
 1

1. INTRODUCTION

1.1 Forecasting

Forecasting is an activity to calculate or predict some future event or condition,

usually as a result of rational study or analysis of pertinent data. Forecasting is widely

used today in many fields, especially in industry, marketing, economy and finance. Such

as in consumable product manufacturing, an accurate prediction of the future demand is

very helpful in providing precise inventory, reducing transportation costs, then increasing

profit (Markridakis, 1996).

Forecast methods may be broadly classified into qualitative and quantitative

techniques. Qualitative methods are intuitive, largely educated guesses that may or may

not depend on the past data. Quantitative methods use mathematical or statistical models

to generate a reasonable prediction from the information of the past. Compared to

qualitative methods, quantitative methods have the advantage of being supported by

mathematical and statistical theory, and can be fully reproduced by any forecaster.

In general forecasting, especially time series forecasting, a primary type of data in

business and economics, the quantitative methods are widely applied. A time series is a

set of observations{ : 1,2, , }ty t T . Usually, time series is considered as discrete series

which observations are recorded at predetermined, equal-interval time point such as

hourly, daily, monthly, quarterly or yearly.

 2

There are many quantitative forecast methods available today. In the M3-

Competition (Makridakis 2002), the examined 24 methods are classified into six

categories, which are naïve/simple, explicit trend models, decomposition, Autoregressive

and Moving Average (ARIMA), expert system, and neural networks. Basically, the

naïve/simple and explicit trend models are considered as simple forecasting methods

while the ARIMA and neural networks are defined as statistically sophisticated and

mathematically complex methods. In this paper, we explore these statistically

sophisticated methods which are Dynamic Linear Model (DLM), ARIMA Model and

Back Propagation Neural Networks (ANNs). .

1.2 The M3 Competition and Discussion

Reid (1969, 1972), Newbold and Granger (1974) published the first major papers

regarding the forecasting method evaluation via a competition paradigm. These studies

compared a large number of common time series with a limited number of paradigms to

determine their post-sample forecasting accuracy. Makridakis and Hibon (1979) brought

the forecasting competition to open debate with their paper. In this paper, they first

compared a large number of quantitative forecasting methods across multiple time series.

Since that time, many additional and larger studies have appeared, including the M-

Competition (Makridakis et al., 1982), the M2-Competition (Makridakis et al., 1993), to

determine which forecasting paradigm outperform others. Following the M and M2 trials,

Spyros Makridakis and Michele Hibon presented their third forecasting study known as

the M3-Competition at 1997. The M3-Competition utilizes a common database, which

 3

contains 3003 mostly business and economic time series. An open invitation was given to

all researchers willing to generate forecasts for all series. Their forecast results were then

compiled and evaluated with various accuracy methods using a holdout sample

observations. The purpose of the M3-Competition was to evaluate four hypotheses-the

conclusions of the M and M2 competitions. Makridakis and Hibon (2000) concluded that

the result of the M3-Competition confirmed the original conclusions of the last two M-

Competition (Makridakis, 1982). The four confirmed conclusions are: (1) Statistically

sophisticated or complex methods do not necessarily produce more accurate forecasts

than simpler ones; (2) The rankings of the performance of the various methods vary

according to the accuracy measure being used; (3) The accuracy of the combination of

various methods outperforms, on average, the specific methods being combined and does

well in comparison with other methods; (4) The performance of the various methods

depends upon the length of the forecasting horizon.

The M3 project involved a large number of forecast paradigms in an attempt to be

comprehensive. However, due to the fact they were limited in resources and relied on

external researchers to provide their analysis of the series using researcher chosen

paradigms, some paradigms were omitted. Many researchers chose to use commercially

available implementations of various paradigms instead of standard textbook methods.

For instance, there are a variety of designs and learning techniques available for

forecaster to choose in the Neural Network paradigm. But in M-3 Competition, the

Automated Artificial Neural Network was the only type of Artificial Neural Network

paradigm that was involved. Moreover, neither the network architecture nor the training

 4

algorithm of this Automated Artificial Neural Network was mentioned in the paper. In

addition, some paradigms such as Dynamic Linear Model (DLM) were not included in

M-3 Competition. In our research, we repeat the M-3 Competition among three types of

paradigms: ARIMA, DLM, and ANNs and detail them. Some up-to-date technologies

and different algorithms of these three paradigms will be employed in an attempt to

improve the forecasting accuracy. One big discussion of the M-3 Competition

conclusions is in the forecasting accuracy evaluation. To decide whether one method is

better than the others, comparing only the average of the values of one accuracy measures

is not convincible (Stekler, 2001). Hence we will apply standard statistical methodology,

Mixed linear model, to identify the difference among different paradigms for various

forecast horizons.

1.3 The M3 Data

The M3-Competition consists of 3003 series, which includes various types of

time series data (micro, industry, macro, etc.) and different seasonal characters (yearly,

quarterly, etc.). Table 1 shows the classification of the 3003 series. The yearly and

monthly data contain time series from all catalogs which indicate that the forecast range

of these two classifications are wider than the other two (Makridakis, 2000). The result of

the M3-Competition shows that extending the application region of a specific forecast

paradigm may decrease the forecast accuracy. Table 2 shows the detail of all the seasonal

catalogs. The quarterly and the other data share the same forecast horizon as eight while

the monthly need to be forecasted eighteen horizons ahead. Mostly, the short term

 5

forecasting is more precise than the long term forecasting, such that the forecast result of

the monthly data are supposed to be worse than the other three. The data length decides

how much past information can be used to forecast ahead. The yearly data have a short

average data length which looks much worse than the other data that has a long average

data length but only need forecast eight horizons ahead. The seasonal periodic inside the

quarterly and the monthly data provide more information for modeling, such that a

seasonal adjustment should be considered and will help the model catch the real pattern.

Table 1. The classification of the 3003 time series.

Table 2. Data detail of all the seasonal catalogs.

1.4 Forecasting Approach

The forecasting process is an error-driven iterative approach consisting of four

distinct phases: collect data for forecasting; identify a possible forecast model; estimate

Time interval

between

successive

observations

Types of time series data

Micro Industry Macro Finance
Demogr

aphic
Other Total

Yearly 146 102 83 58 245 11 645

Quarterly 204 83 336 76 57 756

Monthly 474 334 312 145 111 52 1428

Other 4 29 141 174

Total 828 519 731 308 413 204 3003

Seasonal

Type

Data detail

Total

Series

Min

Length

Median

Length

Max

Length

Average

Length

Forecast

Horizon

Yearly 645 14 19 41 22 6

Quarterly 756 16 44 64 41 8

Monthly 1428 48 115 126 99 18

Other 174 60 63 96 69 8

 6

parameters in tentative forecast model; and diagnostic checking (Figure 1). After the data

was collected and the forecasting question was specified, a quick glance at the data

structure and pattern characters should be applied to identify a possible suitable model.

Once a model is identified, the chosen model is then diagnostically checked against the

historical data to determine if it accurately describes the time series. For instance, in the

ARIMA model, the diagnostic involves checking the residuals between the forecast and

actual series and determine if they are small, randomly distributed, and uncorrelated, if so

the chosen ARIMA model is said to be a good fit. However, if the chosen model is not

satisfactory, the process will move backward to the identify stage and repeated with

another model to replace the original one. This process is iterated until a satisfactory

model is found.

 7

Figure 1. Forecasting Approach

1.5 Forecast Accuracy Measures

One of the conclusions confirmed by the M3-Competition is that the ranking of

the performance of the various methods vary according to the accuracy measure being

used. Regarding the accuracy measures used to evaluate which method gives the most

accurate forecast; statisticians have given out a lot of heuristic comments. Koehler (2001)

detected the asymmetry of the symmetry measures used in the M3-Competition and

suggested that bounds on the forecast errors should be applied to evaluate how statistical

Collect Data for

Forecasting

Identify a Possible Forecast

Model

Estimate Parameters in

Tentative Forecast Model

Diagnostic Checking (Is the

model fit?)

Use Model for Forecasting

Yes No

Update

the

Forecast

Model

 8

accurate the forecast is believed to be. Stekler (2001) indicated the necessity of

performing statistical tests to determine whether there is any significant difference in the

accuracy of the different forecasting methods. Following Stekler‟s suggestion, Koning et

al (2004) finished research in using statistical multiple-comparison to test the significance

among the results of various forecasting methods. They discovered that there are

significant differences among the results obtained from the various accuracy measures

that have been used in the M3-Competition.

 We agree that rigorous statistical tests are necessary in the evaluation of the

forecast results. In this paper, to make a valuable comparison between our forecasting

results and the conclusions of the M3-Competition, we only employed one accuracy

measures which was used in the M3-Competition: Symmetric mean absolute percentage

error (SMAPE). Then, we used single mixed linear model to identify the differences

among all the forecasting results in every forecasting horizon.

The SMAPE is defined as:

1 | |

100
() 2Series

X F

n X F
 1.1

Where X is the real value and F is the forecast value, n is the number of the time

series. The SMAPE is the average across all forecasts made for a given horizon in a

specific type of time series data. Makridakis and Hibon (2000) considered that the

SMAPE could help to avoid the problem of large errors when the actual values, X , are

close to zero and the large difference between the absolute percentage errors when X is

greater than F and vise versa. But actually, this SMAPE is not absolute symmetrical-it

penalizes low forecasts more than high forecasts (Koehler, 2001). In the M3-Competition,

 9

all time series data are strictly positive. To avoid the problem in the various SMAPE

measures, a test was done on all the forecasted values, and all the negative value was

substituted by zero to give a SMAPE as 200 (Makridakis, 2000).

2. THE OVERVIEW OF ARIMA

One mathematical approach to forecasting time series is known as the Box-

Jenkins method and was suggested by Box and Jenkins (1970). Technically, the Box-

Jenkins technique is an integration of the autoregressive and the moving average methods,

so it is also named ARIMA (Autoregressive, Integrated, Moving Average) model. Since

its first introduction, this ARIMA approach has become widely used in many fields such

as specification, estimation, and diagnostic (Thomas 1983).

The ARIMA methodology is a statistical method for analyzing and building a

forecasting model which best represents a time series by modeling the correlations in the

data. In the empirical research, many advantages of the ARIMA model were found and

support the ARIMA as a proper way in especially short term time series forecasting (Box,

1970; Jarrett, 1991). Taking advantage of its strictly statistical approach, the ARIMA

method only requires the prior data of a time series to generalize the forecast. Hence, the

ARIMA method can increase the forecast accuracy while keeping the number of

parameters to a minimum. Some major disadvantages of ARIMA forecasting are: first,

some of the traditional model identification techniques for identifying the correct model

from the class of possible models are difficult to understand and usually computationally

 10

expensive. This process is also subjective and the reliability of the chosen model can

depend on the skill and experience of the forecaster. Second, the underlying theoretical

model and structural relationships are not distinct as some simple forecasts models such

as simple exponential smoothing and Holt-Winters (Thomas 1983). Moreover, the

ARIMA models, as all forecasting methods, are essentially „backward looking‟. Such that,

the long term forecast eventually goes to be straight line and poor at predicting series

with turning points. In the next chapter, we briefly review the Autoregressive model and

the moving average model, and then move foreword to ARIMA model.

2.1 Autoregressive Model

Autoregressive model are based on the assumption that each value of the time series tY

depends only on the weighed sum of the product of the previous values 1 2, , ,t t t pY Y Y

and the regression coefficient 0 1 2, , , , p plus residual t . An autoregressive model

can be considered as a p-order autoregressive model, which takes the following form:

 0 1 1 2 2 ...t t t p t p tY Y Y Y 2.1

where tY is value of the series at time t, 1 2, , ,t t t pY Y Y are dependent on the previous

values of the variable at specified time periods, 0 1 2, , , , p are the regression

coefficients and t is the residual term that represents random events not explained by

model.

 11

The Autoregressive model is capable in a wide variety of time series forecasting

by adjusting the regression coefficients p . The difference between the Autoregressive

models and other conventional regression models is with respect to the assumption of the

independence of the error term. Since the independent variables are time-lagged values

for the dependent variable, the assumption of uncorrelated error is easily violated.

2.2 Moving-Average Models

The basic idea of Moving-Average model is firstly finding the mean for a

specified set of values and then using it to forecast the next period and correcting for any

mistakes made in the last few forecasts. It takes this form:

 0 1 1 2 2 ...t t t t q t qY w w w w 2.2

where tY is the value of the series at time t, 0 1 2, , , , qw w w w are the weights applied to

1 2, , ,t t t q previous forecast errors and t is the residual error.

To specify a Moving-Average, the number and the value of the q moving average

parameter 1w through qw have to be decided subject to the certain restrictions in value in

order for the process to be stationary. The Moving-Average model works well with

stationary data, a type of time series without trend or seasonality.

2.3 ARIMA Models

 12

The AR and MA model can be mixed and, provide a third class of general models

called ARMA, a particular (,0,)ARIMA p q model. With non-seasonal differences d

added to the model, the (, ,)ARIMA p d q model has the capability to handle the variety

kind of time series forecasting questions. Here p is the number of autoregressive terms,

d is the number of non-seasonal differences, and q is the number of lagged forecast

errors in the prediction equation.

 0 1 1 2 2 1 1 2 2t t t p t p t t t q t qy y y y w w w  2.3

The (, ,)ARIMA p d q model use combinations of past values and past forecasting

errors and offer a potential for fitting models that could not be adequately fitted by using

an AR or an MA model alone. Furthermore, the addition of the differencing eliminates

most non-stationarity in the series.

A significant difference between the ARIMA methodology and previous methods

is that ARIMA does not make assumptions about the number of terms or the relative

weights to be assigned to the terms. To specify the model, the analyst first selects the

appropriate model, including the number of , ,p d q terms; then calculates the coefficients

and gives a refined suggestion of the model parameters by using a nonlinear least squares

method (Hanke, 1995; Thomas, 1983). The Best ARIMA function in R utilizes Akaike

Information Criterion (AIC) to choose the , ,p d q value and identify the best ARIMA

model.

2.4 Akaike Information Criterion (AIC)

 13

The appropriate choice of , ,p d q terms of (, ,)ARIMA p d q model has the

potential of improving forecast accuracy. There are two ideas for the model selection: one

is select one appropriate model for the series under consideration, the other is use a

general selection methodology which will select the appropriate model for each series

from a group of candidate models. Empirical Information Criterion (EIC) is a model

selection method that is designed to be used in forecasting a large number of time series.

There are many EIC available for forecaster to choose, one popular criterion is Akaike

Information Criterion (AIC). In this paper, in order to choose the best (, ,)ARIMA p d q

model for each time series, the AIC is applied in the model selection procedure. For a

fitted ARIMA time series of length n, the AIC is defined to be:

 2

,
ˆln() 2() /p qAIC p q n 2.4

where 2

,
ˆ

p q is the residual error variance from the fitted model. When comparing fitted

models, the basic idea is the smaller the AIC, the better the fit. Note that the AIC

penalizes for additional model complexity with the addition of 2() /p q n . The degree of

differencing d is manually set subject to the seasonal pattern of the time series. The

approach of these Information Criterion methods is that of penalized likelihood

(Sakamoto,1986).

3. THE OVERVIEW OF BAYESIAN STATISTICS AND DLM

The basic assumption of Bayesian statistics is that all uncertainties should be

represented and measured by probabilities. The extension of the Bayesian presupposition

is that, in forecast field, the true of the future could be represented by the past with a

 14

measurable probability. Bayesian methodology offers a comprehensive way of routine

learning that is not dependent on any particular assumption, Such that, it provides

consistent and intuitional results in forecasting.

Suppose a dynamic model M constructed by number models M , such that the

prior probability ()P M describing the likely of M to be selected in forecasting an

uncertain quantity Y . Also, a conditional probability distribution (|)P Y M is used to

specify the likelihood of each member model M giving out a correct future value

of Y conditional upon that particular M . By probability law, these two sets of

probabilities combine to provide a joint probability distribution as:

 (,) (|) ()p Y M p Y M p M . 3.1

From Bayesian theory

 (|) (,) / () (|) () / ()p Y M p Y M p M p M Y p Y p M 3.2

and Therefore

 (|) (|) () / ()p M Y p Y M p M p Y . 3.3

When Y is deserved to take a valueY , the updated probability distribution for M given

Y Y is defined by the conditional density

 (|) (|) ()p M Y p Y M p M 3.4

which is often expressed as

Posterior Observed likelihood prior

The DLM is a Bayesian paradigm for time-series analysis detailed in Pole et al.

(1994) and West and Harrison (1997). Generally, DLM is defined as a

 15

quadruple , , ,t t t tF G V W , which contains four components: regression vector tF ,

evolution matrix tG , observation variance tV , and evolution variance tW . In order to

specify a DLM, these four components must be specified for each period t . In the

following chapter, from simple to complex, we first outline the First Order Polynomial

Model, and then generalize the High Order Polynomial Model and the Dynamic Linear

Model (West 1997).

3.1 Polynomial Model

The simplest and most widely used DLM, so called First Order Polynomial Model,

is characterized by the quadruple 1,1, ,t tV W . At time t , tY represents the corresponding

value of the time series; t represents the level of the series. The observational error tv

and the evolution error t are internally independent, mutually independent, and

independent of 0 0(|)D , the initial level 0 given the initial information set 0D which is

the information we have form the outside of the time series before we do the forecasting.

In the first order polynomial model, the variance sequences tV and tW are known

constants of the existing information. In brief, the time evolution is modeled as a simple

random walk upon a locally constant mean t .

Observation equation: ~ [0,]t t t t tY v v N V 3.5

System equation: 1 ~ [0,]t t t t tN W 3.6

Initial information: 0 0 0 0(|) [,]D N m C 3.7

 16

This First order polynomial model is used effectively in numerous applications,

particularly in short-term forecasting for production planning and stock control.

To extend to the Second Order Polynomial Model, a growth component, which

itself also drifts over time, was added to the local level of the First Order Polynomial

Model. Therefore, the second order model equations can be formed as below.

Observation equation: 1, ~ [0,]t t t t tY v v N V 3.8

System equation: 1, 1, 1 1, 2 1, ~ [0,]t t t t t tN W 3.9

The tF and tG are risen to corresponding 2 2 matrix:

1

0
tF ,

1 1

0 1
tG 3.10

Following this idea, the n
th

 order polynomial model could be produced by

extending straightforward from the formulations above. The regression vector tF and the

evolution matrix tG of the n
th

 order polynomial model are written as

1, 1,1 1,

, ,1 ,

t t

t t

n t n n t

F G G

F G

F G G



   



, 3.11

where ,i jF and ,i jG could be any number (West 1997).

3.2 The Dynamic Linear Model

 Based on the fundamental concepts and important features of the general class

of normal dynamic linear models and simple regression models, we go to the general

 17

normal dynamic model (DLM). The general normal dynamic model (DLM) is

characterized by a quadruples.

},,,{},,,{ ttttt WVGFWVGF

for each time t, where

(a) tF is a known ()n r matrix;

(b) tG is a known ()n n matrix;

(c) tV is a known ()n n variance matrix;

(d) tW is a known ()n n variance matrix.

This quadruple defines the model relating tY to the 1n parameter vector t sequence

through time, the equations are as below.

Observation equation: ' ~ [0,]t t t t t tY F v v N V 3.12

System equation: 1 ~ [0,]t t t t t tG w w N W 3.13

The error sequence tv and tw are internally and mutually independent. Defined by the

observation equation, the sampling distribution for tY is conditional on the quantity t .

For time t

(1) tF is the design matrix of known values of independent variable;

(2) t is the state, or system, vector;

(3) t = '

tF t is the mean response, or level;

(4) tv is the observational error;

 18

(5) tG is the evolution, system, transfer or state matrix;

(6) tw is the system, or evolution, error with evolution variance tW ;

The table below shows that the algorithm of the univariate DLM (Table 3) which is

the foundation of our Matlab program. The tF matrix displays the correlation of the

known values which is the system inputs. Generally, for nonseasonal time series, each

past data is considered to contribute a equal weight to the future, hence ijF in tF are all

take the value as one; for seasonal time series, the tF need to be identified as a proper

matrix that represents the seasonal circle, e.g. tF =[1,0,0,0]
t
 may fit the quarterly data.

Considering the seasonal characteristic, a rotation matrix was picked for the transfer

matrix tG . The first system input vector tm usually comes from the mean of certain past

data, but in seasonal model, tm vector takes the average of two data that are separated by

one seasonal circle distance. The other parameters exist in the DLM model, such

as 1, , ,t t tw d S W , are optimized by utilizing a grid optimization method to seek the

minimum values of the mean square error. In the grid optimization, we offer a wild range

of members as candidates to the parameters being optimized, and then we test all the

interactions and select the best one for each series.

 19

Univariate DLM: unknown, constant variance V= 1

Observation: ' ~ [0,]t t t t t tY F v v N V

 System:
11 ~ [0,]

tt t t t t n tG w w T W

 Information: 1 -1 1 -1 -1(|) [,]t t n t tD T m C

 -1 1 1
-1(|) ,

2 2

t t t
t

n n s
D G

Forecast: -1 1(|) ,t t t t tY D T f Q

 -1 1(|) [,]t t t tD T a R

where

 '

-1 -1 t t t t t t t tR G C G W a G m
' '

-1 t t t t t t t tQ F R F S f F a

Updating Recurrence Relationships:

 (|) ,
2 2

t t t
t

n n s
D G

 (|) ,
tt t n t tD T m C

 With t t te Y f and /t t t tA R F Q

 -1 1t tn n

2

-1
-1 1t t

t t

t t

s e
S S

n Q

 t t t tm a Ae

 '

-1

 (-)t
t t t t t

t

S
C R A AQ

S

Forecast Distributions: k 1

(|) [(), ()]
tt k t n t tD T a k R k

(|) [(), ()]
tt k t n t tY D T f k Q k

Table 3. Univariate DLM

 20

4. THE OVERVIEW OF ANTIFICIAL NEURAL NETWORKS (ANNs)

ANNs may be defined as “an information processing technology inspired by

studies of the brain and nervous system” (Klimasauskas, 1991). In computer science,

ANNs is a processor made up of massively parallel distributed simple processing units,

which has a natural propensity for storing experiential knowledge, doing logical and

quantitative analysis, and generalize new information from acquired knowledge. It is

similar to the brain in two respects:

1. Acquire knowledge from its environment through a learning process.

2. Using synaptic weight to store the acquired knowledge.

The working of the ANNs may vary from different structures of the network, generally a

series of connecting neuron weights are assigned to each inputs signal and are adjusted to

fit this series of inputs to another series of known outputs which are the network target.

When the weight of a particular neuron is continually updated to improve the network

performance, it is said that the neuron is learning. The training is the process that neural

network learns. A properly trained network tends to give reasonable answers when

presented with inputs that they have never seen.

 The most important advantage of neural networks is in solving problems that are

too complex for conventional techniques. These kinds of problems include pattern

recognition and data forecasting. Today ANNs has been widely applied to many real

world problems: business, physical system control, engineering, statistics, also medical

and biological fields (Haykin, 1994).

 21

4.1 ANNs in Forecasting

The science of Artificial Neural Network (ANNs) has a history of about five

decades but has been solid in application for only the past fifteen years. The first artificial

neuron was produced in 1943 by the neurophysiologist Warren McCulloch and the

logician Walter Pitts. But the technology available at that time did not allow them to do

any deep research. Today, with the further understanding of human brain and the huge

progress of computer science, significant progress has been made in ANNs algorithms.

Currently, ANNs are being used for a wide variety of tasks in many different fields of

business, industry and science (Widrow, 1994).sd

One major area of application for ANNs is time series forecasting such as

predicting stock price, future inventory, and sales marketing (Sharda, 1994). As a

nonlinear, sophisticated forecasting method, ANNs has several special features which

make it an attractive alternative tool for both forecasting researchers and practitioners.

ANNs are data-driven self-adaptive methods with few prior assumptions. They

learn from existing information and capture faint relationships among the data even if the

underlying relationships are unknown or difficult to describe in closed form. Therefore,

ANNs is appropriate for problems whose solutions require knowledge that is difficult to

specify but have enough data or observations available (White, 1898; Ripley, 1993). The

adaptability, reliability and robustness of an ANNs only depend on the source, range,

quantity and quality of the given data set. ANNs can generalize from learning the data

 22

presented to them, similar to the human brain. ANNs can often correctly catch and infer

the unseen part of a population, even if the sample data given contains noisy information

(Perambur 1994). ANNs is a universal function approximation system; it can be set to

approximate any continuous function to any desired accuracy (Cybenko, 1989; Funahashi,

1989). ANNs can do nonlinear data-driven approach; therefore it is not necessary to make

any assumptions of the underlying distribution of the data. This important feature

overcomes the weakness of the conventional approaches such as ARIMA that stands in

the assumption that the given time series is generated from a linear process which is not

always true for real world systems (Haykin, 1994). ANNs has the capability of

performing nonlinear regression without knowing the relationship between input and

output variables. This makes it a general and flexible modeling tool for the real data

forecasting.

When using the ANNs in forecasting, we should always be aware of some

disadvantages. First, the individual relationship between the input variables and the

output variables are not developed from mathematical deduction, so that the model tends

to be a black box without a clear theoretical base. Secondly, a large sample size of data is

required to obtain a stable and logical forecasting result. Finally, the ANNs forecasting

can be time consuming. In some incarnations these ANNs may never converge; thus,

training (learning) will continue for infinity.

4.2 Biological Structure

 23

The human nervous system may be viewed as a three-stage system. Central to the

system is the brain, represented by the neural net, which continually receives information,

perceives it, and makes appropriate decisions. The receptors convert stimulation from the

human body or the external environment into electrical impulses that convey information

to the neural net. The effectors convert electrical impulses generated by the neural net

into discernible responses as system output.

There are forward and backward arrows connecting these three stages. The

forward arrows present the transmission of information-bearing signals through the

system and the backward present the system feedback. (for more biological details see

Perambur 1994).

Figure 2. Three stages model of a ANNs

Feedback

Receptors

Stimulus

Neural

Environment

Effectors

Response

Feedback

Neural

Net

Feedback

 24

nW

1W

2W

4.3 Single Network ANNs

The ANNs was developed in an effort to model the human neuron. The single

artificial neuron, also called Perceptron, is depicted below (Figure 3). Inputs enter the

neuron and are multiplied by their respective synaptic weight.

Figure 3. Single Network

Let 1 2, , , nX X X be input signals while 1 2, , , nW W W represent synaptic weights

of neurons. The neuron will sum these weighted inputs and, with reference to a bias b as

the input argument of the activation function f . The activation output Y is an input to the

next layer or it is a response of the neural network if it is the last layer.

 OUTPUT

.

.

.

1X

2X

.

.

nX

NET

t

 b

U

f

Y

 25

1

4.1
n

i iU W X b

 () 4.2Y f U

The activation function f bounds the neuron's output. There are various kinds of

activation functions that could be chosen. Two common activation functions are the Pure

Linear function

()f U U 4.3

 and the Log-Sigmoid function (Haykin, 1994).

(-)() 1 (1)Uf U e 4.4

4.4 Network Architecture

ANNs are networks with multiple layers and a large number of interconnected

neurons. The ANNs architecture can be specified by four variables that are: the number

of input nodes (n); the number of hidden layers (k) and hidden nodes (m); the number of

output nodes (i) (Figure 4). Generally, the number of input nodes corresponds to the

number of variables in the input vector which equal to the number of lagged observations

used to forecast the future values. The number of output nodes corresponds to the

problem to be answered which is the forecasting horizon in time series forecasting. The

selection of the number of hidden layers and hidden nodes has a great effect on training,

convergence, and forecast performance. Empirical research supports that one hidden

layer may need a large number of hidden nodes for most forecasting cases, such that it

 26

may consume a lot of computing time in network training (Cybenko, 1989; Hronik, 1989).

Two hidden layers network were found to be more efficient in many time series

forecasting purposes (Barron, 1994; Zhang 1994). Many papers supported that a network

never needs more than two hidden layers in general forecasting problems (Cybenko, 1988;

Lapedes, 1988). There are many discussions about how to specify the number of hidden

nodes, but all of them only work well in specific or similar cases. Many trials was done

to try to find a general rule in network architecture optimization, but none of them can

guarantee the best architecture for all real forecasting problems. Hence, the empirical

approach is still a common way in finding the best network architecture (Zhang 1998).

Neural networks are usually fully connected. This means that each neuron is connected to

every output from the preceding layer and each neuron has its output connected to every

neuron in the succeeding layer. For the input layer, every neuron has one input from the

external world. An ANN with well designed network architecture has the ability to learn

or store knowledge in their synaptic weights and then generalize the population truth or

future information. Thus ANNs have been applied successfully in time series.

 27

Figure 4. Network Architecture

4.5 Backpropagation Algorithm

In this paper we apply the Backpropagation Paradigm for a feed forward ANN to the M-3

Competition forecasting. Backpropagation algorithm was first proposed by Paul Werbos

in the 1970's. In 1986, Rumelhart and McClelland rediscovered this algorithm and made

it one of the most popular neural networks learning algorithms. Today, backpropagation

network has been used successfully for wide variety of applications, such as forecasting,

image pattern recognition, medical diagnosis, and automatic controls.

Input layer Output layer

Hidden layer

1 1

m

m-1

2 2

n-1

n

p

1

1

i

  


k

Input
Output

 28

Backpropagation network made a tremendous progress from the single-layer

perceptron. With a more sophisticated learning rule, backpropagation networks overcome

the limitations that single-layer networks have which is the network can only

approximate linear relationship between the inputs and the targets. Empirical reach shows

that a backpropagation network with biases, a sigmoid layer, and a linear output layer are

capable of approximating any function including linear and nonlinear. In our network

design, we set output layer with linear transfer function and all the other layers with

sigmoid transfer function to give the network the power for representing any functional

relationship between the inputs and outputs.

Backpropagation network gets its name from its exclusive training procedure; the

network feed forward the data from the input layer to the output layer through the hidden

layers. The error signal between the outputs and the targets is backpropagated from the

outputs to the inputs through the hidden layers in order to appropriately adjust the

weights in each layer of the network until it can approximate a neuron weights function

that can associate input vector with the specific output vector or narrow the total error

into a defined value. A backpropagation network consists of at least three layers: one

input layer, at least one hidden layer, and one output layer. Layers are feed forward

connected with the input units fully connected to the hidden layer units and hidden units

fully connected to the output layer units. Inside the backpropagation network flow cycle,

the input nodes are propagated forward to the output nodes through the intervening input-

to-hidden and hidden-to-output weights.

 29

Standard backpropagation networks employ gradient descent algorithms to

minimize the total error on the training set. Figure 5 illustrates the concept of gradient

descent using a single weight. After the error on each pattern is computed, each weight is

adjusted in proportion to the calculated error gradient backpropagated from the outputs to

the inputs. The changes in the weights keep reducing the overall error until the

performance goal is reached or the minimum gradient is met. The open-up parabola

shows the relationship between the overall error and the changes in a single weight of a

network (McClelland, 1988). In our network, we set the minimum performance gradient

equal to 81 10 as a stop criterion of the network training.

Figure 5. Gradient Descent Algorithm

The network training is set up following four steps. First, assemble the training

data. Suppose a time series has n numbers of data and k of these n data are reserved for

forecasting. Following the instruction of the M-3 Competition data, we specify a delay

d as the number of the past data that are used in the training for the target. Horizon h is

Error

Wij

 30

the steps need to be forecast ahead. Second, create the network object. For a specify

horizon, the target t is set to be the number that is one horizon ahead the last delay series.

Following this procedure, the first target is the d h number of the training series

while the last training target is the last number in the training series. Such that for each

training circle, the input layer always has d neurons while the output layer has one

neuron (Figure 6). Third, train the network. After the input series and the output series are

set up, we go to the training process. There are several different training algorithms

available in backpropagation network. These different algorithms have variety of

computation and memory requirements. The selection of algorithm depends upon the

problem at hand. Considering the increase in training speed and the reduction in memory

requirement, we chose the Levenberg-Marquardt algorithm as the training algorithms of

our network. The Levenberg-Marquardt iteration method is a variation of the Newton

iteration. Newton's approach starts from an initial value 0x and refines this value using

the assumption that f is locally linear. A first order approximation of 0()f x yields:

0 0() ()f x f x J 4.5

with J the Jacobian matrix and a small displacement. Under these assumptions

minimizing 0̂ -e J can be solved through linear least-squares. An augmented equation

yields from the simple derivation

ˆT TN J J J e 4.6

In Levenberg-Marquardt iteration, this augmented equation is changed to

ˆTN J e 4.7

where

 31

(1)ij ij ijN N 4.8

with ij the Kronecker delta . At the beginning of the iteration, the value is initialized

to a small value. If the value obtained for reduces the error, the increment is accepted

and is divided by a certain number before the next iteration. On the other hand, if the

error increases then is multiplied by a certain number and the augmented normal

equations are solved again, until an increment is obtained that reduces the error. A large

will give a steep descent in the approaches then reduce the convergent time. Once the

training is done, we go to the fourth step, forecasting, which is simulating the network

response to the new inputs. In the simulation, the input series is always set up to be the

last d number of the training data and the target is aimed at the h number of the reserved

data. The maximum h is the length of the reserved data k (Figure 7).

 32

Figure 6. Network Training

 n: Length of Time Series; k: Reserved Data;

d: Delay; h: Forecast Horizon.













1

d

d+h

=

n-k

n-k-h-d

n-k-h

n-k+1












 d

d+h

=

n-k

n-k-h-d

n-k-h

n

1

n

n-k+1

Reserved



 33

Figure 7. Forecasting

 n: Length of Time Series; k: Reserved Data;

d: Delay; h: Forecast Horizon.

Reserved
h=k

h=1













1

d

d+h

=

n-k+1

n-k-d

n-k

n-k+2












 d

d+h

=

n-k+1

n-k-d

n-k

n

1

n

n-k+2

 34

As we described before, the ANNs could be a time consuming algorithm, such

that the computation time is considered as an important criterion of the network

efficiency. In this paper, we explore the relationship between the elapsed time and the

network structure from empirical test. In the next tables, the network configuration was

specify by numbers inside a bracket, the first and the last number represent the number of

neurons in the input and output layer, the numbers in the middle represent the neurons in

each hidden layer. We describe the three conclusions we discover and take the “Other

Data” set the of M-3 Competition as an instance: First, in a particular network, the

elapsed time appears to be the quadratic function with respect to the delay number used

in generalizing the future. A very short delay may cost a lot of elapsed time in training

since the deficiency of the past information available for the network leads to a long time

approximation (Figure 6). On the other hand, a very long delay may provide too much

past information to the network thus causing an increase in training time. Therefore, if the

performance is close for networks with different delay, we could minimize the elapsed

time by choosing a proper delay. In Figure 6, twelve was selected to be the delay which

empirical testing showed consumed less time than the others. Second, as the number of

hidden layers increased, the numbers of neurons increase causing longer training

times(Figure 7 and 8). Hence, in the neural network design, a network with a small

number of hidden layer should be considered first. Most of the time, one or two hidden

layers were sufficient and neural network with two hidden layers were found to be more

efficient in many time series forecasting purposes (Zhang, 1994).

 35

Figure 8. Elapsed Time and Delay

Figure 9. Elapsed Time and Network Configuration A

“Other Data”, d=12

20

25

30

35

[Delay,5,1] [Delay,10,1] [Delay,20,1] [Delay,30,1]

Config

Min

Elapsed Time

“Other Data”, [Delay, 20, 10, 1]

0

100

200

300

400

500

0 10 20 30 40 50

Delay

Min

Elapsed Time

 36

Figure 10. Elapsed Time and Network configuration B

The network configuration affects the network performance. To illustrate this

relationship, we picture the performance of different network configuration in every

single horizon (Figure 11). Generally, the forecast error increased as the forecast horizon

H increased, the performance is approximately linear as seen in figure 11. But the same

network configuration doesn‟t strictly monotonically increase over increasing horizon.

For example, some network configuration, e.g. [20,10,10,10,1] (twenty neurons in input

layer, ten neurons in each one of three hidden layers, one neuron in output layer)

performs slightly better than the others in short term forecasting but not as well as some

others, e.g. [9,10,10,10,1] in long term forecasting and vice versa. Some network

configuration works well in the middle term forecasting but perform slightly worse in

both ends, e.g. [12,20,10,1]. To assess the performance of different networks

“Other Data”, d=12

0

50

100

150

200

250

[Delay,10,1] [Delay,8,2,1] [Delay,5,3,2,1]

Config

Min

Elapsed Time

 37

configuration and identify the best network design for each forecast horizon, a statistics

test is necessary. The mixed linear model is selected for the assessment in this work. The

result of the mixed linear model will be discussed in detail in the next chapter.

Figure 11. Average SMAPE of Different ANNs Configurations in All Horizons

“Other data”, all network configurations

0

2

4

6

8

10

12

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8

Forecast Horizon

Average SMAPE

[9,10,1] [12,10,1] [20,10,1]

[9,20,10,1] [12,20,10,1] [20,20,10,1]

[9,10,10,10,1] [12,10,10,10,1] [20,10,10,10,1]

 38

5. MIXED LINEAR MODEL AND DISCUSSION

To explore where paradigms are statistically different we use the mixed linear

model. The model we are using is defined by

ij i j ijA 5.1

where ijA is the accuracy measure associated with the i
th

 paradigm using the j
th
 time

series, is the overall mean, i is the i
th
 paradigm effect, j is the effect of the j

th
 time

series where 2~ (0,)
iid

j N is a random effect and ij is the random error term where

2~ (0,)
iid

ij N . By using this model to determine where the differences in paradigms

exist we can account for the correlation induced by applying more than one forecasting

paradigm to the same time series.

The mixed model analysis was performed in SAS using „PROC MIXED‟. The

Mixed linear model tests the null hypothesis that all the selected paradigms produce the

same SMAPE mean in every horizon. Therefore, the alternative hypothesis is that at least

one SMAPE mean of one paradigm in a specific horizon is different from the others.

With the Mixed linear model test, we are able to tell which paradigm produces smallest

SMAPE mean and which paradigm produces the biggest SMAPE at a specific horizon

and whether these differences is significant at the 0.05 confident level. The paradigms we

test in the mixed ANOVA and the results are listed in the tables below. In Tables 4, 6, 8,

10, the average SMAPE and the standard error of each forecast horizon for each

paradigm are listed. The result of the Theta method that was strongly recommended by

 39

the M3-Competition as a simple and efficient method is also listed at the top of these

tables for comparison. In Tables 5, 7, 9, 11, all paradigms are ranked in the order of

descending SMAPE; the best and the worst paradigms are shaded in different colors.

Paradigms that are statistically different are shaded in the same color.

Table 4 and Table 5 show that for yearly data, the First Order DLM generates the

over all best performance in every forecast horizon but is not significantly different than

the Best ARIMA at the first two forecast horizons at 0.05 confident levels. All the ANNs

don‟t perform as well as the other paradigms; the ANN [3, 10, 1] performs significantly

worst than other ANNs; Second Order DLM has the worst performance at the second

horizon with three ANNs. Subject to the network training algorithm, yearly series with

short series length, e.g. 14, are not be able to provide enough past information to the

network training for long term forecasting. To explore how the ANNs works at long term

forecasting for short time series, a further work on discovering new training algorithms is

needed.

Table 6 and Table 7 show that the average SMAPE of the Best ARIMA is

significantly smaller than all the other paradigms except at the fourth horizon on where

four ANNs appear to have not significant difference with it. Seasonal DLM performs

significantly worse at all horizons. Different ANNs generate close average SMAPE no

matter what the network architecture it is. ANNs with delay match the quarterly pattern

are slightly better than the other ANNs. This phenomenon indicates that ANNs are

capable of recognizing the seasonal pattern when a proper delay is assigned to the

 40

network configuration. With the same delay, ANNs with two hidden layers outperform

ANNs with only one hidden layer; ANNs with one hidden layer and short delay appear to

be inconsistent in forecast performance, e.g. [4,20,10,1] has a jump at horizon 4.

Table 8 and Table 9 show that for the monthly data, ANNs with suitable delay

that match the series seasonal cycle (twelve for monthly data) outperform all the other

paradigms at every single horizon at 0.05 significant level except that at the fifth horizon

where the ANN[12,20,1] shows no difference with the Best ARIMA. Generally, ANNs

with two hidden layers are showing better performance than ANNs with one hidden layer

even though some differences are not statistical significant. On the other hand, ANNs

with improper network architecture generates significantly bigger forecast error in

forecasting. The Seasonal DLM doesn‟t perform as well as the Best ARIMA. Our

research also confirm that the ANNs especially ANNs with more hidden layers and

hidden nodes did cost a lot of time in network training , e.g. the ANN [12, 20, 10, 1]

takes a fast computer three days to finish the 1428 monthly series. Such that, considering

the forecast efficiency, we prefer ANN[12,20,1] to ANN[12,20,10,1]. The average

SMAPE of the ANN[12,20,10,1] are better than the results of the Theta method used in

the M3-Competition. If we assume that the SMAPE values of the theta method used in

M3-Competition and the AMAPE values of ANN[12,20,10,1] used in our research share

the same distribution and have close variance, then since ANN[12,20,10,1] generate a

smaller SMAPE, it could be the overall best paradigms in monthly data forecasting

among M3-Competition and our work. This rejects of the conclusion confirmed by the

 41

M3-Competition saying that statistically sophisticated or complex methods do not

necessary provide more accurate forecasts than simple ones (Makridakis, 2000).

Table 10 and Table 11 show that the Best ARIMA performs the best in every

horizon and the difference is significant at 0.05 confidence level. ANNs with different

network architecture generate close average SMAPE value at all horizons, ANNs with

longer delay perform slightly better but consume much longer computation time (Figure

9). The average SMAPE of the First Order DLM is smaller than ANNs at all horizons but

has no significant difference. The results of two Second Order DLM paradigms are

significant worse in the other data set forecasting.

In summary, we reach four conclusions: first, different paradigms perform

diversity in different categories of time series. First Order DLM performs best in yearly

data while Best ARIMA works well with the other and quarterly data. ANNs gives out

impressed performance in monthly data forecasting; second, unlike the one conclusion of

the M3-Competition that statistically sophisticated paradigm are not as well as simple

paradigm in time series forecasting. We discover statistically sophisticated paradigms,

such as ANNs, is likely to produces better forecast accuracy then simple paradigms in

monthly time series; Third, The length of the time series affect the ANNs performance.

We consider this as the main reasons why the ANNs perform so much difference in

different categorical time series, since the forecast performance of the ANNs rely on how

much past information is available for the training process. The more past data offered,

the better forecast accuracy received. Finally, complex DLM models are not necessary

 42

better than simple DLM models in forecasting. This phenomenon shows in all time series

forecasting. In our research, we also confirm one conclusion of the M3-Competition

which is that the forecast performance depends upon the length of the forecasting horizon.

Generally, the forecast error increase when horizon was increased, but there is some

exclusion in ANNs when the model is not stable.

Finally, we provide a few comments in selecting a proper and efficient paradigm

for time series forecasting. The Best ARIMA paradigm has proven to be good at short

term forecasting for middle length time series, e.g. “Other” data in M3-Copetition. It also

has the capability to catch the seasonal pattern of the time series, e.g. “Quarterly” data in

M3-Competition. As for short term forecasting, when the time series is short and has no

seasonal pattern, e.g. “Yearly” data in the M3-Competition, we strongly recommend the

First Order DLM algorithm. In this case, the First Order DLM provides a simple

paradigm for fast, stable, and accurate forecasting. In our competition, a well designed

ANNs shows good performance in forecasting long time series, even with seasonal

pattern at all forecast horizons. We discovered that, ANNs used in this work have poor

performance when the training data is sparse/short. This proves that, to acquire a stable

and logical forecasting result, a large number of sample are required by the ANNs used in

this work. When using the ANNs in time series forecasting, forecasters should always be

aware of computation time consumed in training process.

 43

Following research is suggested to focus on:

1) Test and evaluate the long term forecast accuracy of First Order DLM in short

nonseasonal time series.

2) Explore more effective technique in the parameter optimization step in DLM;

Introduce the discount factor to the DLM paradigm to make the forecast result more

adaptive and fit the real curve.

3) Explore a new training method for the ANNs to make it be able to do long term

forecasting for short time series so that the entire forecast horizon required in the yearly

data could be finished.

4) Explore how the tG and tF matrix affect the DLM model in seasonal time series

forecasting, hence improve the DLM capability in catch the seasonal pattern.

5) Screen out the quarterly series that the ANNs generate abnormal forecast error or

unstable forecast result. Then Check if the forecast performance could be improved by

fixed the training method or/and change the value of network parameters.

 44

Table 4. Average Symmetric MAPE: Yearly Data.

Method

Forecasting Horizon

1 2 3 4 5 6

Theta Method in

M3-Competition
8 12.2 16.7 19.2 21.7 23.6

Best ARIMA

Standard Error
11.06
9.39

17.61
11.77

18.38
11.53

21.64
12.64

25.12
16.06

22.42
65.94

First Order DLM

Standard Error
10.01
15.69

16.59
20.30

17.26
19.41

20.67
22.43

23.50
23.08

26.01
25.34

Second Order DLM

Standard Error
18.80
33.57

26.93
36.42

30.098
35.30

37.27
36.59

43.62
37.90

51.14
40.17

ANN:

[3,10,1]

Standard Error
25.05
99.05

26.03
42.94

32.82
107.09

34.29
55.53

[4,10.,1]

Standard Error
17.58
28.81

23.92
31.68

25.89
41.52

[3,20,10,1]

Standard Error
16.34
29.96

23.88
30.68

25.33
30.74

29.12
32.57

[4,20,10,1]

Standard Error
17.98
34.83

26.12
41.84

28.32
61.57

[3,10,10,10,1]

Standard Error
17.67
36.96

26.18
57,87

27.12
50.32

29.38
33.62

[4,10,10,10,1]

Standard Error
16.33
24.30

24.77
41.87

25.92
44.40

 45

Rank
Forecasting Horizon

1 2 3 4 5 6

1 First Order

DLM

First Order

DLM

First Order

DLM

First Order

DLM

First Order

DLM

Best ARIMA

2

Best

ARIMA

Best

ARIMA

Best

ARIMA

Best

ARIMA

Best ARIMA First Order

DLM

3 ANN

[4,10,10,10,1]

ANN

[3,20,10,1]

ANN

[3,20,10,1]

ANN

[3,20,10,1]

Second

Order DLM

Second

Order DLM

4 ANN

[3,20,10,1]

ANN

[4,10,1]

ANN

[4,10,1]

ANN[3,10,

10,10,1]

5

ANN

[4,10,1]

ANN

[4,10,10,10,1]

ANN[4,10,

10,10,1]

ANN

[3,10,1]

6 ANN
[3,10,10,10,1]

ANN
[3,10,1]

ANN[3,10,
10,10,1]

Second
Order

DLM

7 ANN

[4,20,10,1]

ANN

[4,20,10,1]

ANN[4,20,

10,1]

8 Second Order

DLM

ANN

[3,10,10,10,1]

Second

Order DLM

9 ANN

[3,10,1]

Second Order

DLM

ANN

[3,10,1]

Table 5. Results of Mixed Model: Yearly Data

 46

Method

Forecasting Horizon

1 2 3 4 5 6 7 8

Theta Method in

M3-Competition
5 6.7 7.4 8.8 9.4 10.9 Non 12

Best ARIMA

Standard Error
5.49
5.25

6.88
5.87

7.71
6.32

8.17
6.12

10.13
7.39

11.00
7.74

12.36
8.31

13.67
9.73

Seasonal DLM

Ft=[10001]

Standard Error
28.25
27,09

27.45
27.07

26.72
26.65

30.30
28.04

24.80
23.78

31.24
27.56

29.58
28.34

29.19
25.51

Ft=[1000]

Standard Error
27.36
29.13

30.60
32.96

27.25
27.06

28.57
26.04

30.52
30.03

32.64
32.71

29.31
28.34

30.56
26.97

ANN

[4,20,10,1]

Standard Error
14.44
47.16

13.22
22.13

18.50
25.52

43.04
30.28

20.41
24.85

20.94
29.83

21.56
34.71

19.73
27.43

[6,20,10,1]

Standard Error
9.52

15.46
11.32
15.80

13.19
21.04

14.89
24.46

15.67
20.16

18.20
24.40

17.15
20.55

18.43
21.66

[8,20,10,1]

Standard Error
12.53
20,01

14.29
17.90

17.10
23.09

15.97
21.97

18.40
18.30

20.15
21.77

20.66
25.41

23.32
27.43

[4,10,10,10,1]

Standard Error
10.62
29.00

18.99
19.40

14.57
26.56

19.68
27.48

19.74
37.06

17.08
21.35

20.29
33.78

21.31
35.98

[6,10,10,10,1]
Standard Error

9.74
17.17

11.84
18.36

14.02
29.82

13.72
19.72

15.29
20.29

16.57
21.43

17.20
20,31

19.80
26.88

[8,10,10,10,1]

Standard Error
13.22
22.24

13.50
16.58

16.04
22.13

18.90
29.24

18.53
18.08

20.11
21.03

21.48
20.67

24.52
27.53

Table 6. Average Symmetric MAPE: Quarterly Data

 47

Rank
Forecasting Horizon

1 2 3 4 5 6 7 8

1 Best

ARIMA

Best

ARIMA

Best

ARIMA

Best

ARIMA

Best

ARIMA

Best

ARIMA

Best

ARIMA

Best

ARIMA

2

ANN[6,

20,10,1]

ANN[6,

20,10,1]

ANN[6,

20,10,1]

ANN[6,

10,10,10,

1]

ANN[6,

10,10,10,

1]

ANN[6,

10,10,10,

1]

ANN[6,

20,10,1]

ANN[6,

20,10,1]

3 ANN[6,

10,10,10,

1]

ANN[6,

10,10,10,

1]

ANN[6,

10,10,10,

1]

ANN[6,

20,10,1]

ANN[6,

20,10,1]

ANN[4,

10,10,10,

1]

ANN[6,

10,10,10,

1]

ANN[4,

20,10,1]

4 ANN[4,
10,10,10,

1]

ANN[4,
20,10,1]

ANN[4,
10,10,10,

1]

ANN[8,
20,10,1]

ANN[8,
20,10,1]

ANN[6,
20,10,1]

ANN[4,
10,10,10,

1]

ANN[6,
10,10,10,

1]

5

ANN[8,

20,10,1]

ANN[8,

10,10,10,

1]

ANN[8,

10,10,10,

1]

ANN[8,

10,10,10,

1]

ANN[8,

10,10,10,

1]

ANN[8,

10,10,10,

1]

ANN[8,

20,10,1]

ANN[4,

10,10,10,

1]

6 ANN[8,

10,10,10,

1]

ANN[8,

20,10,1]

ANN[8,

20,10,1]

ANN[4,

10,10,10,

1]

ANN[4,

10,10,10,

1]

ANN[8,

20,10,1]

ANN[8,

10,10,10,

1]

ANN[8,

20,10,1]

7 ANN[4,

20,10,1]

ANN[4,

10,10,10,

1]

ANN[4,

20,10,1]

DLM Ft=

[1000]

ANN[4,

20,10,1]

ANN[4,

20,10,1]

ANN[4,

20,10,1]

ANN[8,

10,10,10,

1]

8 DLM Ft=

[1000]

DLM Ft=

[10001]

DLM Ft=

[10001]

DLM Ft=

[10001]

DLM Ft=

[10001]

DLM Ft=

[10001]

DLM Ft=

[1000]

DLM Ft=

[10001]

9 DLM Ft=

[10001]

DLM Ft=

[1000]

DLM Ft=

[1000]

ANN[4,

20,10,1]

DLM Ft=

[1000]

DLM Ft=

[1000]

DLM Ft=

[10001]

DLM Ft=

[1000]

Table 7. Results of Mixed ANOVA: Quarterly Data

 48

Method

Forecasting Horizon

1 2 3 4 5 6 8 12 15 18

Theta Method

in M3
11.2 10.7 11.8 12.4 12.2 12.4 12.7 13.2 16.2 18.2

Best ARIMA

Standard Error
12.64
13.82

11.96
12.35

12.86
10.65

13.79
12.90

14.81
9.70

14.79
9.80

15.72
11.10

15.81
11.35

18.69
15.28

21.25
25.73

Seasonal DLM

Standard Error
25.85
27.06

26.13
26.99

26.75
28.73

26.00
28.87

26.03
27.78

25.78
28.91

24.15
29.54

30.40
29.89

30.63
30.12

29.21
29.55

ANN

[8,20,1]
Standard Error

36.92
172.8

34.13
112.1

31.68
72.71

36.93
146.4

53.82
486.3

42.29
173.6

68.23
864.0

38.09
152.9

38.43
148.9

36.50
109.5

[12,20,1]

Standard Error
10.05
50.31

11.45
17.67

11.56
48.33

13.74
161.4

12.31
144.6

12.92
23.90

12.90
25.14

14.02
25.06

16.07
30.61

18.89
34.16

[15,20.,1]

Standard Error
29.45
36.54

29.93
27.52

34.84
28.26

34.46
34.82

35.88
29.90

35.51
43.99

32.92
32.53

36.14
28,97

30.77
29.53

[8,20,10,1]

Standard Error
31.26
35.64

29.45
65.82

29.93
86.33

34.84
132.4

34.46
343.2

35.88
147.1

34.82
453.6

31.64
145.2

31.87
84.21

31.23
93.83

[12,20,10,1]

Standard Error
8.53

15.47
8.80

12.18
9.87

19,79
9.76

14.31
10.19
21.48

9.90
14.17

10.53
20,42

12.73
30.31

13.74
94,76

16.11
111.8

[15,20,10,1]

Standard Error
17.04
24.27

18.59
50.60

18.52
42.24

20.28
29.32

18.79
23.13

19.14
23.07

21.21
39.06

19.67
25.16

20.61
32.24

Table 8. Average Symmetric MAPE: Monthly Data

 49

Rank
Forecasting Horizon

1 2 3 4 5 6 8 12 15 18

1 ANN

[12,20,

10,1]

ANN

[12,20,

10,1]

ANN

[12,20,

10,1]

ANN

[12,20,

10,1]

ANN

[12,20,

10,1]

ANN

[12,20,

10,1]

ANN

[12,20,

10,1]

ANN

[12,20,

10,1]

ANN

[12,20,

10,1]

ANN

[12,20,

10,1]

2

ANN

[12,20,

1]

ANN

[12,20,

1]

ANN

[12,20,

1]

ANN

[12,20,

1]

ANN

[12,20,

1]

ANN

[12,20,

1]

ANN

[12,20,

1]

ANN

[12,20,

1]

ANN

[12,20,

1]

ANN

[12,20,

1]

3 Best

ARIM
A

Best

ARIM
A

Best

ARIM
A

Best

ARIM
A

Best

ARIM
A

Best

ARIM
A

Best

ARIM
A

Best

ARIM
A

Best

ARIM
A

Best

ARIM
A

4 ANN

[15,20,

10,1]

ANN

[15,20,

10,1]

ANN

[15,20,

10,1]

ANN

[15,20,

10,1]

ANN

[15,20,

10,1]

ANN

[15,20,

10,1]

ANN

[15,20,

10,1]

ANN

[15,20,

10,1]

ANN

[15,20,

10,1]

DLM

5

DLM DLM DLM DLM DLM DLM DLM DLM DLM ANN

[8,20,

10,1]

6 ANN

[15,20,

,1]

ANN

[8,

20,10,

1]

ANN

[8,

20,10,

1]

ANN

[15,20,

1]

ANN

[8,20,1

0,1]

ANN

[15,20,

1]

ANN

[15,20,

1]

ANN

[15,20,

1]

ANN

[15,20,

1]

ANN

[8,20,1

]

7 ANN

[8,

20,10,

1]

ANN

[15,20,

1]

ANN

[8,

20,1]

ANN

[8,

20,10,

1]

ANN

[15,20,

1]

ANN

[8,20,1

0,1]

ANN

[8,20,1

0,1]

ANN

[8,20,1

0,1]

ANN

[8,20,1

0,1]

8 ANN
[8,

20,1]

ANN
[8,

20,1]

ANN
[15,20,

1]

ANN
[8,

20,1]

ANN
[8,20,1

]

ANN
[8,20,1

]

ANN
[8,20,1

]

ANN
[8,20,1

]

ANN
[8,20,1

]

Table 9. Results of Mixed Model: Monthly Data

 50

Method

Forecasting Horizon

1 2 3 4 5 6 7 8

Theta Method in

M3-Competition
1.8 2.7 3.8 4.5 5.6 5.2 Non 6.1

Best ARIMA

Standard Error
1.59
1.42

2.81
3.50

3.40
3.85

4.15
4.28

4.27
3.27

4.75
3.46

4.89
3.17

5.75
3.57

First Order DLM

Standard Error
2.15
4.22

3.82
9.13

4.69
9.75

5.84
10.56

6.23
7.42

7.06
7.97

7.70
7.43

9.12
8.32

Second Order

Ft=[1,1], Gt=[1001]
Standard Error

21.82
14.39

22.04
14.38

22.43
14.74

23.25
15.38

24.50
15.81

25.22
16.59

26.28
17.20

26.69
17.92

Ft=[1,1], Gt=[1010]

Standard Error
21.27
14.19

21.48
14.18

21.87
14.52

22.71
15.12

23.96
15.60

24.68
16.40

25.72
17.02

26.15
17.72

ANN

[9,10,1]

Standard Error
3.77
7.13

4.23
5.85

6.72
15.79

6.31
10.53

6.52
7.44

9.17
18.04

8.89
9.68

10.36
11.47

[12,10,1]

Standard Error
3.04
4.38

4.42
9.18

5.51
8.13

6.52
8.10

6.73
7.71

7.75
10.25

8.58
10.08

9.30
9.45

[20,10.,1]

Standard Error
3.38
5.23

4.32
5.95

5.55
6.47

6.43
11.40

6.89
10.69

8.08
9.99

9.57
11.93

9.53
9.27

[9,20,10,1]

Standard Error
2.83
3.60

4.95
8.21

5.39
6.91

6.90
10.80

8.28
12.89

7.99
9.18

9.33
11.03

9.76
10.92

[12,20,10,1]

Standard Error
2.91
4.62

4.28
5.48

5.90
11.41

5.29
7.29

6.27
6.66

8.25
9.91

8.79
10.16

10.09
10.54

[20,20,10,1]

Standard Error
2.58
4.38

3.98
7.75

4.54
6.14

5.33
6.32

7.19
13.52

7.57
8.41

8.01
7.43

10.07
11.62

[9,10,10,10,1]

Standard Error
4.32
6.66

4.76
5.67

5.66
7.63

6.34
9.23

7.83
8.24

7.90
8.58

10.50
16.56

10.96
13.44

[12,10,10,10,1]

Standard Error
3.34
4.99

4.26
6.95

5.36
7.89

6.23
8.05

6.94
7.51

7.91
11.92

8.34
9.06

9.79
13.65

[20,10,10,10,1]

Standard Error
2.31
4.48

3.72
6.59

4.60
6.93

6.37
8.58

7.05
12.70

6.94
8.12

8.81
7.65

10.47
12.55

Table 10. Average Symmetric MAPE: Other Data

 51

Rank
Forecasting Horizon

1 2 3 4 5 6 7 8

1 Best

ARIMA

Best

ARIMA

Best

ARIMA

Best

ARIMA

Best

ARIMA

Best

ARIMA

Best

ARIMA

Best

ARIMA

2

First

Order

DLM

ANN[20,

10,10,10,

1]

ANN[20,

20,10,1]

ANN[12,

20,10,1]

First

Order

DLM

ANN[20,

10,10,10,

1]

First

Order

DLM

First

Order

DLM

3 ANN[20,

10,10,10,

1]

First

Order

DLM

ANN[20,

10,10,10,

1]

ANN[20,

20,10,1]

ANN[12,

20,10,1]

First

Order

DLM

ANN[20,

20,10,1]

ANN[12,

10,1]

4 ANN[20,
20,10,1]

ANN[20,
20,10,1]

First
Order

DLM

First
Order

DLM

ANN[9,1
0,1]

ANN[20,
20,10,1]

ANN[12,
10,10,10,

1]

ANN[20,
10,1]

5

ANN[9,

20,10,1]

ANN[9,

10,1]

ANN[12,

10,10,10,

1]

ANN[12,

10,10,10,

1]

ANN[12,

10,1]

ANN[12,

10,1]

ANN[12,

10,1]

ANN[9,

20,10,1]

6 ANN[12,

20,10,1]

ANN[12,

10,10,10,

1]

ANN[9,

20,10,1]

ANN[9,

10,1]

ANN[20,

10,1]

ANN[9,

10,10,10,

1]

ANN[12,

20,10,1]

ANN[12,

10,10,10,

1]

7 ANN[12,

10,1]

ANN[12,

20,10,1]

ANN[12,

10,1]

ANN[9,

10,10,10,

1]

ANN[12,

10,10,10,

1]

ANN[12,

10,10,10,

1]

ANN[20,

10,10,10,

1]

ANN[20,

20,10,1]

8 ANN[12,

10,10,10,

1]

ANN[20,

10,1]

ANN[20,

10,1]

ANN[20,

10,10,10,

1]

ANN[20,

10,10,10,

1]

ANN[9,

20,10,1]

ANN[9,1

0,1]

ANN[12,

20,10,1]

9

ANN[20,

10,1]

ANN[12,

10,1]

ANN[9,

10,10,10,
1]

ANN[20,

10,1]

ANN[20,

20,10,1]

ANN[20,

10,1]

ANN[9,2

0,10,1]

ANN[9,

10,1]

10

ANN[9,

10,1]

ANN[9,1

0,10,10,1

]

ANN[12,

20,10,1]

ANN[12,

10,1]

ANN[9,

10,10,10,

1]

ANN[12,

20,10,1]

ANN[20,

10,1]

ANN[20,

10,10,10,

1]

11

ANN[9,

10,10,10,

1]

ANN[9,

20,10,1]

ANN[9,

10,1]

ANN[9,

20,10,1]

ANN[9,

20,10,1]

ANN[9,

10,1]

ANN[9,1

0,10,10,1

]

ANN[9,

10,10,10,

1]

12

DLM

Ft=[1,1]

Gt=[1,0,

1,0]

DLM

Ft=[1,1]

Gt=[1,0,

1,0]

DLM

Ft=[1,1]

Gt=[1,0,

1,0]

DLM

Ft=[1,1]

Gt=[1,0,

1,0]

DLM

Ft=[1,1]

Gt=[1,0,

1,0]

DLM

Ft=[1,1]

Gt=[1,0,

1,0]

DLM

Ft=[1,1]

Gt=[1,0,

1,0]

DLM

Ft=[1,1]

Gt=[1,0,

1,0]

13 DLM

Ft=[1,1]

Gt=[1,0,

0,1]

DLM

Ft=[1,1]

Gt=[1,0,

0,1]

DLM

Ft=[1,1]

Gt=[1,0,

0,1]

DLM

Ft=[1,1]

Gt=[1,0,

0,1]

DLM

Ft=[1,1]

Gt=[1,0,

0,1]

DLM

Ft=[1,1]

Gt=[1,0,

0,1]

DLM

Ft=[1,1]

Gt=[1,0,

0,1]

DLM

Ft=[1,1]

Gt=[1,0,

0,1]

Table 11. Results of Mixed Model: Other Data

 52

REFERENCE

[1] Akaike, H. Statistical predictor identification, Annals of Institute of Statistical

 Mathematics, (1970) 22, 203–217.

[2] Akiaike, H. Information theory and an extension of the maximum likelihood

 principle,in B.N. Petrov and F. Csaki (eds.), Second International Symposium on

 InformationTheory, Akademiai Kiado: Budapest, (1973) 267–281.

[3] Azoff, E.M., 1994. Neural Networks Time series Forecasting of Financial Markets.

 John Wiley and Sons, chichester.

[4] Armstrong, J. Scott and Fred Collopy. Error Measures For Generalizing About

 Forecasting Methods: Empirical Comparisons. International Journal of Forecasting 8

 (1992), 69-80.

[5] Armstrong, J. Scott. Should we redesign forecasting competitions? International

 Jounal of Forecasting 17 (2001) 537-584.

[6] Box, G.E.P. and G.M. Jenkins (1970) Time series analysis: Forecasting and control,

 San Francisco: Holden-Day.

[7] Chatfield, D. A personal view of the M2-Competition. International Journal of

 Forecasting 9, No (1), 23-24.

[8] Clements, Michael P. and Hendry, David F. Explaining the results of the

 M3-Competition. International Journal of Forecasting 17 (2001) 537-584.

[9] Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function.

 Mathematical Control Signals Systems 2, 303-314.

[10] Funahashi, K., 1989. On the approximate realization of continuous mapping by

 neural networks. Neural Networks 2, 183-192.

[11] Hanke, John E. and Arthur G. Reitsch. Business Forecasting, Fifth Edition, Prentice

 Hall (1995)

[12] Haykin, Simon. Neural Networks, A Comprehensive Foundation, Second Edition,

 Prentice Hall (1999).

[13] Hornik, K., Stinchcombe, M., white, H., 1989. Multilayer feedforward networks are

 universal approximators. Nerual Netowrks 2, 395-366.

[14] Jeffrey, Jarrett. Business Forecasting Methods, Second Edition, Basil Blackwell

 (1990).

 53

[15] Keith Ord. Commentaries on the M3-Competition, An introduction, some comments

 and a Scorecard. International Journal of Forecasting 17 (2001) 537-584.

[16] Keith Ord. Michele Hibon, Spyros Makridakis. The M3-Competition. International

 Journal of Forecasting 16 (2000) 433-436.

[17] Klimasauskas, C.C., 1991. Applying neural networks. Part 3: Training a neural

 network, PC-AI, May/June, 20-24.

[18] Koehler, Anne B. The asymmetry of the sAPE measure and other comments on the

 M3-Competition. International Journal of Forecasting 17 (2001) 537-584.

[19] Koning, Alex J. Philip Hans Franses, Michele Hibon and H. O. Stekler.The M3

 competition: Statistical tests of the results. International Journal of Forecasting xx

 (2004) xxx-xxx.

[20] Lapedes, A., Farber, R., 1987. How neural nets work. In: Anderson, D.Z., (Ed.),

 Nerual Information Processing Systems, American Institute of Physics, New York,

 pp. 442-456.

[21] Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R.,

 Newton, J., Parzen, E., & Winkler, R. (1982). The accuracy of extrapolation (time

 series) methods: results of a forecasting competition. Journal of Forecasting 1, 111–

 153.

[22] Makridakis, S., Chatfield, C., Hibon, M., Lawrence, M., Mills, T., Ord, K., &

 Simmons, L. F. (1993). The M-2 Competition: a real-time judgmentally based

 forecasting study. International Journal of Forecasting 9, 5–23.

[23] Makridakis,Spyros Forecasting: its role and value for planning and strategy.

 International Journal of Forcasting 12 (1996) 513-537.

[24] Makridakis, S., & Hibon, M. (1979). Accuracy of forecasting: an empirical

 investigation (with discussion). Journal of the Royal Statistical Society A 142,

 97–145.

[25] Makridakis, Spyros, Hibon Michele and Claus Moser. Accuracy of Forecasting: An

 Empirical Investigation. Journal of the Royal Statistical Society. Series A (General),

 Vol. 142, No, 2 (1997), 97-145.

[26] Makridakis Spyros and Hibon Michele. Response to the commentaries on „The

 M3-Competition: results, conclusions and implications‟. International Journal of

 Forecasting 17 (2001) 537-584.

[27] Makridakis Spyros and Michele Hibon. The M3-Competition: results, conclusions

 and implications. International Journal of Forecasting 16 (2000) 451-476.

 54

[28] Makridakis, Spyros Wheelwright Steven C. and McGee, Victor E. forecasting:

 Methods and Applications, Second Edition, John Wiley & Sons (1983).

[29] McClelland, J. L., Rumelhart, D. E. Explorations in parallel distributed processing:

 A handbook of models, programs, and exercises (1988).

[30] Newbold, P., & Granger, C.W. J. (1974). Experience with forecasting univariate

 time series and the combination of forecasts (with discussion). Journal of Royal

 Statistical Society A 137, 131–165.

[31] Perambur S. Neelakanta and Dolores F. De Groff. Neural Network Modeling,

 Statistical Mechanics and Cybernetic Perspectives, CRC Press (1994).

[32] Phillip, M. Yelland and Lee Eunice. Forecasting Product Sales with Dynamic Linear

 Mixture Models.

[33] Pole,A. M. West and P.J. Harrison (1994) Applied Bayesian Forecasting and Time

 Series Analysis. Chapman-Hall, New York.

[34] Reid, D.J. (1969). A comparative study of time series prediction techniques on

 economic data. PhD Thesis, Department of Mathematics, University of Nottingham.

[35] Reid, D. J. (1975). A review of short term projection techniques. In: Gordon, H. D.

 (Ed.), Practical aspects of forecasting, Operational Research Society, London, pp.

 8–25.

[36] Rumelhart, D. E., McClelland, J. L.. Parallel distributed processing: Explorations in

 the microstructure of cognition (Vol. 1). Cambridge, MA: MIT Press (1986).

[37] Sandy D. Balkin. The value of nonlinear models in the M3-Competition.

 International Journal of Forecasting 17 (2001) 537-584.

[38] Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986). Akaike Information Criterion

 Statistics. D. Reidel Publishing Company.

[39] Sharda, R., 1994. Neural networks for the MS/OR analyst: An application

 bibliography. Interfaces 24 (2), 116-130.

[40] Sheldon, M. Ross. Introduction to Probability Models, Eighth Edition, Academic

 Press (2003).

[41] Stekler, Herman. The M3-Competition: the need for formal statistical tests.

 International Journal of Forecasting 17 (2001) 537-584.

[42] Tashman, Leonard J. Out-of-sample tests of forecasting accuracy: an analysis and

 review. International Journal of Forecasting 16 (2002) 437-450.

 55

[43] Thomas M. O‟Donovan. Short Term Forecasting, An introduction to the

 Box-Jenkins Approach, John Wiley & Sons (1983).

[44] West, Mike and Harrison, Jeff. Bayesian Forecasting and Dynamic Models, Second

 Edition, Springer (1997).

[45] Widrow, B., Rumelhart, D.E., lehr, M.A., 1994. Neural Networks: Applications in

 industry, business and science. Communications of the ACM 37 (3), 93-105.

[46] White, H., 1998. Learning in artificial neural networks: A statistical perspective.

 Neural Computation 1, 425-464.

[47] Zhang, Guoqing B. Eddy Patuwo and Michael Y. Hu. Forecasting with artificial

 neural networks: The state of the art. International Journal of Forecasting 14 (1998)

 35-62.

 56

APPENDIX

Appendix A. Best ARIMA Model Code (R 2.0.1)

Library ("MASS") # Upload MASS Package

Library ("forecast") # Upload Forecast Package

path1 <- "C:\\Documents and Settings\\My Documents\\sam\\m3\\M3data3003\\"

Specify the path of the data list folder

files1 <- read.table("C:\\Documents and Settings\\cas\\My

Documents\\sam\\m3\\monthly_list1428.csv",header=FALSE,sep=",")

Read the monthly list

n1 <- nrow(files1) #Get the length of the list

SMAPE <- rep(0,n1) #Initial the matrix of the SMAPE

for (i in 1:n1){ # Set up loop for the whole list

 path2 <- files1[i,1] #Get the name of each series

 nval1 <- files1[i,2] #Get the length of valid numbers of each series

 nfct1 <- files1[i,3] #Get the length of reserved numbers of each series

 path3 <- paste(path1,path2,sep="") # get the series‟ path

 X1 <- read.table(path3,header=FALSE,sep=",") #Read in one series

 valid1 <- X1[(nval1-nfct1+1):nval1,1] # Read in the reserved data

 train1 <- X1[1:(nval1-nfct1),1] # Read in the training data

fit <- best.arima(train1,d=1,D=12,max.p=3,max.q=3,max.Q=3,alpha=0.05)

Apply the best ARIMA model to train series „train1‟

 # Set the order of first-differencing d equal to 1

 # Set the order of seasonal-differencing, for monthly data, D equal to 12

 # Set the maximum value of p equal to 3

 # Set the maximum value of q equal to 3

 # Set the maximum value of Q equal to 3

 # Set the Level for unit-root tests used to determine the order d of differencing

 fcst1<-forecast(fit,h=nfct1) # Use the trained model to forecast h horizon ahead

 SMAPE <- t(abs(fcst1$mean-valid1)/((fcst1$mean+valid1)/2)) # Calculate the SMAPE

 X12 <- data.frame(path2,SMAPE) # Creates data frames to store the value of SMAPE

 57

write.table(X12,"C:\\Documents and Settings\\cas\\My

Documents\\sam\\result\\AllLagsMAPEmonthly.csv",append=TRUE,sep=",",row.names

=FALSE,col.names=FALSE)}

Save the results to a specify folder in CSV format

plot(forecast(fit,h=nfct1)) # plot the forecast result

Appendix B. ANN Code in Matlab 7.0.1

% Read in the file for the matches and probes.

clear all;

tic;

% Start measure elapsed time

[seriesfile,length,hold] = textread('C:\Documents and Settings\Administrator\My

Documents\sam\m3\monthly_list1428.txt','%s %d %d');

% Get the series name, series length and the number of reserve data

path1 = 'C:\Documents and Settings\Administrator\My

Documents\sam\m3\M3data3003\';

% Specify the path of the data folder

outfilename = 'C:\Documents and Settings\Administrator\My

Documents\sam\karl_nn_rand_monthly_2010_d=10.csv';

% Create the output file

fid = fopen(outfilename,'w');

% Open the output file for reading and writing

% Set the horizon and delay

nfiles = size(seriesfile,1);

% Get the size of the whole data list

horiz=18;

% Set up the horizon, yearly=6, quarterly=8, monthly=18, other=8.

delay=10;

% set up the delay, could be various, but was bounded subjuct to the length of the series.

 % for monthly maxdelay=11, other maxdelay=46, yearly

 % delay=1,2,3,4, Maxhroiz=6,5,4,3

 % for quarterly, there is a problem, maxdelay=16-8-8=0

seriesleng=length-hold;

% Get the length of the training data

minseriesleng=min(seriesleng);

% Check the minimum length of training data of all series

neuroconfig = [delay,20,10,1];

% Set the network config, 4 layers network

% Set the size of each layer, Inputlayer = delay, hidenlayer1 = 20, hidenlayer2 = 10,

outputlayer = 1

trainalgo = 'trainlm';

% Specify the training function, „trainlm‟ represents the Levenbery-Marquardt

algorithm. % also could use trainrp, traingdx, traincgp, etc.

 58

 for i = 1:nfile1; % Set up the loop for the data;

 for j=1:horiz; % Forecasting all required horizon

 file1 = char(seriesfile(i)); % Get a series name

 path2 = [path1, file1]; % Get a series

 tseries = csvread(path2); % Read in a series

 datasize = length(i,:); % Get the length of the series

 datahold = hold(i,:); % Get the length the data reserved

 datavalid = datasize-datahold; % Get the number of training data

 trgnum = datavalid+j;

 % Get the target number in the series for accuracy evaluation

 % begian Neural Network

 [P,T]=createInputTarget(tseries(1:datavalid,1),tseries(1:datavalid,1),delay,j);

 % Apply createInputTarget function to reate the input and target for training

 [pn,meanp,stdp,tn,meant,stdt]=prestd(P,T);

 % Normalize the original inputs and targets into a standard normal distribution

 % or [pn,minp,maxp,tn,mint,maxt]=premnmx(P,T); % Normalize the data in [-1,1]

 net = newff(minmax(pn),neuroconfig,{'tansig','tansig','tansig','purelin'},trainalgo);

 % Create a feed-forward backpropagation network

 % Set Parameters for NN;

 net.trainParam.goal=1e-6; % Set up the networks goal.

 net.trainParam.show = 300;

 net.trainParam.lr = 0.2;

 % Set up the learning rate lr. If the lr is set too big, the algorithm may oscillate and

 % become unstable. If the lr is too small, the algorithm will take too long to converge.

 %Test lr=0.005, 0.01, 0.05, 0.1, 0.2, 0.25

 net.trainParam.mem_reduc=2; % Decrease the amount of memory needed

 net.trainParam.min_grad=1e-8; % Set the min gradient.

 net.trainParam.epochs = 2000; % Set the max epochs

 % Apply random function to make the training randomly

 [pnran,tnran]=randomFn(pn,tn,delay);

 net=init(net); % Initializing networks weigh and bias before training

 [net,tr] = train(net,pnran,tnran); % Train the network with random input and target

 simin=sim(net,pn); % Simulate result

 focin=poststd(simin,meant,stdt); % Retrun the simulation result in original units

 % or simresults=postmnmx(an,mint,maxt);

 pnew=tseries(datavalid-delay+1:datavalid); % Pick up the data used in forecasting

 pnewn=trastd(pnew,meanp,stdp); % Preprocess the data pnew

 anpnewn=sim(net,pnewn); % Simulation the preprocessed data pnew

 fcstpnew(i,j)=poststd(anpnewn,meant,stdt);

 % Return the forecasting result in original units

 if fcstpnew(i,j) < 0 % Refine the forecast value make the negative results equal to 0;

 fcstpnew(i,j) = 0;

 end;

 %madin(i,j)= MAD_nn(simresults,tseries(trgnum,1));

 % mean absolute error for each series

 59

 smapein(i,j) = SMAPE_nn(fcstpnew(i,j),tseries(trgnum,1));

 % Symmetric mean absolute percentage error for each series

 end

 outputsmape(i,:)=cat(2,delay,smapein(i,:)); % Concatenate the output

 fprintf(fid,'%s, %1.0f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f,

 %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f, %8.4f,

 %8.4f\n',file1,outputsmape(i,:));

 % Output the SMAPE of all horizon for each series, column size should be equal to

the horizon+1

end % End of loop

toc; % Stop the clock of the elapsed time measuring

t=toc % Output the elapsed time

SMAPEnn(delay,:)=mean(smapein(:));

% The mean of SMAPE of the entire seasonal data set

allfoc=cat(2,focin,fcstpnew(1,:));

% Concatenate the last in-sample and out-sample forecasting results

figure;plot(delay+horiz:datasize,tseries(delay+horiz:datasize),'b',delay+horiz:datasize,allf

oc,'r-','linewidth',2);

% Grahp the last series all simulation result

title(sprintf('%s: %d %d %s %s',

char(seriesfile(i)),delay,horiz,trainalgo,num2str(neuroconfig)));

% Title and legend

fclose(fid); % Close the file after writing

ANN Functions:

1. CreateInputTarget Function:

function [in,tgt] = createInputTarget(I,T,delay,horiz)

numtrainpts = size(T,1);

ilength = numtrainpts-delay-horiz+1;

tgt = transpose(T(delay+horiz:numtrainpts,1));

 for i=1:delay;

 in(i,:)=I(i:ilength+i-1);

 end

Random Function:

2. function [randinput,randoutput] = randomFn(inputmatrix, outputmatrix,inputrowsize)

pnsize=size(inputmatrix,2); % Get the loop size

rannum=randperm(pnsize); % Get the random number list

pnran=zeros(inputrowsize,pnsize);

% Get the matrix frame of random input and output

 tnran=zeros(1,pnsize);

 for k = 1:pnsize

 60

 randinput(:,k)=inputmatrix(:,rannum(k));

 % Randomly rearrange the input and the target

 randoutput(:,k)=outputmatrix(:,rannum(k));

 end

3. SMAPE function

function result = SMAPE_nn(fcst,act)

res = 100*abs(fcst - act)/((fcst+act)/2);

result = res;

Appendix C. DLM Code in Matlab 7.0:

% Read in the file for the matches and probes.

clear all;

tic;

[seriesfile,length,hold] = textread('C:\Documents and Settings\Owner\My

Documents\asheng\school\Thesis stuff\Mdata\m3\monthly_list1428.txt','%s %d %d');

path1 = 'C:\Documents and Settings\Owner\My Documents\asheng\school\Thesis

stuff\Mdata\m3\M3data3003\';

outfilename = 'C:\Documents and Settings\Owner\My Documents\asheng\school\Thesis

stuff\results\DLM_yearly.csv';

fid = fopen(outfilename,'w'); % Open the file for reading and writing

nfiles = size(seriesfile,1); % Get the size of the whole data list

horiz=18; % Set up the horizon, yearly=6,quarterly=8,monthly=18,other=8.

% Set Parameters for DLM;

Ft = [1; 0]; % Sensitive, possible [1 0],[1,1],[0 1], second number control forecast

mean

Gt = [1 0; 1 1]; % The third has to be zero, the others not sensitive

Ct = [1 1; 0 1]*100000000; % Sensitive, affect the vibration especially the at the

beginning when pick huge or extremely small value

% W1 = eye(2,2)*1000000; % Sensitively contral the vibration when the number is

biger enought.

 W1parcand =

[.0000001,.000001,.00001,.0001,.001,.1,10,100,10000,10000,100000,1000000,10000000

,100000000];

 wtOptCand =

[.00000001,.000001,.0001,.001,.1,1,10,100,1000,10000,10000,1000000];

 dtOptCand = [.00000001,.000000,.0001,.001,.1,1,10,100,1000,10000,1000000];

 StOptCand =

[.0001,.001,.1,10,100,10000,10000,100000,1000000,10000000,100000000];

 61

 wtO = 1;

 dtO = 1;

 StO = 1;

 DLMMSEinit = 100000000; % Initial the MSE with a huge value

for i = 3; % for the entire data set use i=1:nfiles

 file1 = char(seriesfile(i)); % Get a series name

 path = [path1, file1]; % Get a series

 tseries = csvread(path); % Read in a series

 datasize=length(i,:); % Get the length of the series

 datahold=hold(i,:); % Get the length the data hold

 datavalid= datasize - datahold; % The number of data could be used in forecasting

 trgnum=tseries(datavalid+1:datasize,1);

 %trgnum= datavalid + horiz; % Set the target number in the series for accuracy

evaluation

 mt = [tseries(1);0];

 % Optimize W1, wt, dt, and St

 for W1C = W1parcand; W1 = eye(2,2)*W1C;

 for wt = wtOptCand;

 for dt = dtOptCand;

 for St = StOptCand;

 DLMMSE = DLMFNMSE(tseries(1:datavalid),Ft,Gt,mt,Ct,dt,St,W1,wt);

 while DLMMSE < DLMMSEinit % Get the min MSE

 DLMMSEinit = DLMMSE;

 wtO = wt;

 dtO = dt;

 StO = St;

 W1O = W1C;

 end

 end

 end

 end

 end

wtO % Output the value of the optimal parameter

dtO

StO

W1O

W1=eye(2,2)*W1O;

 % begin DLM

 mt = [mean(tseries(1:2));mean(tseries(1:2))]; %initialize the first value

 [f,f1] = DLMFN2(tseries(1:datavalid),Ft,Gt,mt,Ct,dtO,StO,W1,wtO,horiz); %call

the DLM function

 62

 finleng=size(f,2);

 smapein = SMAPE_DLM(f1,trgnum'); % Symmetric mean absolute percentage

error for each serie

 outputsmape(i,:)=cat(2,horiz,smapein);

fprintf(fid,'%s, %d, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, %

8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, % 8.4f, %

8.4f\n',file1,outputsmape(i,:)); % The output size should equal to the horizon

end

 allfoc=cat(2,f(1:finleng-1),f1); % Concatenate the last in-sample and out-sample

forecasting results for the figure

 figure;plot(2:datasize,tseries(2:datasize),'b-',2:datasize,allfoc,'r-','linewidth',2);

% Grahp the last all series simulation

 title({['yearly-DLM-Char: ', file1]; 'blue:actual red:forecast'});

 toc;

 fclose(fid);

 t=toc

DLM Functions:

1. DLMFNMSE Function

function result = DLMFNMSE(z,Ft,Gt,mt,Ct,dt,St,W1,wt1)

% Use this function to train and optimize.

wt = eye(2,2)*wt1; %wt = eye(2,2)*wt1*(1-delta)/delta;

W = eye(2,2)*W1; % ?

Rtk = Ct*1; %Rtk = Ct*1/delta;

zlen = size(z);

zlen = zlen(1);

ft = mean(z(1:2));

et2 = 0;

for i=1:zlen

 Rt = Gt*Ct*Gt' + W;

 Qt = Ft'*Rt*Ft + St;

 et = z(i) - ft;

 dt = dt + St*et^2/Qt;

 At = Rt*Ft/Qt;

 zi=z(i);

 at = Gt*mt;

 ft = Ft'*at;

 mt = at + At*et;

 St1 = St*1;

 63

 St = St + St/i*(et^2/Qt - 1);

 Ct = St/St1*(Rt-At*At'*Qt);

 Rtk = Gt*Rtk*Gt + wt;

 Q1 = Ft'*Rtk*Ft + St;

 et2 = et2 + et^2;

end

result = et2;

2. DLMFUN2 Function:

function [fin,fout] = DLMFN2(z,Ft,Gt,mt,Ct,dt,St,W1,wt1,horizon)

% Use this function to train and optimize.

wt = eye(2,2)*wt1; %wt = eye(2,2)*wt1*(1-delta)/delta;

W = eye(2,2)*W1;

Rtk = Ct*1; %Rtk = Ct*1/delta;

et = 0;

zlen = size(z);

zlen = zlen(1);

ft = mean(z(1:2));

f(1)=ft;

for i=1:zlen

 Rt = Gt*Ct*Gt' + W;

 Qt = Ft'*Rt*Ft + St;

 et = z(i) - ft;

 dt = dt + St*et^2/Qt;

 At = Rt*Ft/Qt;

 zi=z(i);

 at = Gt*mt;

 ft = Ft'*at;

 mt = at + At*et;

 St1 = St*1;

 St = St + St/i*(et^2/Qt - 1);

 Ct = St/St1*(Rt-At*At'*Qt);

 Rtk = Gt*Rtk*Gt + wt;

 Q1 = Ft'*Rtk*Ft + St;

 f(i+1)=ft;

end

fin=f(1:i);

for i=1:horizon

fout(i) = Ft'*Gt^(i)*mt;

end

3. SMAPE_DLM Function:

 64

function result = SMAPE_DLM(fcst,act)

 for i = 1:size(fcst,2);

 res(1,i) = 100*abs(fcst(i) - act(i))/((fcst(i)+ act(i))/2);

 end

result = res;

Appendix C. SAS Code for One-way ANOVA

/* Import data sheet from excel*/

PROC IMPORT OUT= WORK.other_h1

 DATAFILE= "C:\Documents and Settings\Owner\My Documents\

 asheng\school\Thesis stuff\ANOVA_raw\other\each horizon\other_H1.xls"

 DBMS=EXCEL2000 REPLACE;

 RANGE="Sheet1$";

 GETNAMES=YES;

RUN;

/* Run mix ANOVA model at every forecast horizon*/

PROC MIXED DATA=other_h1;

 CLASS paradigm series;

 MODEL SMAPE=paradigm;

 RANDOM series;

 lsMEANS paradigm/pdiff;

TITLE "Mixed ANOVA for other data, h=1";

RUN;

