages. First, the individual relationship between the input variables and the 

output variables are not developed from mathematical deduction, so that the model tends 

to be a black box without a clear theoretical base. Secondly, a large sample size of data is 

required to obtain a stable and logical forecasting result. Finally, the ANNs forecasting 

can be time consuming. In some incarnations these ANNs may never converge; thus, 

training (learning) will continue for infinity. 

 

4.2 Biological Structure  
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The human nervous system may be viewed as a three-stage system. Central to the 

system is the brain, represented by the neural net, which continually receives information, 

perceives it, and makes appropriate decisions. The receptors convert stimulation from the 

human body or the external environment into electrical impulses that convey information 

to the neural net. The effectors convert electrical impulses generated by the neural net 

into discernible responses as system output.  

 

There are forward and backward arrows connecting these three stages. The 

forward arrows present the transmission of information-bearing signals through the 

system and the backward present the system feedback. (for more biological details see 

Perambur 1994).  

 

Figure 2. Three stages model of a ANNs 
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4.3 Single Network ANNs  

 

The ANNs was developed in an effort to model the human neuron. The single 

artificial neuron, also called Perceptron, is depicted below (Figure 3). Inputs enter the 

neuron and are multiplied by their respective synaptic weight. 

 

 

 

                                                             

  

 

 

  

 

 

 

 

 

Figure 3. Single Network 

 

Let 1 2, , , nX X X  be input signals while 1 2, , , nW W W  represent synaptic weights 

of neurons. The neuron will sum these weighted inputs and, with reference to a bias b  as 

the input argument of the activation function f . The activation output Y is an input to the 

next layer or it is a response of the neural network if it is the last layer. 
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The activation function f  bounds the neuron's output. There are various kinds of 

activation functions that could be chosen. Two common activation functions are the Pure 

Linear function 

( )f U U                                                           4.3 

 and the Log-Sigmoid function (Haykin, 1994). 

(- )( ) 1 (1  )Uf U e                                                     4.4 

 

4.4 Network Architecture  

 

ANNs are networks with multiple layers and a large number of interconnected 

neurons. The ANNs architecture can be specified by four variables that are: the number 

of input nodes (n); the number of hidden layers (k) and hidden nodes (m); the number of 

output nodes (i) (Figure 4). Generally, the number of input nodes corresponds to the 

number of variables in the input vector which equal to the number of lagged observations 

used to forecast the future values. The number of output nodes corresponds to the 

problem to be answered which is the forecasting horizon in time series forecasting. The 

selection of the number of hidden layers and hidden nodes has a great effect on training, 

convergence, and forecast performance. Empirical research supports that one hidden 

layer may need a large number of hidden nodes for most forecasting cases, such that it 
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may consume a lot of computing time in network training (Cybenko, 1989; Hronik, 1989). 

Two hidden layers network were found to be more efficient in many time series 

forecasting purposes (Barron, 1994; Zhang 1994). Many papers supported that a network 

never needs more than two hidden layers in general forecasting problems (Cybenko, 1988; 

Lapedes, 1988). There are many discussions about how to specify the number of hidden 

nodes, but all of them only work well in specific or similar cases.  Many trials was done 

to try to find a general rule in network architecture optimization, but none of them can 

guarantee the best architecture for all real forecasting problems. Hence, the empirical 

approach is still a common way in finding the best network architecture (Zhang 1998). 

Neural networks are usually fully connected. This means that each neuron is connected to 

every output from the preceding layer and each neuron has its output connected to every 

neuron in the succeeding layer. For the input layer, every neuron has one input from the 

external world. An ANN with well designed network architecture has the ability to learn 

or store knowledge in their synaptic weights and then generalize the population truth or 

future information. Thus ANNs have been applied successfully in time series.  
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Figure 4. Network Architecture 

 

 

4.5 Backpropagation Algorithm  

 

 

In this paper we apply the Backpropagation Paradigm for a feed forward ANN to the M-3 

Competition forecasting. Backpropagation algorithm was first proposed by Paul Werbos 

in the 1970's. In 1986, Rumelhart and McClelland rediscovered this algorithm and made 

it one of the most popular neural networks learning algorithms. Today, backpropagation 

network has been used successfully for wide variety of applications, such as forecasting, 

image pattern recognition, medical diagnosis, and automatic controls. 
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Backpropagation network made a tremendous progress from the single-layer 

perceptron. With a more sophisticated learning rule, backpropagation networks overcome 

the limitations that single-layer networks have which is the network can only 

approximate linear relationship between the inputs and the targets. Empirical reach shows 

that a backpropagation network with biases, a sigmoid layer, and a linear output layer are 

capable of approximating any function including linear and nonlinear. In our network 

design, we set output layer with linear transfer function and all the other layers with 

sigmoid transfer function to give the network the power for representing any functional 

relationship between the inputs and outputs. 

 

Backpropagation network gets its name from its exclusive training procedure; the 

network feed forward the data from the input layer to the output layer through the hidden 

layers. The error signal between the outputs and the targets is backpropagated from the 

outputs to the inputs through the hidden layers in order to appropriately adjust the 

weights in each layer of the network until it can approximate a neuron weights function 

that can associate input vector with the specific output vector or narrow the total error 

into a defined value. A backpropagation network consists of at least three layers: one 

input layer, at least one hidden layer, and one output layer. Layers are feed forward 

connected with the input units fully connected to the hidden layer units and hidden units 

fully connected to the output layer units. Inside the backpropagation network flow cycle, 

the input nodes are propagated forward to the output nodes through the intervening input-

to-hidden and hidden-to-output weights.  
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Standard backpropagation networks employ gradient descent algorithms to 

minimize the total error on the training set. Figure 5 illustrates the concept of gradient 

descent using a single weight. After the error on each pattern is computed, each weight is 

adjusted in proportion to the calculated error gradient backpropagated from the outputs to 

the inputs. The changes in the weights keep reducing the overall error until the 

performance goal is reached or the minimum gradient is met. The open-up parabola 

shows the relationship between the overall error and the changes in a single weight of a 

network (McClelland, 1988). In our network, we set the minimum performance gradient 

equal to 81 10 as a stop criterion of the network training.  

  

Figure 5. Gradient Descent Algorithm 

  

The network training is set up following four steps. First, assemble the training 

data. Suppose a time series has n  numbers of data and k  of these n data are reserved for 

forecasting.  Following the instruction of the M-3 Competition data, we specify a delay 

d  as the number of the past data that are used in the training for the target. Horizon h  is 

Error 

Wij 
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the steps need to be forecast ahead. Second, create the network object. For a specify 

horizon, the target t  is set to be the number that is one horizon ahead the last delay series. 

Following this procedure, the first target is the d h  number of the training series 

while the last training target is the last number in the training series. Such that for each 

training circle, the input layer always has d neurons while the output layer has one 

neuron (Figure 6). Third, train the network. After the input series and the output series are 

set up, we go to the training process. There are several different training algorithms 

available in backpropagation network.  These different algorithms have variety of 

computation and memory requirements. The selection of algorithm depends upon the 

problem at hand.  Considering the increase in training speed and the reduction in memory 

requirement, we chose the Levenberg-Marquardt algorithm as the training algorithms of 

our network.  The Levenberg-Marquardt iteration method is a variation of the Newton 

iteration. Newton's approach starts from an initial value 0x  and refines this value using 

the assumption that f is locally linear. A first order approximation of 0( )f x yields: 

0 0( ) ( )f x f x J                                                4.5 

with J  the Jacobian matrix and  a small displacement. Under these assumptions 

minimizing 0̂ -e J  can be solved through linear least-squares. An augmented equation 

yields from the simple derivation 

ˆT TN J J J e                                                     4.6 

In Levenberg-Marquardt iteration, this augmented equation is changed to             

ˆTN J e                                                            4.7 

where                                                    
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(1 )ij ij ijN N                                                       4.8 

with ij  the Kronecker delta . At the beginning of the iteration, the value is initialized 

to a small value. If the value obtained for  reduces the error, the increment is accepted 

and is divided by a certain number before the next iteration. On the other hand, if the 

error increases then is multiplied by a certain number and the augmented normal 

equations are solved again, until an increment is obtained that reduces the error. A large 

will give a steep descent in the approaches then reduce the convergent time. Once the 

training is done, we go to the fourth step, forecasting, which is simulating the network 

response to the new inputs. In the simulation, the input series is always set up to be the 

last d number of the training data and the target is aimed at the h number of the reserved 

data. The maximum h  is the length of the reserved data k  (Figure 7).  
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Figure 6. Network Training 

                                n: Length of Time Series;       k: Reserved Data; 

d: Delay;                                  h: Forecast Horizon. 
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Figure 7. Forecasting 

                                n: Length of Time Series;       k: Reserved Data; 

d: Delay;                                 h: Forecast Horizon. 
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As we described before, the ANNs could be a time consuming algorithm, such 

that the computation time is considered as an important criterion of the network 

efficiency.  In this paper, we explore the relationship between the elapsed time and the 

network structure from empirical test. In the next tables, the network configuration was 

specify by numbers inside a bracket, the first and the last number represent the number of 

neurons in the input and output layer, the numbers in the middle represent the neurons in 

each hidden layer. We describe the three conclusions we discover and take the “Other 

Data” set the of M-3 Competition as an instance: First, in a particular network, the 

elapsed time appears to be the quadratic function with respect to the delay number used 

in generalizing the future. A very short delay may cost a lot of elapsed time in training 

since the deficiency of the past information available for the network leads to a long time 

approximation (Figure 6). On the other hand, a very long delay may provide too much 

past information to the network thus causing an increase in training time. Therefore, if the 

performance is close for networks with different delay, we could minimize the elapsed 

time by choosing a proper delay. In Figure 6, twelve was selected to be the delay which 

empirical testing showed consumed less time than the others. Second, as the number of 

hidden layers increased, the numbers of neurons increase causing longer training 

times(Figure 7 and 8). Hence, in the neural network design, a network with a small 

number of hidden layer should be considered first. Most of the time, one or two hidden 

layers were sufficient and neural network with two hidden layers were found to be more 

efficient in many time series forecasting purposes (Zhang, 1994).  
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Figure 8. Elapsed Time and Delay 

 

 

Figure 9. Elapsed Time and Network Configuration A 
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Figure 10. Elapsed Time and Network configuration B 

 

The network configuration affects the network performance. To illustrate this 

relationship, we picture the performance of different network configuration in every 

single horizon (Figure 11). Generally, the forecast error increased as the forecast horizon 

H increased, the performance is approximately linear as seen in figure 11. But the same 

network configuration doesn‟t strictly monotonically increase over increasing horizon.   

For example, some network configuration, e.g. [20,10,10,10,1] (twenty neurons in input 

layer, ten neurons in each one of three hidden layers, one neuron in output layer) 

performs slightly better than the others in short term forecasting but not as well as some 
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configuration and identify the best network design for each forecast horizon, a statistics 

test is necessary. The mixed linear model is selected for the assessment in this work. The 

result of the mixed linear model will be discussed in detail in the next chapter.   

 

 

 

Figure 11. Average SMAPE of Different ANNs Configurations in All Horizons 
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5. MIXED LINEAR MODEL AND DISCUSSION 

 

 

To explore where paradigms are statistically different we use the mixed linear 

model.  The model we are using is defined by 

ij i j ijA                                               5.1 

where ijA  is the accuracy measure associated with the i
th

  paradigm using the j
th
 time 

series,  is the overall mean, i  is the i
th
  paradigm effect, j  is the effect of the j

th
 time 

series where 2~ (0, )
iid

j N  is a random effect and ij  is the random error term where 

2~ (0, )
iid

ij N .  By using this model to determine where the differences in paradigms 

exist we can account for the correlation induced by applying more than one forecasting 

paradigm to the same time series.   

 

The mixed model analysis was performed in SAS using „PROC MIXED‟.  The 

Mixed linear model tests the null hypothesis that all the selected paradigms produce the 

same SMAPE mean in every horizon. Therefore, the alternative hypothesis is that at least 

one SMAPE mean of one paradigm in a specific horizon is different from the others. 

With the Mixed linear model test, we are able to tell which paradigm produces smallest 

SMAPE mean and which paradigm produces the biggest SMAPE at a specific horizon 

and whether these differences is significant at the 0.05 confident level. The paradigms we 

test in the mixed ANOVA and the results are listed in the tables below. In Tables 4, 6, 8, 

10, the average SMAPE and the standard error of each forecast horizon for each 

paradigm are listed. The result of the Theta method that was strongly recommended by 
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the M3-Competition as a simple and efficient method is also listed at the top of these 

tables for comparison. In Tables 5, 7, 9, 11, all paradigms are ranked in the order of 

descending SMAPE; the best and the worst paradigms are shaded in different colors. 

Paradigms that are statistically different are shaded in the same color.  

 

Table 4 and Table 5 show that for yearly data, the First Order DLM generates the 

over all best performance in every forecast horizon but is not significantly different than 

the Best ARIMA at the first two forecast horizons at 0.05 confident levels. All the ANNs 

don‟t perform as well as the other paradigms; the ANN [3, 10, 1] performs significantly 

worst than other ANNs; Second Order DLM has the worst performance at the second 

horizon with three ANNs. Subject to the network training algorithm, yearly series with 

short series length, e.g. 14, are not be able to provide enough past information to the 

network training for long term forecasting. To explore how the ANNs works at long term 

forecasting for short time series, a further work on discovering new training algorithms is 

needed.  

 

Table 6 and Table 7 show that the average SMAPE of the Best ARIMA is 

significantly smaller than all the other paradigms except at the fourth horizon on where 

four ANNs appear to have not significant difference with it. Seasonal DLM performs 

significantly worse at all horizons. Different ANNs generate close average SMAPE no 

matter what the network architecture it is. ANNs with delay match the quarterly pattern 

are slightly better than the other ANNs. This phenomenon indicates that ANNs are 

capable of recognizing the seasonal pattern when a proper delay is assigned to the 
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network configuration.  With the same delay, ANNs with two hidden layers outperform 

ANNs with only one hidden layer; ANNs with one hidden layer and short delay appear to 

be inconsistent in forecast performance, e.g. [4,20,10,1] has a jump at horizon 4.  

 

Table 8 and Table 9 show that for the monthly data, ANNs with suitable delay 

that match the series seasonal cycle (twelve for monthly data) outperform all the other 

paradigms at every single horizon at 0.05 significant level except that at the fifth horizon 

where the ANN[12,20,1] shows no difference with the Best ARIMA. Generally, ANNs 

with two hidden layers are showing better performance than ANNs with one hidden layer 

even though some differences are not statistical significant. On the other hand, ANNs 

with improper network architecture generates significantly bigger forecast error in 

forecasting. The Seasonal DLM doesn‟t perform as well as the Best ARIMA. Our 

research also confirm that the ANNs especially ANNs with more hidden layers and 

hidden nodes did cost a lot of time in network training , e.g. the ANN [12, 20, 10, 1] 

takes a fast computer three days to finish the 1428 monthly series. Such that, considering 

the forecast efficiency, we prefer ANN[12,20,1] to ANN[12,20,10,1]. The average 

SMAPE of the ANN[12,20,10,1]  are better than the results of the Theta method used in 

the M3-Competition. If we assume that the SMAPE values of the theta method used in 

M3-Competition and the AMAPE values of ANN[12,20,10,1] used in our research share 

the same distribution and have close variance, then since ANN[12,20,10,1] generate a 

smaller SMAPE,  it could be the overall best paradigms in monthly data forecasting 

among M3-Competition and our work. This rejects of the conclusion confirmed by the 
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M3-Competition saying that statistically sophisticated or complex methods do not 

necessary provide more accurate forecasts than simple ones (Makridakis, 2000).  

 

Table 10 and Table 11 show that the Best ARIMA performs the best in every 

horizon and the difference is significant at 0.05 confidence level. ANNs with different 

network architecture generate close average SMAPE value at all horizons, ANNs with 

longer delay perform slightly better but consume much longer computation time (Figure 

9). The average SMAPE of the First Order DLM is smaller than ANNs at all horizons but 

has no significant difference. The results of two Second Order DLM paradigms are 

significant worse in the other data set forecasting.  

 

In summary, we reach four conclusions: first, different paradigms perform 

diversity in different categories of time series. First Order DLM performs best in yearly 

data while Best ARIMA works well with the other and quarterly data. ANNs gives out 

impressed performance in monthly data forecasting; second, unlike the one conclusion of 

the M3-Competition that statistically sophisticated paradigm are not as well as simple 

paradigm in time series forecasting. We discover statistically sophisticated paradigms, 

such as ANNs, is likely to produces better forecast accuracy then simple paradigms in 

monthly time series; Third, The length of the time series affect the ANNs performance. 

We consider this as the main reasons why the ANNs perform so much difference in 

different categorical time series, since the forecast performance of the ANNs rely on how 

much past information is available for the training process. The more past data offered, 

the better forecast accuracy received. Finally, complex DLM models are not necessary 
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better than simple DLM models in forecasting. This phenomenon shows in all time series 

forecasting. In our research, we also confirm one conclusion of the M3-Competition 

which is that the forecast performance depends upon the length of the forecasting horizon. 

Generally, the forecast error increase when horizon was increased, but there is some 

exclusion in ANNs when the model is not stable.  

 

Finally, we provide a few comments in selecting a proper and efficient paradigm 

for time series forecasting. The Best ARIMA paradigm has proven to be good at short 

term forecasting for middle length time series, e.g. “Other” data in M3-Copetition. It also 

has the capability to catch the seasonal pattern of the time series, e.g. “Quarterly” data in 

M3-Competition. As for short term forecasting, when the time series is short and has no 

seasonal pattern, e.g. “Yearly” data in the M3-Competition, we strongly recommend the 

First Order DLM algorithm. In this case, the First Order DLM provides a simple 

paradigm for fast, stable, and accurate forecasting. In our competition, a well designed 

ANNs shows good performance in forecasting long time series, even with seasonal 

pattern at all forecast horizons. We discovered that, ANNs used in this work have poor 

performance when the training data is sparse/short. This proves that, to acquire a stable 

and logical forecasting result, a large number of sample are required by the ANNs used in 

this work.  When using the ANNs in time series forecasting, forecasters should always be 

aware of computation time consumed in training process.  
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Following research is suggested to focus on:  

1) Test and evaluate the long term forecast accuracy of First Order DLM in short    

nonseasonal time series.  

2) Explore more effective technique in the parameter optimization step in DLM; 

Introduce the discount factor to the DLM paradigm to make the forecast result more 

adaptive and fit the real curve.  

3) Explore a new training method for the ANNs to make it be able to do long term 

forecasting for short time series so that the entire forecast horizon required in the yearly 

data could be finished.  

4) Explore how the tG  and tF  matrix affect the DLM model in seasonal time series 

forecasting, hence improve the DLM capability in catch the seasonal pattern.  

5) Screen out the quarterly series that the ANNs generate abnormal forecast error or 

unstable forecast result. Then Check if the forecast performance could be improved by 

fixed the training method or/and change the value of network parameters.  
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Table 4. Average Symmetric MAPE: Yearly Data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method 

 

Forecasting Horizon 

1 2 3 4 5 6 

Theta Method in 

M3-Competition 
8 12.2 16.7 19.2 21.7 23.6 

Best ARIMA 

Standard Error 
11.06 
9.39 

17.61 
11.77 

18.38 
11.53 

21.64 
12.64 

25.12 
16.06 

22.42 
65.94 

First Order DLM 

Standard Error 
10.01 
15.69 

16.59 
20.30 

17.26 
19.41 

20.67 
22.43 

23.50 
23.08 

26.01 
25.34 

Second Order DLM 

Standard Error 
18.80 
33.57 

26.93 
36.42 

30.098 
35.30 

37.27 
36.59 

43.62 
37.90 

51.14 
40.17 

ANN: 

 

      

[3,10,1] 

Standard Error 
25.05 
99.05 

26.03 
42.94 

32.82 
107.09 

34.29 
55.53 

  

[4,10.,1] 

Standard Error 
17.58 
28.81 

23.92 
31.68 

25.89 
41.52 

   

[3,20,10,1] 

Standard Error 
16.34 
29.96 

23.88 
30.68 

25.33 
30.74 

29.12 
32.57 

  

[4,20,10,1] 

Standard Error 
17.98 
34.83 

26.12 
41.84 

28.32 
61.57 

   

[3,10,10,10,1] 

Standard Error 
17.67 
36.96 

26.18 
57,87 

27.12 
50.32 

29.38 
33.62 

  

[4,10,10,10,1] 

Standard Error 
16.33 
24.30 

24.77 
41.87 

25.92 
44.40 

   



 45 

Rank 
Forecasting Horizon 

1 2 3 4 5 6 

1 First Order 

DLM 

First Order 

DLM 

First Order 

DLM 

First Order 

DLM 

First Order 

DLM 

Best ARIMA 

2 

 

Best  

ARIMA 

Best  

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

Best ARIMA First Order 

DLM 

3 ANN 

[4,10,10,10,1] 

ANN 

[3,20,10,1] 

ANN 

[3,20,10,1] 

ANN 

[3,20,10,1] 

Second 

Order DLM 

Second 

Order DLM 

4 ANN 

[3,20,10,1] 

ANN  

[4,10,1] 

ANN 

[4,10,1] 

ANN[3,10,

10,10,1] 
  

5 

 

ANN 

[4,10,1] 

ANN 

[4,10,10,10,1] 

ANN[4,10, 

10,10,1] 

ANN 

[3,10,1] 

  

6 ANN 
[3,10,10,10,1] 

ANN 
[3,10,1] 

ANN[3,10, 
10,10,1] 

Second 
Order 

DLM 

  

7 ANN 

[4,20,10,1] 

ANN 

[4,20,10,1] 

ANN[4,20, 

10,1] 
   

8 Second Order 

DLM 

ANN 

[3,10,10,10,1] 

Second 

Order DLM 
   

9 ANN 

[3,10,1] 

Second Order 

DLM 

ANN 

[3,10,1] 
   

 

Table 5. Results of Mixed Model: Yearly Data 
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Method 

 

Forecasting Horizon 

1 2 3 4 5 6 7 8 

Theta Method in 

M3-Competition 
5 6.7 7.4 8.8 9.4 10.9 Non 12 

Best ARIMA 

Standard Error 
5.49 
5.25 

6.88 
5.87 

7.71 
6.32 

8.17 
6.12 

10.13 
7.39 

11.00 
7.74 

12.36 
8.31 

13.67 
9.73 

Seasonal DLM 

 

        

Ft=[10001] 

Standard Error 
28.25
27,09 

27.45
27.07 

26.72
26.65 

30.30 
28.04 

24.80 
23.78 

31.24 
27.56 

29.58 
28.34 

29.19 
25.51 

Ft=[1000] 

Standard Error 
27.36
29.13 

30.60
32.96 

27.25
27.06 

28.57 
26.04 

30.52 
30.03 

32.64 
32.71 

29.31 
28.34 

30.56 
26.97 

ANN 

 

        

[4,20,10,1] 

Standard Error 
14.44 
47.16 

13.22 
22.13 

18.50 
25.52 

43.04 
30.28 

20.41 
24.85 

20.94 
29.83 

21.56 
34.71 

19.73 
27.43 

[6,20,10,1] 

Standard Error 
9.52 

15.46 
11.32 
15.80 

13.19 
21.04 

14.89 
24.46 

15.67 
20.16 

18.20 
24.40 

17.15 
20.55 

18.43 
21.66 

[8,20,10,1] 

Standard Error 
12.53 
20,01 

14.29 
17.90 

17.10 
23.09 

15.97 
21.97 

18.40 
18.30 

20.15 
21.77 

20.66 
25.41 

23.32 
27.43 

[4,10,10,10,1] 

Standard Error 
10.62 
29.00 

18.99 
19.40 

14.57 
26.56 

19.68 
27.48 

19.74 
37.06 

17.08 
21.35 

20.29 
33.78 

21.31 
35.98 

[6,10,10,10,1] 
Standard Error 

9.74 
17.17 

11.84 
18.36 

14.02 
29.82 

13.72 
19.72 

15.29 
20.29 

16.57 
21.43 

17.20 
20,31 

19.80 
26.88 

[8,10,10,10,1] 

Standard Error 
13.22 
22.24 

13.50 
16.58 

16.04 
22.13 

18.90 
29.24 

18.53 
18.08 

20.11 
21.03 

21.48 
20.67 

24.52 
27.53 

Table 6. Average Symmetric MAPE: Quarterly Data 
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Rank 
Forecasting Horizon 

1 2 3 4 5 6 7 8 

1 Best 

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

2 

 

ANN[6, 

20,10,1] 

ANN[6, 

20,10,1] 

ANN[6, 

20,10,1] 

ANN[6, 

10,10,10,

1] 

ANN[6, 

10,10,10,

1] 

ANN[6, 

10,10,10,

1] 

ANN[6, 

20,10,1] 

ANN[6, 

20,10,1] 

3 ANN[6, 

10,10,10,

1] 

ANN[6, 

10,10,10,

1] 

ANN[6, 

10,10,10,

1] 

ANN[6, 

20,10,1] 

ANN[6, 

20,10,1] 

ANN[4, 

10,10,10,

1] 

ANN[6, 

10,10,10,

1] 

ANN[4, 

20,10,1] 

4 ANN[4, 
10,10,10, 

1] 

ANN[4, 
20,10,1] 

ANN[4, 
10,10,10,

1] 

ANN[8, 
20,10,1] 

ANN[8, 
20,10,1] 

ANN[6, 
20,10,1] 

ANN[4, 
10,10,10,

1] 

ANN[6, 
10,10,10,

1] 

5 

 

ANN[8, 

20,10,1] 

ANN[8, 

10,10,10,

1] 

ANN[8, 

10,10,10,

1] 

ANN[8, 

10,10,10,

1] 

ANN[8, 

10,10,10,

1] 

ANN[8, 

10,10,10,

1] 

ANN[8, 

20,10,1] 

ANN[4, 

10,10,10,

1] 

6 ANN[8, 

10,10,10,

1] 

ANN[8, 

20,10,1] 

ANN[8, 

20,10,1] 

ANN[4, 

10,10,10,

1] 

ANN[4, 

10,10,10,

1] 

ANN[8, 

20,10,1] 

ANN[8, 

10,10,10,

1] 

ANN[8, 

20,10,1] 

7 ANN[4, 

20,10,1] 

ANN[4, 

10,10,10,

1] 

ANN[4, 

20,10,1] 

DLM Ft= 

[1000] 

ANN[4, 

20,10,1] 

ANN[4, 

20,10,1] 

ANN[4, 

20,10,1] 

ANN[8, 

10,10,10,

1] 

8 DLM Ft= 

[1000] 

DLM Ft= 

[10001] 

DLM Ft= 

[10001] 

DLM Ft= 

[10001] 

DLM Ft= 

[10001] 

DLM Ft= 

[10001] 

DLM Ft= 

[1000] 

DLM Ft= 

[10001] 

9 DLM Ft= 

[10001] 

DLM Ft= 

[1000] 

DLM Ft= 

[1000] 

ANN[4, 

20,10,1] 

DLM Ft= 

[1000] 

DLM Ft= 

[1000] 

DLM Ft= 

[10001] 

DLM Ft= 

[1000] 

Table 7. Results of Mixed ANOVA: Quarterly Data  
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Method 

 

Forecasting Horizon 

1 2 3 4 5 6 8 12 15 18 

Theta Method 

in M3 
11.2 10.7 11.8 12.4 12.2 12.4 12.7 13.2 16.2 18.2 

Best ARIMA 

Standard Error 
12.64 
13.82 

11.96 
12.35 

12.86 
10.65 

13.79 
12.90 

14.81 
9.70 

14.79 
9.80 

15.72 
11.10 

15.81 
11.35 

18.69 
15.28 

21.25 
25.73 

Seasonal DLM 

Standard Error  
25.85 
27.06 

26.13 
26.99 

26.75 
28.73 

26.00 
28.87 

26.03 
27.78 

25.78 
28.91 

24.15 
29.54 

30.40 
29.89 

30.63 
30.12 

29.21 
29.55 

ANN 

 

          

[8,20,1] 
Standard Error 

36.92 
172.8 

34.13 
112.1 

31.68 
72.71 

36.93 
146.4 

53.82 
486.3 

42.29 
173.6 

68.23 
864.0 

38.09 
152.9 

38.43 
148.9 

36.50 
109.5 

[12,20,1] 

Standard Error 
10.05 
50.31 

11.45 
17.67 

11.56 
48.33 

13.74 
161.4 

12.31 
144.6 

12.92 
23.90 

12.90 
25.14 

14.02 
25.06 

16.07 
30.61 

18.89 
34.16 

[15,20.,1] 

Standard Error 
29.45 
36.54 

29.93 
27.52 

34.84 
28.26 

34.46 
34.82 

35.88 
29.90 

35.51 
43.99 

32.92 
32.53 

36.14 
28,97 

30.77 
29.53 

 

[8,20,10,1] 

Standard Error 
31.26 
35.64 

29.45 
65.82 

29.93 
86.33 

34.84 
132.4 

34.46 
343.2 

35.88 
147.1 

34.82 
453.6 

31.64 
145.2 

31.87 
84.21 

31.23 
93.83 

[12,20,10,1] 

Standard Error 
8.53 

15.47 
8.80 

12.18 
9.87 

19,79 
9.76 

14.31 
10.19 
21.48 

9.90 
14.17 

10.53 
20,42 

12.73 
30.31 

13.74
94,76 

16.11 
111.8 

[15,20,10,1] 

Standard Error 
17.04 
24.27 

18.59 
50.60 

18.52 
42.24 

20.28 
29.32 

18.79 
23.13 

19.14 
23.07 

21.21 
39.06 

19.67 
25.16 

20.61 
32.24 

 

Table 8. Average Symmetric MAPE: Monthly Data 
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Rank 
Forecasting Horizon 

1 2 3 4 5 6 8 12 15 18 

1 ANN 

[12,20,

10,1] 

ANN 

[12,20,

10,1] 

ANN 

[12,20,

10,1] 

ANN 

[12,20,

10,1] 

ANN 

[12,20,

10,1] 

ANN 

[12,20,

10,1] 

ANN 

[12,20,

10,1] 

ANN 

[12,20,

10,1] 

ANN 

[12,20,

10,1] 

ANN 

[12,20,

10,1] 

2 

 

ANN 

[12,20,

1] 

ANN 

[12,20,

1] 

ANN 

[12,20,

1] 

ANN 

[12,20,

1] 

ANN 

[12,20,

1] 

ANN 

[12,20,

1] 

ANN 

[12,20,

1] 

ANN 

[12,20,

1] 

ANN 

[12,20,

1] 

ANN 

[12,20,

1] 

3 Best 

ARIM
A 

Best 

ARIM
A 

Best 

ARIM
A 

Best 

ARIM
A 

Best 

ARIM
A 

Best 

ARIM
A 

Best 

ARIM
A 

Best 

ARIM
A 

Best 

ARIM
A 

Best 

ARIM
A 

4 ANN 

[15,20,

10,1] 

ANN 

[15,20,

10,1] 

ANN 

[15,20,

10,1] 

ANN 

[15,20,

10,1] 

ANN 

[15,20,

10,1] 

ANN 

[15,20,

10,1] 

ANN 

[15,20,

10,1] 

ANN 

[15,20,

10,1] 

ANN 

[15,20,

10,1] 

DLM 

5 

 

DLM DLM DLM DLM DLM DLM DLM DLM DLM ANN 

[8,20, 

10,1] 

6 ANN 

[15,20,

,1] 

ANN 

[8, 

20,10,

1] 

ANN 

[8, 

20,10,

1] 

ANN 

[15,20,

1] 

ANN 

[8,20,1

0,1] 

ANN 

[15,20,

1] 

ANN 

[15,20,

1] 

ANN 

[15,20,

1] 

ANN 

[15,20,

1] 

ANN 

[8,20,1

] 

7 ANN 

[8, 

20,10,

1] 

ANN 

[15,20,

1] 

ANN 

[8, 

20,1] 

ANN 

[8, 

20,10,

1] 

ANN 

[15,20,

1] 

ANN 

[8,20,1

0,1] 

ANN 

[8,20,1

0,1] 

ANN 

[8,20,1

0,1] 

ANN 

[8,20,1

0,1] 

 

8 ANN 
[8, 

20,1] 

ANN 
[8, 

20,1] 

ANN 
[15,20,

1] 

ANN 
[8, 

20,1] 

ANN 
[8,20,1

] 

ANN 
[8,20,1

] 

ANN 
[8,20,1

] 

ANN 
[8,20,1

] 

ANN 
[8,20,1

] 

 

Table 9. Results of Mixed Model: Monthly Data 
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Method 

 

Forecasting Horizon 

1 2 3 4 5 6 7 8 

Theta Method in 

M3-Competition 
1.8 2.7 3.8 4.5 5.6 5.2 Non 6.1 

Best ARIMA 

Standard Error 
1.59 
1.42 

2.81 
3.50 

3.40 
3.85 

4.15 
4.28 

4.27 
3.27 

4.75 
3.46 

4.89 
3.17 

5.75 
3.57 

First Order DLM 

Standard Error 
2.15 
4.22 

3.82 
9.13 

4.69 
9.75 

5.84 
10.56 

6.23 
7.42 

7.06 
7.97 

7.70 
7.43 

9.12 
8.32 

Second Order 

 
        

Ft=[1,1], Gt=[1001] 
Standard Error 

21.82 
14.39 

22.04 
14.38 

22.43 
14.74 

23.25 
15.38 

24.50 
15.81 

25.22 
16.59 

26.28 
17.20 

26.69 
17.92 

Ft=[1,1], Gt=[1010] 

Standard Error 
21.27 
14.19 

21.48 
14.18 

21.87 
14.52 

22.71 
15.12 

23.96 
15.60 

24.68 
16.40 

25.72 
17.02 

26.15 
17.72 

ANN 

 

        

[9,10,1] 

Standard Error 
3.77 
7.13 

4.23 
5.85 

6.72 
15.79 

6.31 
10.53 

6.52 
7.44 

9.17 
18.04 

8.89 
9.68 

10.36 
11.47 

[12,10,1] 

Standard Error 
3.04 
4.38 

4.42 
9.18 

5.51 
8.13 

6.52 
8.10 

6.73 
7.71 

7.75 
10.25 

8.58 
10.08 

9.30 
9.45 

[20,10.,1] 

Standard Error 
3.38 
5.23 

4.32 
5.95 

5.55 
6.47 

6.43 
11.40 

6.89 
10.69 

8.08 
9.99 

9.57 
11.93 

9.53 
9.27 

[9,20,10,1] 

Standard Error 
2.83 
3.60 

4.95 
8.21 

5.39 
6.91 

6.90 
10.80 

8.28 
12.89 

7.99 
9.18 

9.33 
11.03 

9.76 
10.92 

[12,20,10,1] 

Standard Error 
2.91 
4.62 

4.28 
5.48 

5.90 
11.41 

5.29 
7.29 

6.27 
6.66 

8.25 
9.91 

8.79 
10.16 

10.09 
10.54 

[20,20,10,1] 

Standard Error 
2.58 
4.38 

3.98 
7.75 

4.54 
6.14 

5.33 
6.32 

7.19 
13.52 

7.57 
8.41 

8.01 
7.43 

10.07 
11.62 

[9,10,10,10,1] 

Standard Error 
4.32 
6.66 

4.76 
5.67 

5.66 
7.63 

6.34 
9.23 

7.83 
8.24 

7.90 
8.58 

10.50 
16.56 

10.96 
13.44 

[12,10,10,10,1] 

Standard Error 
3.34 
4.99 

4.26 
6.95 

5.36 
7.89 

6.23 
8.05 

6.94 
7.51 

7.91 
11.92 

8.34 
9.06 

9.79 
13.65 

[20,10,10,10,1] 

Standard Error 
2.31 
4.48 

3.72 
6.59 

4.60 
6.93 

6.37 
8.58 

7.05 
12.70 

6.94 
8.12 

8.81 
7.65 

10.47 
12.55 

Table 10. Average Symmetric MAPE: Other Data 
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Rank 
Forecasting Horizon 

1 2 3 4 5 6 7 8 

1 Best 

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

Best 

ARIMA 

2 

 

First 

Order 

DLM 

ANN[20,

10,10,10,

1] 

ANN[20,

20,10,1] 

ANN[12,

20,10,1] 

First 

Order 

DLM 

ANN[20,

10,10,10,

1] 

First 

Order 

DLM 

First 

Order 

DLM 

3 ANN[20,

10,10,10,

1] 

First 

Order 

DLM 

ANN[20,

10,10,10,

1] 

ANN[20,

20,10,1] 

ANN[12,

20,10,1] 

First 

Order 

DLM 

ANN[20,

20,10,1] 

ANN[12,

10,1] 

4 ANN[20,
20,10,1] 

ANN[20,
20,10,1] 

First 
Order 

DLM 

First 
Order 

DLM 

ANN[9,1
0,1] 

ANN[20,
20,10,1] 

ANN[12,
10,10,10,

1] 

ANN[20,
10,1] 

5 

 

ANN[9, 

20,10,1] 

ANN[9, 

10,1] 

ANN[12,

10,10,10,

1] 

ANN[12,

10,10,10,

1] 

ANN[12,

10,1] 

ANN[12,

10,1] 

ANN[12,

10,1] 

ANN[9, 

20,10,1] 

6 ANN[12,

20,10,1] 

ANN[12,

10,10,10,

1] 

ANN[9, 

20,10,1] 

ANN[9, 

10,1] 

ANN[20,

10,1] 

ANN[9, 

10,10,10,

1] 

ANN[12,

20,10,1] 

ANN[12,

10,10,10,

1] 

7 ANN[12,

10,1] 

ANN[12,

20,10,1] 

ANN[12,

10,1] 

ANN[9, 

10,10,10,

1] 

ANN[12,

10,10,10,

1] 

ANN[12,

10,10,10,

1] 

ANN[20,

10,10,10,

1] 

ANN[20,

20,10,1] 

8 ANN[12,

10,10,10,

1] 

ANN[20,

10,1] 

ANN[20,

10,1] 

ANN[20,

10,10,10,

1] 

ANN[20,

10,10,10,

1] 

ANN[9, 

20,10,1] 

ANN[9,1

0,1] 

ANN[12,

20,10,1] 

9 

 

ANN[20,

10,1] 

ANN[12,

10,1] 

ANN[9, 

10,10,10,
1] 

ANN[20,

10,1] 

ANN[20,

20,10,1] 

ANN[20,

10,1] 

ANN[9,2

0,10,1] 

ANN[9, 

10,1] 

10 

 

ANN[9, 

10,1] 

ANN[9,1

0,10,10,1

] 

ANN[12,

20,10,1] 

ANN[12,

10,1] 

ANN[9, 

10,10,10,

1] 

ANN[12,

20,10,1] 

ANN[20,

10,1] 

ANN[20,

10,10,10,

1] 

11 

 

ANN[9, 

10,10,10,

1] 

ANN[9, 

20,10,1] 

ANN[9, 

10,1] 

ANN[9, 

20,10,1] 

ANN[9, 

20,10,1] 

ANN[9, 

10,1] 

ANN[9,1

0,10,10,1

] 

ANN[9, 

10,10,10,

1] 

12 

 

DLM 

Ft=[1,1]

Gt=[1,0,

1,0] 

DLM 

Ft=[1,1] 

Gt=[1,0,

1,0] 

DLM 

Ft=[1,1] 

Gt=[1,0,

1,0] 

DLM 

Ft=[1,1] 

Gt=[1,0,

1,0] 

DLM 

Ft=[1,1] 

Gt=[1,0,

1,0] 

DLM 

Ft=[1,1] 

Gt=[1,0,

1,0] 

DLM 

Ft=[1,1] 

Gt=[1,0,

1,0] 

DLM 

Ft=[1,1] 

Gt=[1,0,

1,0] 

13 DLM 

Ft=[1,1]

Gt=[1,0,

0,1] 

DLM 

Ft=[1,1] 

Gt=[1,0,

0,1] 

DLM 

Ft=[1,1] 

Gt=[1,0,

0,1] 

DLM 

Ft=[1,1] 

Gt=[1,0,

0,1] 

DLM 

Ft=[1,1] 

Gt=[1,0,

0,1] 

DLM 

Ft=[1,1] 

Gt=[1,0,

0,1] 

DLM 

Ft=[1,1] 

Gt=[1,0,

0,1] 

DLM 

Ft=[1,1] 

Gt=[1,0,

0,1] 

Table 11. Results of Mixed Model: Other Data 
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APPENDIX 

 

 

Appendix A. Best ARIMA Model Code (R 2.0.1) 

 

Library ("MASS")      # Upload MASS Package 

Library ("forecast")    # Upload Forecast Package 

 

path1 <- "C:\\Documents and Settings\\My Documents\\sam\\m3\\M3data3003\\"   

# Specify the path of the data list folder 

 

files1 <-  read.table("C:\\Documents and Settings\\cas\\My 

Documents\\sam\\m3\\monthly_list1428.csv",header=FALSE,sep=",") 

# Read the monthly list 

 

 

 

n1 <- nrow(files1)           #Get the length of the list 

SMAPE <- rep(0,n1)       #Initial the matrix of the SMAPE 

 

for (i in 1:n1){                  # Set up loop for the whole list 

 

  path2 <- files1[i,1]         #Get the name of each series 

  nval1 <- files1[i,2]         #Get the  length of valid numbers of each series 

  nfct1 <- files1[i,3]          #Get the length of reserved numbers of each series 

  path3 <- paste(path1,path2,sep="")     # get the series‟ path 

  X1 <- read.table(path3,header=FALSE,sep=",")    #Read in one series 

  valid1 <- X1[(nval1-nfct1+1):nval1,1]    # Read in the reserved data 

  train1 <- X1[1:(nval1-nfct1),1]                # Read in the training data 

   

 

fit <- best.arima(train1,d=1,D=12,max.p=3,max.q=3,max.Q=3,alpha=0.05)  

 

# Apply the best ARIMA model to train series „train1‟ 

   # Set the order of first-differencing d equal to 1 

   # Set the order of seasonal-differencing, for monthly data, D equal to 12 

   # Set the maximum value of p equal to 3 

   # Set the maximum value of q equal to 3 

   # Set the maximum value of Q equal to 3 

   # Set the Level for unit-root tests used to determine the order d of differencing 

 

 

  fcst1<-forecast(fit,h=nfct1)   # Use the trained model to forecast h horizon ahead  

 

  SMAPE <- t(abs(fcst1$mean-valid1)/((fcst1$mean+valid1)/2))  # Calculate the SMAPE  

  X12 <- data.frame(path2,SMAPE)  # Creates data frames to store the value of SMAPE 
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write.table(X12,"C:\\Documents and Settings\\cas\\My 

Documents\\sam\\result\\AllLagsMAPEmonthly.csv",append=TRUE,sep=",",row.names

=FALSE,col.names=FALSE)} 

# Save the results to a specify folder in CSV format 

plot(forecast(fit,h=nfct1))  # plot the forecast result 

 

 

Appendix B. ANN Code in Matlab 7.0.1 

 

% Read in the file for the matches and probes. 

clear all; 

tic;      

% Start measure elapsed time 

[seriesfile,length,hold] = textread('C:\Documents and Settings\Administrator\My 

Documents\sam\m3\monthly_list1428.txt','%s %d %d');   

% Get the series name, series length and the number of reserve data 

path1 = 'C:\Documents and Settings\Administrator\My 

Documents\sam\m3\M3data3003\';   

% Specify the path of the data folder 

outfilename = 'C:\Documents and Settings\Administrator\My  

Documents\sam\karl_nn_rand_monthly_2010_d=10.csv';  

% Create the output file  

fid = fopen(outfilename,'w');   

% Open the output file for reading and writing  

% Set the horizon and delay 

nfiles = size(seriesfile,1);  

% Get the size of the whole data list 

horiz=18;    

% Set up the horizon, yearly=6, quarterly=8, monthly=18, other=8. 

delay=10; 

% set up the delay, could be various, but was bounded subjuct to the length of the series.  

           % for monthly maxdelay=11,  other maxdelay=46, yearly 

           % delay=1,2,3,4, Maxhroiz=6,5,4,3 

           % for quarterly, there is a problem, maxdelay=16-8-8=0  

seriesleng=length-hold;  

% Get the length of the training data  

minseriesleng=min(seriesleng);  

% Check the minimum length of training data of all series     

neuroconfig = [delay,20,10,1]; 

% Set the network config, 4 layers network 

% Set the size of each layer, Inputlayer = delay, hidenlayer1 = 20, hidenlayer2 = 10, 

outputlayer = 1 

trainalgo = 'trainlm';  

% Specify the training function, „trainlm‟ represents the Levenbery-Marquardt 

algorithm. %  also could use trainrp, traingdx, traincgp, etc. 
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 for i = 1:nfile1;           % Set up the loop for the data; 

      for j=1:horiz;           % Forecasting all required horizon  

          file1 = char(seriesfile(i));   % Get a series name 

          path2 = [ path1, file1 ];      % Get a series 

          tseries = csvread(path2);    % Read in a series 

          datasize = length(i,:);         % Get the length of the series 

          datahold = hold(i,:);           % Get the length the data reserved 

   datavalid = datasize-datahold;  % Get the number of training data 

   trgnum = datavalid+j;    

   % Get the target number in the series for accuracy evaluation 

       % begian Neural Network  

     

       [P,T]=createInputTarget(tseries(1:datavalid,1),tseries(1:datavalid,1),delay,j);  

       % Apply createInputTarget function to reate the input and target for training 

       [pn,meanp,stdp,tn,meant,stdt]=prestd(P,T);   

       % Normalize the original inputs and targets into a standard normal distribution 

       % or [pn,minp,maxp,tn,mint,maxt]=premnmx(P,T); % Normalize the data in [-1,1]                                 

       net = newff(minmax(pn),neuroconfig,{'tansig','tansig','tansig','purelin'},trainalgo); 

       % Create a feed-forward backpropagation network 

       % Set Parameters for NN; 

       net.trainParam.goal=1e-6;   % Set up the networks goal. 

       net.trainParam.show = 300;   

       net.trainParam.lr = 0.2;        

       % Set up the learning rate lr. If the lr is set too big, the algorithm may oscillate and 

       % become unstable. If the lr is too small, the algorithm will take too long to converge. 

       %Test lr=0.005, 0.01, 0.05, 0.1, 0.2, 0.25 

       net.trainParam.mem_reduc=2;   % Decrease the amount of memory needed 

       net.trainParam.min_grad=1e-8;  % Set the min gradient. 

       net.trainParam.epochs = 2000;   % Set the max epochs 

       % Apply random function to make the training randomly 

       [pnran,tnran]=randomFn(pn,tn,delay); 

       net=init(net);  % Initializing networks weigh and bias before training 

       [net,tr] = train(net,pnran,tnran); % Train the network with random input and target         

       simin=sim(net,pn);    % Simulate result  

       focin=poststd(simin,meant,stdt);  % Retrun the simulation result in original units 

       % or  simresults=postmnmx(an,mint,maxt);   

       pnew=tseries(datavalid-delay+1:datavalid); % Pick up the data used in forecasting 

       pnewn=trastd(pnew,meanp,stdp);             % Preprocess the data pnew 

       anpnewn=sim(net,pnewn);                   % Simulation the preprocessed data pnew 

       fcstpnew(i,j)=poststd(anpnewn,meant,stdt);  

       % Return the forecasting result in original units 

       if fcstpnew(i,j) < 0  % Refine the forecast value make the negative results equal to 0;  

          fcstpnew(i,j) = 0; 

       end; 

       %madin(i,j)= MAD_nn(simresults,tseries(trgnum,1));   

       % mean absolute error for each series 



 59 

       smapein(i,j) = SMAPE_nn(fcstpnew(i,j),tseries(trgnum,1));  

       % Symmetric mean absolute percentage error for each series 

      end 

      outputsmape(i,:)=cat(2,delay,smapein(i,:)); % Concatenate the output  

      fprintf(fid,'%s, %1.0f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, 

     %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, 

     %8.4f\n',file1,outputsmape(i,:));  

     % Output the SMAPE of all horizon for each series, column size should be equal to 

the horizon+1 

end     % End of loop   

toc;     % Stop the clock of the elapsed time measuring 

t=toc   % Output the elapsed time 

SMAPEnn(delay,:)=mean(smapein(:));              

% The mean of SMAPE of the entire seasonal data set   

allfoc=cat(2,focin,fcstpnew(1,:));  

%  Concatenate the last in-sample and out-sample forecasting results  

figure;plot(delay+horiz:datasize,tseries(delay+horiz:datasize),'b',delay+horiz:datasize,allf

oc,'r-','linewidth',2);    

% Grahp the last series all simulation result 

title(sprintf('%s: %d %d %s %s', 

char(seriesfile(i)),delay,horiz,trainalgo,num2str(neuroconfig)));   

%  Title and legend            

fclose(fid);  % Close the file after writing 

      

 

ANN Functions: 

 

1. CreateInputTarget Function:  

 

function [in,tgt] = createInputTarget(I,T,delay,horiz) 

numtrainpts = size(T,1); 

ilength = numtrainpts-delay-horiz+1; 

tgt = transpose(T(delay+horiz:numtrainpts,1)); 

    for i=1:delay;    

        in(i,:)=I(i:ilength+i-1); 

    end 

Random Function: 

 

2. function  [randinput,randoutput] = randomFn(inputmatrix, outputmatrix,inputrowsize) 

  

pnsize=size(inputmatrix,2);  % Get the loop size 

rannum=randperm(pnsize);  % Get the random number list 

pnran=zeros(inputrowsize,pnsize);  

% Get the matrix frame of random input and   output 

 tnran=zeros(1,pnsize);      

            for k = 1:pnsize 
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               randinput(:,k)=inputmatrix(:,rannum(k));   

               % Randomly rearrange the input and  the target 

               randoutput(:,k)=outputmatrix(:,rannum(k));                

            end 

 

 

3. SMAPE function 

 

function result = SMAPE_nn(fcst,act)  

res = 100*abs(fcst - act)/((fcst+act)/2);  

result = res; 

     

 

Appendix C. DLM Code in Matlab 7.0: 

 

% Read in the file for the matches and probes. 

clear all; 

tic;   

[seriesfile,length,hold] = textread('C:\Documents and Settings\Owner\My 

Documents\asheng\school\Thesis stuff\Mdata\m3\monthly_list1428.txt','%s %d %d'); 

path1 = 'C:\Documents and Settings\Owner\My Documents\asheng\school\Thesis 

stuff\Mdata\m3\M3data3003\'; 

outfilename = 'C:\Documents and Settings\Owner\My Documents\asheng\school\Thesis 

stuff\results\DLM_yearly.csv'; 

fid = fopen(outfilename,'w');   % Open the file for reading and writing  

  

nfiles = size(seriesfile,1);  % Get the size of the whole data list 

horiz=18;   % Set up the horizon, yearly=6,quarterly=8,monthly=18,other=8. 

  

% Set Parameters for DLM; 

Ft = [ 1; 0];    % Sensitive, possible [1 0],[1,1],[0 1], second number control forecast 

mean 

Gt = [ 1 0; 1 1];     % The third has to be zero, the others not sensitive 

Ct = [1 1; 0 1]*100000000;   % Sensitive, affect the vibration especially the at the 

beginning when pick huge or extremely small value 

% W1 = eye(2,2)*1000000;   %  Sensitively contral the vibration  when the number is 

biger enought. 

       

      W1parcand = 

[.0000001,.000001,.00001,.0001,.001,.1,10,100,10000,10000,100000,1000000,10000000

,100000000]; 

      wtOptCand = 

[.00000001,.000001,.0001,.001,.1,1,10,100,1000,10000,10000,1000000]; 

      dtOptCand = [.00000001,.000000,.0001,.001,.1,1,10,100,1000,10000,1000000]; 

      StOptCand = 

[.0001,.001,.1,10,100,10000,10000,100000,1000000,10000000,100000000]; 
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      wtO = 1; 

      dtO = 1; 

      StO = 1; 

      DLMMSEinit = 100000000; % Initial the MSE with a huge value 

  

for i = 3;  % for the entire data set use i=1:nfiles 

     

      file1 = char(seriesfile(i));    % Get a series name 

      path = [ path1, file1 ];         % Get a series 

      tseries = csvread(path);       % Read in a series 

      datasize=length(i,:);            % Get the length of the series 

      datahold=hold(i,:);              % Get the length the data hold 

      datavalid= datasize - datahold;    % The number of data could be used in forecasting 

      trgnum=tseries(datavalid+1:datasize,1); 

      %trgnum= datavalid + horiz;       % Set the target number in the series for accuracy 

evaluation 

      mt = [tseries(1);0];   

       

     % Optimize W1, wt, dt, and St 

     for W1C = W1parcand; W1 = eye(2,2)*W1C;   

      for wt = wtOptCand; 

        for dt = dtOptCand; 

         for St = StOptCand;                          

          DLMMSE = DLMFNMSE(tseries(1:datavalid),Ft,Gt,mt,Ct,dt,St,W1,wt); 

            while DLMMSE < DLMMSEinit   % Get the min MSE 

               DLMMSEinit = DLMMSE;      

               wtO = wt; 

               dtO = dt; 

               StO = St; 

               W1O = W1C; 

                

            end 

         end  

        end 

      end 

     end 

wtO % Output the value of the optimal parameter  

dtO  

StO  

W1O 

W1=eye(2,2)*W1O;  

       

        % begin DLM  

        mt = [mean(tseries(1:2));mean(tseries(1:2))]; %initialize the first value 

        [f,f1] = DLMFN2(tseries(1:datavalid),Ft,Gt,mt,Ct,dtO,StO,W1,wtO,horiz); %call 

the DLM function  
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        finleng=size(f,2); 

        smapein = SMAPE_DLM(f1,trgnum'); % Symmetric mean absolute percentage 

error for each serie         

        outputsmape(i,:)=cat(2,horiz,smapein); 

        

fprintf(fid,'%s, %d, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 

8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 

8.4f\n',file1,outputsmape(i,:));     % The output size should equal to the horizon 

     

end 

        allfoc=cat(2,f(1:finleng-1),f1);  % Concatenate the last in-sample and out-sample 

forecasting results for the figure 

        figure;plot(2:datasize,tseries(2:datasize),'b-',2:datasize,allfoc,'r-','linewidth',2);      

% Grahp the last all series simulation 

        title({['yearly-DLM-Char: ', file1]; 'blue:actual  red:forecast'});   

             

   toc; 

   fclose(fid); 

   t=toc 

    

   

DLM Functions:  

 

1. DLMFNMSE Function 

 

function result = DLMFNMSE(z,Ft,Gt,mt,Ct,dt,St,W1,wt1) 

% Use this function to train and optimize. 

wt = eye(2,2)*wt1;   %wt = eye(2,2)*wt1*(1-delta)/delta; 

W = eye(2,2)*W1;  % ? 

Rtk = Ct*1;          %Rtk = Ct*1/delta; 

zlen = size(z); 

zlen = zlen(1); 

ft = mean(z(1:2)); 

et2 = 0; 

  

for i=1:zlen 

    Rt = Gt*Ct*Gt' + W; 

    Qt = Ft'*Rt*Ft + St; 

    et = z(i) - ft;  

    dt = dt + St*et^2/Qt; 

    At = Rt*Ft/Qt; 

    zi=z(i); 

    at = Gt*mt; 

    ft = Ft'*at; 

    mt = at + At*et; 

    St1 = St*1; 
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    St = St + St/i*(et^2/Qt - 1); 

    Ct = St/St1*(Rt-At*At'*Qt); 

    Rtk = Gt*Rtk*Gt + wt; 

    Q1 = Ft'*Rtk*Ft + St; 

    et2 = et2 + et^2;    

end 

result = et2; 
  

 

2. DLMFUN2 Function: 

 

function [fin,fout] = DLMFN2(z,Ft,Gt,mt,Ct,dt,St,W1,wt1,horizon) 

% Use this function to train and optimize. 

wt = eye(2,2)*wt1; %wt = eye(2,2)*wt1*(1-delta)/delta; 

W = eye(2,2)*W1; 

Rtk = Ct*1;        %Rtk = Ct*1/delta; 

et = 0;  

zlen = size(z); 

zlen = zlen(1); 

ft = mean(z(1:2)); 

f(1)=ft; 

for i=1:zlen 

    Rt = Gt*Ct*Gt' + W; 

    Qt = Ft'*Rt*Ft + St; 

    et = z(i) - ft;  

    dt = dt + St*et^2/Qt; 

    At = Rt*Ft/Qt; 

    zi=z(i); 

    at = Gt*mt; 

    ft = Ft'*at; 

    mt = at + At*et; 

    St1 = St*1; 

    St = St + St/i*(et^2/Qt - 1); 

    Ct = St/St1*(Rt-At*At'*Qt); 

    Rtk = Gt*Rtk*Gt + wt; 

    Q1 = Ft'*Rtk*Ft + St;   

    f(i+1)=ft; 

end 

fin=f(1:i); 

for i=1:horizon 

fout(i) = Ft'*Gt^(i)*mt; 

end 
  

 

  

3. SMAPE_DLM Function: 
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function result = SMAPE_DLM(fcst,act) 

    for i = 1:size(fcst,2); 

    res(1,i) = 100*abs(fcst(i) - act(i))/((fcst(i)+ act(i))/2); 

    end 

result = res; 

 

 

Appendix C. SAS Code for One-way ANOVA 

  

/* Import data sheet from excel*/ 

PROC IMPORT OUT= WORK.other_h1  

            DATAFILE= "C:\Documents and Settings\Owner\My Documents\ 

            asheng\school\Thesis stuff\ANOVA_raw\other\each horizon\other_H1.xls"  

            DBMS=EXCEL2000 REPLACE; 

     RANGE="Sheet1$";  

     GETNAMES=YES; 

RUN; 

 

/* Run mix ANOVA model at every forecast horizon*/ 

PROC MIXED DATA=other_h1; 

   CLASS paradigm series; 

   MODEL SMAPE=paradigm; 

   RANDOM series; 

   lsMEANS paradigm/pdiff; 

TITLE "Mixed ANOVA for other data, h=1"; 

RUN; 

 


