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ABSTRACT

We begin by finding an appropriate parametrization for d that will ensure
√

d has

continued fraction expansion of period three. After finding this parametrization, we

use elementary arguments to limit the possible values of d leading to real quadratic

number fields Q(
√

d) of class number one to a set of 30 congruence classes modulo

9240. We then examine the class number formula, and using an analytic result we

are able to place an upper bound on d beyond which the class number must exceed

one (with at most one exception).

We conclude by examining algorithms that enable us to compute the class num-

ber more efficiently. Using such algorithms (as programmed in PARI) we give an

enumeration of all such fields with class number one.
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1 INTRODUCTION

In 1966, H. M. Stark published a paper proving that the number of complex

quadratic number fields with class number one is finite. This paper was an extension

of ideas originally published by Heegner. The related question of the number of real

quadratic number fields with class number one is still unsolved. Gauss himself

conjectured that the number of such fields is infinite.

Short of proving the conjecture for all real quadratic number fields, many papers

have been published looking at the number of such fields where the discriminant

takes on special forms. In two papers published in Acta Arithmetica in 2003, Biro

considered real quadratic number fields of the form Q(
√

d) where d = p2 + 4 (p an

odd positive integer) [7] and where d = 4p2 + 1 (p a positive integer) [8]. In both

cases, the natural assumption that d be squarefree was in force.

We consider real quadratic number fields Q(
√

d) where d is a squarefree positive

integer with a continued fraction expansion of period three. The continued fraction

assumption will lead to a parametrization for these numbers and provide nice limits

on possible norms for elements in the associated number rings.

We first give some background on continued fraction expansions of quadratic

surds and then develop the parametrization of our class of numbers. Finally, we

tackle the question of class number.



2 CONTINUED FRACTIONS

A continued fraction is any expression of the form

a0 + 1
a1+ 1

a2+ 1

···+ 1
an

where n can be arbitrarily large or infinite. The quantities a0, a1, . . . , an are called

partial quotients and can be integers, real numbers, or even complex. For our pur-

poses, we limit ourselves to regular continued fractions - ones that have positive

integers as partial quotients (except a0 which can be any integer). We typically

write continued fractions in the form [a0; a1, a2, . . . , an] to save space.

If a continued fraction has only a finite number of partial quotients, then it

represents a rational number. We will be dealing with an infinite sequence of partial

quotients - [a0; a1, a2, . . .]. An infinite continued fraction is necessarily irrational

[6][p.4]. In what follows, it is critical that we be able to find the convergents of

the continued fraction. These are the rational numbers we obtain by truncating our

continued fraction expansion after a finite number of partial quotients. We label

these convergents Cn = [a0; a1, a2, . . . , an]. Thus,

C0 = a0

C1 = a0 +
1

a1

=
a0a1 + 1

a1

C2 = a0 +
1

a1 + 1
a2

=
a0(a1a2 + 1) + a2

a1a2 + 1

This suggests we develop a recursive formula for the convergents. This can be

done, and the results are two recursively defined sequences Ak and Bk such that

Ck = Ak

Bk
. The number Ak is called the numerator of the convergent while Bk is

called the denominator of the convergent. They are given by



A−1 = 1 B−1 = 0

A0 = ao B0 = 1

and for k ≥ 0

Ak+1 = ak+1Ak + Ak−1 Bk+1 = ak+1Bk + Bk−1 (1)

and satisfy the linear diophantine equation AkBk−1−Ak−1Bk = (−1)k−1 (c.f. [6][pp.

1-2]).

If t = [a0; a1, a2, . . .], then we wish to determine the relationship between t and

its convergents. We first define the k-th complete quotient ζk of t:

ζk = [ak; ak+1, ak+2, . . .].

It turns out that t satisfies the following relationship for all k ≥ 0 [6][pp.4-5]:

t = Akζk+1+Ak−1

Bkζk+1+Bk−1
. (2)

This result is crucial for what follows on periodic continued fractions.

The convergents of a continued fraction are a sequence of rational numbers whose

limit is the irrational number t represented by the continued fraction. These con-

vergents are not just random rational numbers, but turn out to be the best rational

approximations to t in the sense that a convergent a
b

of t is the closest rational num-

ber to t with denominator less than or equal to b [6][pp.19-37]. This is a powerful

result and drives many of the applications of continued fractions - including the

result on norms we eventually wish to use.

Now that we have made basic definitions and motivated the use of continued

3



fractions, we need a means of calculating the continued fraction expansion of a given

irrational number. In what follows, we use bxc to indicate the greatest integer less

than x (or the floor function of x) and T to represent the transformation T (x) = 1
x
.

We can see that a0 = btc and that t − a0 = [0; ζ1] is an irrational number in

the interval (0, 1). Using the transformation T on t − a0 gives T (t − a0) = ζ1 =

[a1; a2, a3, . . .]. Thus, a1 = bT (t− a0)c. Repeating this process with ζ1− a1 will give

us a2 and so forth. Thus, we obtain the continued fraction expansion of any irrational

number by a sequence of integer approximations and inversions [6][pp.8-9]. We note

that with the exception of a0, none of the partial quotients a1, a2, . . . can ever be

zero. We see this since each such quotient is found by finding the greatest integer less

than a quantity which is the multiplicative inverse of an irrational number between

zero and one. Hence, each quotient is at least one.

We now wish to consider continued fraction expansions where the partial quo-

tients repeat in some block. To that end, we write

t = [a0; a1, . . . , an−1, an, . . . , an+m−1]

to represent a continued fraction expansion with initial block of length n (of non-

repeating partial quotients a0, a1, . . . , an−1) and repeating block of length m (an, . . . , an+m−1).

We are supposing that there is no shorter possible repeating block and that the initial

block does not contain a copy of the repeating block.

Lagrange was the first to prove that t has a periodic continued fraction expansion

if and only if t is a quadratic surd. The fact that a periodic continued fraction

represents a quadratic surd is a consequence of the fact that the complete quotients

are themselves periodic (namely, ζn = ζn+m = ζn+2m = · · ·) combined with equation

(2) above.

For our purposes, we wish to consider expansions of
√

d where d is a non-square

4



positive integer. It turns out that for numbers of this form, the continued fraction

expansion has a nice symmetry property [6][p.47]:

√
d = [a0; a1, a2, . . . , a2, a1, 2a0]. (3)

This result along with the periodicity of the complete quotients will give us a means

of determining which of these numbers have period three.

5



3 A PARAMETRIZATION FOR
√

d WITH CONTINUED FRACTION

EXPANSION OF PERIOD LENGTH THREE

Now that we have given some background on continued fractions, we wish to

utilize these results to determine a parametrization for numbers of the form
√

d

with d a non-square positive integer having a continued fraction expansion of period

length three.

Theorem 3.1 Let d be a positive integer that is not a perfect square, and let ` and

n be strictly positive integers. Then
√

d has a continued fraction expansion of period

length three if and only if d is of the form

d = [`(4n2 + 1) + n]2 + 4`n + 1. (4)

In this case, the continued fraction expansion of
√

d is given by

√
d = [`(4n2 + 1) + n; 2n, 2n, 2(`(4n2 + 1) + n)].

We note that though the parametrization is slightly unwieldy, the two parameters

` and n are completely free with the exception that they be positive integers. This

gives as an immediate consequence that there are an infinite number of integers

d giving rise to continued fractions of period length three (a result which actually

holds for every period length). In addition, this form will lead to certain divisibility

properties that will be crucial in later discussions.

Proof of Theorem 3.1:

We begin with the sufficiency of the parametrization. To that end, we assume

that d is of the form given in (4) for some choice of parameters ` and n (which are

assumed to be positive integers). We put to use the method for finding the continued



fraction expansion briefly outlined above. First, we need to find a0.

a0 = b
√

dc

= b
√

[`(4n2 + 1) + n]2 + 4`n + 1c

We note that

[`(4n2 + 1) + n]2 < [`(4n2 + 1) + n]2 + 4`n + 1 < [`(4n2 + 1) + n + 1]2

or

`(4n2 + 1) + n <
√

[`(4n2 + 1) + n]2 + 4`n + 1 < `(4n2 + 1) + n + 1

which gives us that a0 = `(4n2 + 1) + n.

To find a1, we need to determine
⌊

1√
d−a0

⌋
.

a1 =

⌊
1√

d− a0

⌋

=

⌊√
d + a0

d− a2
0

⌋

=

⌊√
d + a0

4`n + 1

⌋

Since

2a0 <
√

d + a0 < 2a0 + 1

we have

8`n2+2`+2n
4`n+1

<
√

d+a0

4`n+1
< 8`n2+2`+2n+1

4`n+1

The left most term gives a lower bound of

2n < 2n + 2`
4`n+1

= 8`n2+2`+2n
4`n+1

7



while the right most term gives an upper bound of

8`n2+2`+2n+1
4`n+1

= 2n + 2`+1
4`n+1

< 2n + 1 .

Thus, we must have a1 = 2n.

To find a2, we must determine

a2 =

⌊
1

√
d+a0

4`n+1
− a1

⌋

=

⌊
4`n + 1√

d + a0 − 8`n2 − 2n

⌋

Since
√

d + a0 > 2a0 we have that

4`n + 1√
d + a0 − 8`n2 − 2n

<
4`n + 1

2a0 − 8`n2 − 2n

=
4`n + 1

2`

< 2n + 1.

To give an effective lower bound on this quantity, we must tighten our upper

bound on
√

d + a0. To that end we show
√

d < a0 + 1
2n

.

√
d =

√
a2

0 + 4`n + 1

<

√
a2

0 + 4`n +
`

n
+

1

4n2
+ 1

=

√
a2

0 +
a0

n
+

1

4n2

=

√
(a0 +

1

2n
)2

= a0 +
1

2n
.

8



Using this result, we see that

4`n + 1√
d + a0 − 8`n2 − 2n

>
4`n + 1

2a0 + 1
2n
− 8`n2 − 2n

=
4`n + 1

2` + 1
2n

= 2n

which when combined with the upper bound given above shows that a2 = 2n.

For a3 we must determine

⌊
1

4`n+1√
d+a0−8`n2−2n

−2n

⌋
:

a3 =

⌊
1

4`n+1√
d+a0−8`n2−2n

− 2n

⌋

=

⌊√
d + a0 − 8`n2 − 2n

2na0 + 1− 2n
√

d

⌋

=

⌊
(
√

d + a0 − 8`n2 − 2n)(2na0 + 1 + 2n
√

d)

4`n + 1

⌋

=
⌊√

d + a0

⌋

= 2a0.

When we compute a4 we find that

a4 =

⌊
1√

d + a0 − 2a0

⌋

=

⌊
1√

d− a0

⌋

= a1.

At this point, we can see that the quotients repeat. Thus, we have shown that if

d has the form given by (4), then
√

d = [`(4n2 +1)+n; 2n, 2n, 2(`(4n2 + 1) + n)].

We now show the necessity of the parametrization. We assume that d is a positive

integer (not a perfect square) such that
√

d has a continued fraction expansion of

9



period three:

√
d = [a0; a1, a1, 2a0].

We have used the result in (3) above to restrict the number of parameters appropri-

ately. It appears that there should be two parameters. We note that a0 is not zero

(as
√

d > 1) and that a1 cannot be zero. In addition, we cannot have a1 = 2a0 as

then we would have period length one - which are known to be of the form m2 + 1

for any strictly positive integer m.

Aside from the restrictions above, it is far from clear how a0 and a1 are related.

The requirement that d be an integer is fairly restrictive. It can be shown for example

that the continued fraction expression [1; 1, 1, 2] is the expansion of
√

10
4
. So, the

parameters a0 and a1 are not the ones we seek.

Letting ζ1 = [a1; a1, 2a0], we have that

[a0; ζ1] = [a0; a1, a1, 2a0, ζ1].

Solving this equation for ζ1 we find that

A0ζ1 + A−1

B0ζ1 + B−1

=
A3ζ1 + A2

B3ζ1 + B2

where the Ak and Bk are the numerator and denominator of the k-th convergent as

determined in (1).

After some laborious algebra, we find that ζ1 satisfies the quadratic expression

(2a0a1 + 1)ζ2
1 − (2a0a

2
1 + 2a0)ζ1 − (a2

1 + 1) = 0.

10



Since ζ1 is positive, we can use the quadratic formula to find its exact value in terms

of a0 and a1. In fact, we find that

ζ1 =
2a0a

2
1 + 2a0 +

√
(2a0a2

1 + 2a0)2 + 4(2a0a1 + 1)(a2
1 + 1)

2(2a0a1 + 1)
.

From our definition of ζ1 we have
√

d = a0 + 1
ζ1

so that

√
d = a0 +

2(2a0a1 + 1)

2a0a2
1 + 2a0 +

√
(2a0a2

1 + 2a0)2 + 4(2a0a1 + 1)(a2
1 + 1)

which reduces to

√
d =

√
a2

0 +
2a0a1 + 1

a2
1 + 1

.

If d is to be an integer then we will need conditions on a0 and a1 that will ensure

2a0a1 + 1

a2
1 + 1

(5)

is an integer. We first observe that if a1 is odd, the denominator of (5) will be even.

But then (5) cannot be an integer as the numerator is obviously an odd integer.

Hence a1 must be even. Parameterize a1 by setting a1 = 2n where n is any positive

integer.

Using n in favor of a1 we find that (5) becomes

4a0n + 1

4n2 + 1
. (6)

For (6) to be an integer, we must have

4a0n + 1 ≡ 0(mod 4n2 + 1)

11



or what is equivalent

4a0n ≡ 4n2(mod 4n2 + 1).

Since both 4 and n are relatively prime to 4n2 + 1 we must have

a0 ≡ n(mod 4n2 + 1).

Let ` be an integer. Then

a0 = `(4n2 + 1) + n.

Thus, we have shown that for a square free positive integer d if
√

d = [a0; a1, a1, 2a0]

then we must have

a0 = `(4n2 + 1) + n

and

a1 = 2n

where ` and n are a pair of non-negative integers.

We note that n 6= 0 as then a1 = 0. Also, ` 6= 0 since then a0 = n and our

continued fraction would have period one. Hence, we must restrict ` and n to the

positive integers. We then have for our integer d

d = (`(4n2 + 1) + n)2 + 4`n + 1. QED

We note that characterizations of
√

d with period one and two are well known.

We mentioned the parametrization for period one above. For period two, we must

12



have d = a2 + b where b divides 2a. The parametrization for period three is a little

complicated, but still tractable. For longer period lengths, it seems that finding

reasonably nice parametrizations is difficult at best.

For example, if
√

d = [a0; a1, a2, a1, 2a0] (period four), then we eventually find

that the quantity

2a0a1a2+2a0+a2

a1(a2a1+2)

is required to be integral. We can certainly find conditions on the parameters, but

they do not seem to lead to a definite parametrization. We see, for example, that a0

can be any positive integer greater than 1. This is true since the continued fraction

[n; 1, n− 1, 1, 2n] satisfies the above condition and has period four if n 6= 1. It seems

that one of the other parameters can be chosen freely, but the conditions on the

third parameter are complicated.

For the remainder of the paper, we focus on the case of period three since these

numbers admit a reasonable parametrization. For definiteness, we give a table of

the first few of these numbers with their continued fraction expansion (see Appendix

A).

13



4 DIVISIBILITY PROPERTIES OF d

We have determined a parametrization of numbers d such that
√

d has a contin-

ued fraction expansion of period three. Specifically
√

d has period three if and only

if

d(`, n) = [`(4n2 + 1) + n]2 + 4`n + 1.

We now seek to determine certain divisibility properties of these numbers. We first

note that

d(`, n) ≡ (` + n)2 + 1 (mod 4).

Since any square modulo 4 is either 0 or 1, we must have d ≡ 1, 2 (mod 4). In

particular, if ` and n have the same parity, then (` + n)2 ≡ 0 (mod 4) so that d ≡ 1

(mod 4). If ` and n have opposite parity, then (` + n)2 ≡ 1 (mod 4) so that d ≡ 2

(mod 4).

We further classify the numbers d ≡ 1 (mod 4). We know that in this case ` and

n are congruent modulo 2. Expanding the representation of d and reducing modulo

8 we find that

d ≡ `2 + n2 + 6`n + 1 (mod 8).

Suppose further that ` and n are congruent modulo 4. Then ` = 4r + s, n = 4t + s,

and

d ≡ (4r + s)2 + (4t + s)2 + 6(4r + s)(4t + s) + 1 (mod 8)

≡ 1(mod 8).



Now suppose ` and n are not congruent modulo 4. Then ` = 4r + s, n = 4t + u

where s ≡ u (mod 2) but s and u are not congruent modulo 4. Then

d ≡ (4r + s)2 + (4t + u)2 + 6(4r + s)(4t + u) + 1 (mod 8)

≡ s2 + u2 + 6su + 1 (mod 8)

Since this last congruence is symmetric with respect to s and u we need only

consider two cases : 1) s = 0 and u = 2, and 2) s = 1 and u = 3. In both cases

d ≡ 5 (mod 8).

So, we have shown the following:

Theorem 4.1 If d(`, n) has the form indicated in Theorem 3.1 then

if ` ≡ n (mod 4) then d ≡ 1 (mod 8)

if ` ≡ n + 2 (mod 4) then d ≡ 5 (mod 8)

if ` ≡ n + 1 (mod 2) then d ≡ 2 (mod 4) .

Now we consider d modulo 3. Expanding our representation of d and reducing

coefficients modulo 3 we find that

d ≡ `2n4 + 2`2n2 + 2`n3 + `2 + n2 + 1 (mod 3).

Examining all possible values of ` and n modulo 3 we find the results in the following

table.

15



Table 1: d modulo 3

` (mod 3) n (mod 3) d(`, n) (mod 3)

0 0 1

1 0 2

2 0 2

0 1 2

1 1 2

2 1 1

0 2 2

1 2 1

2 2 2

16



Thus, for no pair ` and n is d divisible by 3. Similar arguments show that no d

is divisible by 7,11, or 23.

It is natural to ask whether d is divisible by any prime congruent to 3 (mod 4).

Searching the first 100,000 values of d show that none are divisible by such primes.

We can readily find a sufficient condition that will guarantee that a prime con-

gruent to 3 modulo 4 cannot divide d. To that end, we begin by supposing that the

Jacobi symbol (4`n+1
p

) = 1 (or that 4`n + 1 is a square modulo p).

If d ≡ 0 (mod p), then we must have

[`(4n2 + 1) + n]2 ≡ (−1)(4`n + 1) (mod p)

which implies that ( (−1)(4`n+1)
p

) = 1. Since ( (−1)(4`n+1)
p

) = (−1
p

)(4`n+1
p

) and p ≡ 3

(mod 4) gives (−1
p

) = −1, we must have 1 = −1(4`n+1
p

). By assumption, (4`n+1
p

) = 1,

and we have a contradiction.

Thus, if 4`n+1 is a square modulo p, then p cannot divide d. While this condition

is sufficient, it is clearly not necessary. For example, when ` = n = 1 then d = 41

which is prime itself. In particular, 7 does not divide 41. But ( 7
41

) = (41
7
) = (6

7
) = −1.

While the question of whether certain categories of primes can never divide d

for any pair of ` and n is an interesting one, it will not be crucial in what follows.

Hence, we do not pursue it further.
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5 ON SOLUTIONS TO PELL’S EQUATION

We have spent considerable time developing a parametrization for numbers
√

d

having continued fractions expansions with period three. Why would such infor-

mation be of value in trying to determine properties of the associated number field

Q(
√

d)? The answer lies in the field norm associated with Q(
√

d).

In what follows, we will define the field norm for an element α in a number field

to be the product of its algebraic conjugates raised to an appropriate power. Since

Q(
√

d) = {a+b
√

d | a, b ∈ Q}and the algebraic conjugate of an element q = a+b
√

d

is a− b
√

d , we have that N(q) = a2 − db2 (the appropriate power for our numbers

is one). If we restrict a and b to the integers, we see that we have a variant of Pell’s

Equation. This gives the connection between our number ring and the continued

fraction expansion of
√

d.

We look more generally at all integer solutions of

x2 − dy2 = N (7)

where the continued fraction expansion of
√

d is known.

It is well-known that if |N | <
√

d, then the relatively prime solutions to the

variant of Pell’s Equation listed above are x = Ak and y = Bk where Ak

Bk
is a

convergent of
√

d [6][pp.64-69]. This result essentially relies on the fact that the

convergents are the best rational approximations of
√

d.

Not all values of N can be represented by (7) however. We wish to characterize

those values that can be so represented. This requires a bit of work. To answer this

we consider real quadratic surds and their continued fraction expansions in more

detail.

Any real quadratic surd t can be written in the form P0+
√

D
Q0

by the quadratic

formula where P0, Q0, and D are integers, D > 0, and Q0 divides D − P 2
0 . We use



the complete quotients to develop t as a continued fraction [6][pp.65-66]:

ζ1 =
1

t− a0

=
Q0

(P0 − a0Q0) +
√

d

=
P1 +

√
D

Q1

.

In the last equality we have set P1 = a0Q0 − P0 and Q1 =
D−P 2

1

Q0
.

We continue this process to find

ζk+1 =
Pk+1 +

√
d

Qk+1

where Pk+1 = akQk − Pk and Qk+1 =
(D−P 2

k+1)

Qk+1
.

Combining this representation of ζk with the result given in (2) we see that for
√

d we must have

√
d =

Ak(Pk+1 +
√

d) + Ak−1Qk+1

Bk(Pk+1 +
√

d) + Bk−1Qk+1

.

When we compare the integer and irrational parts of the above equality, we find that

Ak = BkPk+1 + Bk−1Qk+1 and dBk = AkPk+1 + Ak−1Qk+1.

So

A2
k − dB2

k = Ak(BkPk+1 + Bk−1Qk+1)−Bk(AkPk+1 + Ak−1Qk+1)

= (AkBk−1 − Ak−1Bk)Qk+1

= (−1)k+1Qk+1.
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So, the potential values for |N | <
√

d that yield solutions to (7) are given by

these Qk. These turn out to be periodic. For the case of period three, the values of

Qk are given by:

k 0 1 2 3 4 5 6

Qk 1 4`n + 1 4`n + 1 1 4`n + 1 4`n + 1 1

so that for k ≡ 0 (mod 3) Qk = 1; otherwise, Qk = 4`n + 1.

Thus we have shown:

Theorem 5.1 For |N | <
√

d where
√

d has period three, the only values for N that

give rise to relatively prime integer solutions of x2−dy2 = N are ±1 and ±(4`n+1).

In this case, the relatively prime solutions are given by x = Ak and y = Bk where

Ak

Bk
is a convergent of

√
d.
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6 BASIC RESULTS ON QUADRATIC NUMBER FIELDS

By number field, we mean any subfield of C that is a finite extension of Q. Any

such field is obtained from Q by adjoining a root (α) of some finite degree polynomial

[5][pp.46-49]. Thus, every number field has the form Q(α) for some algebraic element

α of C. If the minimal polynomial of α is of degree n, then Q(α) has degree n over

Q and the elements {1, α, α2, . . . , αn−1} form a basis for this field over Q. It can

be shown that for every number field, we can choose α to be an algebraic integer

(i.e. an algebraic number whose minimal polynomial is monic and all coefficients

are rational integers) [5][p.77].

By quadratic number field we mean a number field of the form Q(
√

d) where d

is a rational number that is assumed to be squarefree. If d > 0, we say that Q(
√

d)

is a real quadratic number field while if d < 0 we call Q(
√

d) an imaginary quadratic

number field. These fields are of degree 2 over Q, and so they have the form

Q(
√

d) = {a + b
√

d | a, b ∈ Q}.

In addition, these fields are normal extensions ofQ with abelian Galois groups (which

are isomorphic to Z2).

We will be interested in the set of algebraic integers contained in these number

fields. We typically let A represent the set of all algebraic integers in C (this set is

actually a ring). So, the set of algebraic integers in Q(
√

d) is given by

R = A ∩Q(
√

d).

It can be shown that R is in fact a ring and is referred to as the quadratic number

ring associated with Q(
√

d) (this is true for number fields in general). In fact, these

number rings have more structure than that of rings in general - they are Dedekind



Domains [4][pp.55-57].

A Dedekind Domain is any integral domain R satisfying the following conditions:

(1) Every ideal in R is finitely generated.

(2) Every non-zero prime ideal is a maximal ideal.

(3) R is integrally closed in its field of fractions.

We can actually say more about the ideals of a number ring; they are generated by at

most two elements - one of which may be chosen arbitrarily [4][pp.61-62]. Since each

non-zero ideal must contain some element from Z+ (as α ∈ I implies that N(α) ∈ I)

we can choose one generator to be the smallest positive rational integer in the ideal.

We say that a ring is a Principal Ideal Domain (or PID) if every ideal is gen-

erated by a single element (i.e every ideal is principal). A ring is called a Unique

Factorization Domain (or UFD) if every element in the ring can be factored uniquely

into a product of irreducibles. In general, every PID is a UFD, but not vice versa.

With Dedekind Domains, we get the equivalence of the two [4][p.62]. So, one way of

determining whether a given number ring is a UFD is to determine whether all the

ideals are principal.

Though not every number ring we encounter will be a UFD, there is a type

of unique factorization that every number ring will possess (by virtue of being a

Dedekind Domain). Namely, every ideal in a number ring can be factored uniquely

as a product of prime ideals [4][pp.59-60]. So, even though a number ring may fail

to have unique factorization at the element level, we do have unique factorization at

the ideal level.

We have been sketching very broad details about number rings in general; we

need to focus specifically on the case of quadratic number rings. If β ∈ Q(
√

d),

then it has the form β = a + b
√

d. The monic polynomial having this as a root is

x2 − 2ax + a2 − db2. Thus, β is an algebraic integer if and only if 2a and a2 − db2
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are rational integers. Thus a is either a rational integer or half a rational integer -

say a = c
2

where c is an integer. Then we must have ( c
2
)2 − db2 = c2

4
− db2 be an

integer. This is equivalent to c2− 4db2 ≡ 0 (mod 4). Since d is squarefree, it cannot

be congruent to zero modulo 4. If d ≡ 1 (mod 4) then we have c2 ≡ 4b2 (mod 4). If

c is odd, then we must have 4b2 ≡ 1 (mod 4) which can only occur if b = e
2

where

e is odd. If c is even, then we must have 4b2 ≡ 0 (mod 4) which says that b is an

integer. So, for d ≡ 1 (mod 4) we have that

Q(
√

d) =

{
c + e

√
d

2
| c, e ∈ Z, c ≡ e (mod 2)

}
.

If d ≡ 2, 3 (mod 4) then we cannot have half rational integers for our coefficients.

Thus, for d ≡ 2, 3 (mod 4)

Q(
√

d) = {a + b
√

d | a, b ∈ Z}.

We now define some familiar terms and give their form in the case of quadratic

number rings. Given any algebraic element β in an algebraic extension K = Q(α)

we can define two functions from Q(α) to Q. Recall that an embedding of Q(α) is

a ring homomorphism from Q(α) to C that fixes Q point-wise. Such an embedding

is completely determined by its action on the element α.

Each embedding of K in C can only send α to one of its conjugates. We let

{α = α1, . . . , αn} denote the conjugates of α. Since the minimal polynomial for α

has degree n (α has n conjugates) then the dimension of K = Q(α) over Q is n.

Hence, there are n embeddings of K in C. We denote these embeddings {σ1, . . . , σn}
where σi(α) = αi.

We now define the trace and norm of β.
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Definition 6.1 The trace of β ∈ K is given by

TK
Q (β) =

n∑
i=1

σi(β)

and the norm of β is given by

NK
Q (β) =

n∏
i=1

σi(β).

It follows easily from the definition that for β, γ ∈ K

TK
Q (β + γ) = TK

Q (β) + TK
Q (γ)

NK
Q (β · γ) = NK

Q (β)NK
Q (γ)

If β is an element of K = Q(α) and the degree of β over Q is m, then m divides

n in Z. This gives us an easy way to calculate the trace and norm.

Let t(β) = β1 + · · · + βm and n(β) = β1 · · · βm where {β = β1, . . . , βm} are the

m conjugates of β. Then

TK
Q (β) =

( n

m

)
t(β)

NK
Q (β) = [n(β)]

n
m

If the minimal polynomial for β over Q is

xm + am−1x
m−1 + · · ·+ a1x + a0

where am−1, . . . , a0 are in Q then t(β) = −am−1 and n(β) = (−1)ma0. (To see this,
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note that the minimal polynomial for β is

m∏
i=1

(x− βi) = xm + am−1x
m−1 + · · ·+ a1x + a0.)

This shows that both t(β) and n(β) (and hence TK
Q (β) and NK

Q (β)) are in Q. If β is

an algebraic integer, then both of these are in Z.

In the specific case of real quadratic number rings, we have two embeddings:

σ1(a + b
√

d) = a + b
√

d and σ2(a + b
√

d) = a − b
√

d. The norm and trace of an

element β in such a ring (which we abbreviate N(β) and T (β)) are given by:

N(β) = a2 − db2

T (β) = 2a.

Another concept that we will have occasion to use is the discriminant of a

number ring. We have shown above that every quadratic number ring can be de-

scribed as Z-linear combinations of two elements: 1 and
√

d if d ≡ 2, 3 (mod 4) or 1

and 1+
√

d
2

if d ≡ 1 (mod 4). Such a representation is called an integral basis for our

ring. It can be shown that every number ring has an integral basis [4][pp.28 - 30].

For our quadratic number rings R, the discriminant is defined to be

disc(R) =

∣∣∣∣∣∣∣
σ1(α1) σ2(α1)

σ1(α2) σ2(α2)

∣∣∣∣∣∣∣

2

where {α1, α2} is an integral basis for R. This quantity can be shown to be indepen-

dent of the choice of integral basis for a particular R (by considering a change-of-basis
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matrix) and simple calculation shows that

disc(R) = disc(A ∩Q(
√

d)) =





4d if d ≡ 2, 3 (mod 4)

d if d ≡ 1 (mod 4)

Now that we know something about the rings and their elements, let us examine

the ideals. Specifically, we will want to know how to find the prime ideals in our

number ring. If all the prime ideals are principal, then every ideal is principal (as

every ideal factors uniquely into a product of prime ideals). It turns out that we

can find all the prime ideals by looking at the ideal factorization of pR where p is a

rational prime. To see this, we first make a definition:

Definition 6.2 If P is a prime ideal of Q and Q is a prime ideal of Q(
√

d), then

Q is said to lie over P (or P lies under Q) if Q ∩ Z = P where R is the ring of

algebraic integers inside Q(
√

d).

This condition is equivalent to several others:

Theorem 6.1 If P is a prime ideal of Q and and Q is a prime ideal of Q(
√

d),

then the following conditions are equivalent:

(1) Q|PR

(2) Q ⊃ PR

(3) Q ⊃ P

(4) Q ∩ Z = P

(5) Q ∩Q(
√

d) = P .

Proof:

(1)⇒(2) is trivial since PR = QS (for some ideal S in our number field) implies

that every element of PR is a combination of elements of the form qisj where qi
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and sj are generators of the respective ideals. But then ever element of PR can

be written as a combination of elements in Q. Hence, we have the containment

indicated.

(2)⇒(1) follows from the fact that for every ideal Q, there is an ideal J such

that QJ = (α) (i.e., QJ is principal) [4][pp.57-58]. Letting C = 1
α
J(PR) we see that

QC = PR. We need only show that C is an ideal in R. We first note that C ⊂ R

since B ⊂ Q implies that JB ⊂ QJ = (α). If c is an element of C then αc is an

element of JB. Since JB is an ideal rαc is in JB for any r in R. Hence, rc is in C

for all r in R and so, C is an ideal of R.

(2)⇒(3) trivially as P ⊂ PR.

(3)⇒(2) trivially as Q is an ideal of R (and so is closed with respect to multipli-

cation by elements in R).

(3)⇒(4) follows from the observation that since Q ⊃ P (by supposition) and

Z ⊃ P , then Q ∩ Z must contain P . Q ∩ Z is an ideal in Z and since P is a prime

ideal of Z (and hence maximal) it follows that Q ∩ Z is either P or Z. If it were Z

then Q would contain 1 which would give us that Q = R. Since we are assuming

that Q is a prime ideal, this is a contradiction.

(4)⇒(3) trivially.

(4)⇔(5) trivially since Q ⊂ A. QED

Theorem 6.2 Every prime ideal Q of Q(
√

d) lies over a unique prime ideal of Z.

Every prime ideal of Z lies under at least one prime ideal of R.

Proof:

The first statement is equivalent to showing that Q ∩ Z is a prime ideal in Z.

Clearly, Q ∩ Z is an ideal of Z. We must show that it is prime. If a, b are rational
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integers and ab is in Q ∩ Z, then one of a or b must be in Q (as Q is a prime ideal).

Then one of a or b must be in Q ∩ Z. Thus, Q ∩ Z is either Z, (0), or a prime ideal

in Z. Since 1 is not in Q, it follows that 1 is not in Q ∩ Z and hence, Q ∩ Z is a

proper ideal of Z. All that remains is to show that Q ∩ Z is non-zero. Let α be any

non-zero element of Q (which must exist since Q 6= (0)). Then since α (the algebraic

conjugate of α) is in R, it follows that N(α) = (α)(α) is an element of Q (since it

is an ideal). Hence N(α) is both in Q and in Z (being the norm of an algebraic

integer). Thus Q ∩ Z is non-zero.

For the second statement, we note that if pR is not all of R, then this ideal must

have some prime divisors. Thus, we need only show pR is not R. This is equivalent

to showing that 1 is not an element of pR. If 1 were in pR this would imply that 1
p

was in R. But this is impossible as 1
p

is clearly not an algebraic integer. Thus every

prime ideal of Z lies over at least one prime ideal of R. QED

The principal ideals pR are not necessarily prime in our number ring R and

we seek to determine how they factor. This is a difficult problem in general and

depends heavily on the form of the number ring. We summarize the results for

quadratic number rings below [4][pp.74-75]:
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if p|d, then

pR = (p,
√

d)2 (8)

if d is odd, then

2R =





(2, 1 +
√

d)2 if d ≡ 3(mod 4)

(2, 1+
√

d
2

)(2, 1−
√

d
2

) if d ≡ 1 (mod 8)

prime if d ≡ 5 (mod 8)

(9)

if p is odd and p does not divide d, then

pR =





(p, n +
√

d)(p, n−
√

d) if d ≡ n2 (mod p)

prime if (d
p
) = −1

(10)

where we have employed the Legendre symbol in the last case of (10). Furthermore,

the ideals in the second case of (9) and the first case of (10) are guaranteed to

be distinct. A word of caution though - the ideals above may be listed with two

generators but can still be principal (one of the generators may be redundant).

When we use the factorizations above, a good deal of our time will be spent deciding

whether the factors are principal.

Just as we have a norm defined at the element level, we also have a norm on

ideals. The norm of an ideal I, denoted N(I), is the index of I in R (the number ring

containing I) or equivalently the cardinality of the quotient ring R/I. If we think of

our number ring R as a Z-module of rank n (which is justified since any such ring

has an integral basis), then any ideal in our ring must be a submodule of the same

rank. Hence, the index above must be finite. This also guarantees that every ideal
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also has an integral basis.

We now wish to develop the Class Group of a number ring. We construct the

group by creating equivalence classes among the ideals. Given ideals I and J of R,

we say that I and J are equivalent (denoted by I ∼ J) if

αI = βJ

for some pair of elements α and β in R. Since any number ring is integrally closed

in its field of fractions, this is equivalent to the classes determined by I = γJ for

some non-zero γ in the number field Q(
√

d). We denote the equivalence classes of ∼
by Ci. The set of equivalence classes forms a multiplicative abelian group (denoted

H(R)) called the class group of R, and the identity element of H(R) is the class of

all principal ideals - C0 [4][pp.55-58].

The order of the class group h(R) = |H(R)| is called the class number of R. If

h = 1, then R is a PID and so is a UFD. If h > 1 then there exist non-principal

ideals of R (as all principal ideals are equivalent under ∼) and so R cannot be a

UFD. Thus, h is one measure of how far an integer ring misses being a UFD. If h ≤ 2

then R is said to be a Half-Factorial Domain (HFD). Though the factorization of

an element in an HFD is not necessarily unique, any two factorizations of the same

element will have the same length.

Our first concern will be to consider the class number one problem for quadratic

number rings where d has a continued fraction expansion of period three. This

discussion will rely heavily on the known factorization of pR where p is a prime, the

divisibility properties of d, and the results on Pell’s Equations we have discussed

above.
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7 A NECESSARY CONDITION FOR Q(
√

d) TO HAVE CLASS NUMBER ONE

Now that we have characterized all integers d such that
√

d has a continued frac-

tion expansion of period length 3, we wish to determine to what extent the quadratic

integer rings R = A ∩ Q(
√

d) (where d is square-free) are unique factorization do-

mains (or equivalently, have class number one). We will see that relatively few of

these rings can have class number one.

First we consider the case that d ≡ 2 (mod 4). Since d is an even number, 2

divides d. We consider how 2R factors in A ∩Q(
√

d). We know that

2R = (2,
√

d)2

but we are not guaranteed in general that the factor on the right is non-principal.

Suppose that it were principal. Then there would exist an α in A∩Q(
√

d) such that

for some β and γ in A ∩Q(
√

d) we would have

2 = αβ

and

√
d = αγ.

Taking norms, we find that

4 = N(α)N(β)

and

−d = N(α)N(γ).



From the first of these equations we find that the norm of α must be ±2 or ±4 (±1

is ruled out as 2R is not all of A ∩Q(
√

d)).

From the second equation we find that since −d ≡ 2 (mod 4), the norm of α can

only be ±2. Thus, if α = x + y
√

d then we must have

x2 − dy2 = ±2.

Notice that x and y must be relatively prime (since if gcd(x, y) > 1 then x2 − dy2

certainly cannot be ±2). Also note that for any pair of parameters ` and n, 2 <
√

d

(as the smallest such d is 41).

From our results in Theorem 5.1, we see that this equation can have no integer

solutions. Thus, in the case that d has the form given in (4) and ` and n have

opposite parity (so that d is congruent to 2 (mod 4)) the class number of R is

greater than one (equivalently, R is not a UFD).

We have actually shown slightly more! Since the ideal (2,
√

d) is of order two

(which follows since (2,
√

d)2 = 2R which is principal), the class group has an element

of order two. Hence, the class number of these rings must be even. So, when d has

the form given in (4) and ` and n have opposite parity (so that d is congruent to 2

(mod 4)) the class number of R must be even.

We now consider the case that d ≡ 1 (mod 4). From the known factorization of

2R given in (9), it will behoove us to subdivide this class. If ` ≡ n (mod 4), then

d ≡ 1 (mod 8).

In this case, we must have that

2R =

(
2,

1 +
√

d

2

)(
2,

1−
√

d

2

)
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and as before, we determine whether the factors on the right are principal.

If (2, 1+
√

d
2

) were principal, then there would exist an α in A ∩Q(
√

d) such that for

some β and γ in A ∩Q(
√

d) we would have

2 = αβ

and

1 +
√

d

2
= αγ.

Taking norms, we find that

4 = N(α)N(β)

and

1

4
(1− d) = N(α)N(γ).

From the first of these equations, we find that N(α) must be equal to ±2 or ±4.

Looking at the left term in the second equation, we find that

1

4
(1− d) ≡





0 (mod 4) when `, n are even

2 (mod 4) when `, n are odd

which can be verified by direct computation.

Considering first the case that ` and n are odd, we must have N(α) = ±2.

Letting

α =
a + b

√
d

2
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where a ≡ b (mod 2) we see that

1

4
(a2 − db2) = ±2

so that

a2 − db2 = ±8.

When a and b are both odd, then we must have gcd(a, b) = 1 (since otherwise a2−db2

would have an odd factor). For 8 <
√

d (which is true for all d except 41) we find

that this equation can have no solutions by our results on Pell’s Equation.

If a and b are even, then our equation reduces to m2 − dn2 = ±2 where a = 2m

and b = 2n. Since for every d under consideration 2 <
√

d, we find that this equation

can have no solutions by our results on Pell’s Equation. This accounts for all such

numbers except d = 41 which happens to have class number 1 (we will discuss the

computation of this below).

For the case that ` and n are both even, then we have that N(α) = ±2,±4.

Using the same parameters for α we have that

1

4
(a2 − db2) = ±2,±4

so that

a2 − db2 = ±8,±16.

In this case, our smallest value of d is 1313 (` = n = 2) and so 16 <
√

d. As before,

if a and b are both odd, then our results on Pell’s Equation show that there can

be no solution to our equation. If a = 2m and b = 2n, then the above equation

reduces to m2−dn2 = ±2,±4. We can immediately throw out ±2 as we have already

shown it has no solutions. If m and n are odd, then we can have no solutions to

m2− dn2 = ±4. What if they are both even? Removing the common factor of 2, we
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have an equation of the form f 2 − dg2 = ±1. This tells us that f + g
√

d is a unit in

our number ring. Tracing our steps back to α, we find that

α =
1

4
(a + b

√
d)

=
1

4
(2m + 2n

√
d)

=
1

4
(4f + 4g

√
d)

= f + g
√

d.

But then α is a unit in our number ring - which cannot be as 2R 6= R. So, the

original ideal cannot be principal in this case. Thus, no value of d in this case has

class number 1.

So, when d ≡ 1 (mod 8) where the continued fraction expansion of d has period

3, the class number of R = A ∩ Q(
√

d) is greater than one except in the case that

d = 41.

We have shown:

Theorem 7.1 If d is of the form given in (4) and d ≡ 2 (mod 4) or d ≡ 1 (mod 8)

then the class number of R = A ∩ Q(
√

d) is greater than one (or equivalently, R is

not a UFD) unless d = 41.

We turn finally to the case that d ≡ 5 (mod 8) (which occurs when ` ≡ n (mod 2)

but ` ≡ (n+2) (mod 4)). In this case, the ideal generated by 2 is prime and cannot

give us information about the class number of d.

We consider first the factorization of 3R. Since 3 does not divide any d, we know

that

3R =





(3, 1 +
√

d)(3, 1−
√

d) if d ≡ 1 (mod 3)

prime if d ≡ 2 (mod 3)
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In the case that d ≡ 1 (mod 3), we seek to determine whether the ideals on the

right in the equality above are principal. We note that the smallest such d congruent

to 5 (mod 8) and congruent to 1 (mod 3) is 4933 (with ` = 4 and n = 2). If the

ideals are principal, then there exists some α, β, and γ in R such that

αβ = 3

and

αγ = 1 +
√

d.

The first of these conditions gives N(α) = ±3,±9. Letting

α =
a + b

√
d

2

where a ≡ b (mod 2) we see that a2 − db2 = ±12,±36. Since 36 <
√

4933, we can

again appeal to our results on Pell’s Equation. If gcd(a, b) = 1 then we can have no

solutions to a2 − db2 = ±12,±36. If gcd(a, b) 6= 1 then the gcd can only be 2, 3, or

6. If gcd(a, b) = 3, then our equation for the norm of α reduces to m2 − dn2 = ±4

(where a = 3m and b = 3n) which can have no solutions. If gcd(a, b) = 2 then our

equation for the norm of α reduces to m2 − dn2 = ±3,±9. Since ±3 is not equal

to ±(4`n + 1) for any choice of ` or n, this choice is ruled out. We can also rule

out ±9 since the only choice of ` and n leading to a solution of Pell’s Equation is

` = n = 1, but this choice gives d = 41 which is smaller than 4933. If gcd(a, b) = 6

then our equation for the norm of α reduces to m2 − dn2 = ±1 (where a = 6m and

b = 6n). In this case, α = 3u where u is a unit in R. If this were the case, then

(3, 1 +
√

d) = (3, 1−
√

d) = 3R. This is impossible since it would give

3R = (3R)(3R)
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which cannot be.

Thus, we have shown that of the values of d congruent to 5 (mod 8), the ones

congruent to 1 (mod 3) have class number greater than one. Thus, if any of the

remaining d are to have class number one, then they must be congruent to 2 modulo

3. By the Chinese Remainder Theorem, then we must have d ≡ 5 (mod 24).

When we examine the case that d ≡ 5 (mod 24), both 2R and 3R are prime; thus,

we turn to 5R to find out information about the class number. We are supposing

that d ≡ 5 (mod 24) (which occurs when ` ≡ 5n + 2 (mod 12) or ` ≡ 5n + 10

(mod 12)). Using (8) and (10) we see that 5R factors as

5R =





(5,
√

d)2 if d ≡ 0 (mod 5)

(5, 1 +
√

d)(5, 1−
√

d) if d ≡ 1 (mod 5)

(5, 2 +
√

d)(5, 2−
√

d) if d ≡ 4 (mod 5)

prime if d ≡ 2, 3 (mod 5)

Since we are also assuming that d ≡ 5 (mod 24), we have that d ≡ 5, 101, and 29

(mod 120) for the first three cases respectively while d ≡ 77 or 53 (mod 120) if 5R

is prime. For each of the three cases where 5R splits, if the resulting ideals are to be

principal, then there must exist an α in R such that one of the ideals is given by (α).

If this is to be the case, then we must have N(α) = ±5,±25. Letting α = a+b
√

d
2

we

have the equation

a2 − db2 = ±20,±100.

We must assume that d > 10000 to use our results on Pell’s Equation. We will look at

the finite number of exceptional cases where this does not hold at the end. We know

that for d > 10000 the only relatively prime solutions to the equation above are ±1

and ±(4`n + 1). Looking at the equation, we can have that the gcd(a, b) = 1, 2, 5 or
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10. If gcd(a, b) = 1, then there are no solutions to the equation. If the gcd(a, b) = 2

then letting a = 2m and b = 2n we arrive at the equation m2−dn2 = ±5,±25. This

can only occur if 4`n + 1 = 5, 25. This produces a finite list of possible values for

` and n, and each of these possible combinations yields a value of d already shown

to have class number larger than one. So, we have no solutions in this case. If

gcd(a, b) = 5, then letting a = 5m and b = 5n we have m2 − dn2 = ±4 which can

have no solutions. If gcd(a, b) = 10, then letting a = 10m and b = 10n we have

m2 − dn2 = ±1 which gives that α = 5u where u is a unit in R. But then we would

have (α) = 5R which gives a contradiction by the unique factorization property of

ideals. So, except for the finite number of possible exceptions, the ideals that 5R

splits into are non-principal. We will examine the class number of these exceptional

cases in what follows.

In the case that d ≡ 5 (mod 120) (so d ≡ 0 (mod 5)), the only value of d less

than 10000 is d(7, 1) = 1325. This case is ruled out in any event since 1325 is not

square-free. In the case that d ≡ 101 (mod 120) (so d ≡ 1 (mod 5)), the smallest

value of d is d(31, 1) = 24461 > 10000 so that there are no exceptions. In the case

that d ≡ 29 (mod 120) (so d ≡ 4 (mod 120)), the only value of d less than 10000 is

d(3, 1) = 269. It turns out that h(Q
√

269) = 1 (which we show later).

So, in the case that d ≡ 5 (mod 24), if Q(
√

d) has class number one, then d = 269

or d ≡ 53, 77 (mod 120).

We consider 7R before generalizing this process. We now assume d ≡ 53 or

77 (mod 120) and ask how 7R factors in these number rings. Since none of these
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numbers is divisible by 7 we have

7R =





(7, 1 +
√

d)(7, 1−
√

d) if d ≡ 1 (mod 7)

(7, 3 +
√

d)(7, 3−
√

d) if d ≡ 2 (mod 7)

(7, 2 +
√

d)(7, 2−
√

d) if d ≡ 4 (mod 7)

prime if d ≡ 3, 5 or 6 (mod 7)

If any of the ideals in the cases where 7R splits are to be principal, then we must have

N(α) = ±7,±49 for some α in R. Again letting α = a+b
√

d
2

we have the equation.

a2 − db2 = ±28,±196. In order to use our results on Pell’s Equations, we must

assume that d > 1962 = 38416. We make this assumption and revisit the finite

number of exceptions at the end.

The only possible values for gcd(a, b) are 1, 2, 7, or 14. If the gcd(a, b) = 1, then

there are no solutions to the equation above. If gcd(a, b) = 2, then letting a = 2m

and b = 2n we have m2−dn2 = ±7,±49. There can be no solutions for ±7, but there

are possible solutions to m2 − dn2 = ±49. In this case, we must have 4`n + 1 = 49.

This leads to a finite number of possible values for ` and n. When we examine these

cases, all have already been ruled out. If gcd(a, b) = 7, then letting a = 7m and

b = 7n we have m2−dn2 = ±4 which has no solutions. If gcd(a, b) = 14, then letting

a = 14m and b = 14n we have m2 − dn2 = ±1. This gives that α = 7u where u is a

unit in R. But then (α) = 7R which cannot be by the unique factorization of ideals.

So, except for the finite number of possible exceptions, the ideals that 7R splits into

above are indeed non-principal.

Looking at the first case where d ≡ 1 (mod 7) and d ≡ 53 or 77 (mod 120) gives

a smallest value of d(12, 2) = 42533 > 38416 so that there are no possible exceptions

in this case. The case that d ≡ 2 (mod 7) and satisfies one of the congruences

modulo 120 yields a smallest value of d(10, 4) = 427877 > 38416 so that there are

no possible exceptions in this case as well. The case that d ≡ 4 (mod 7) and meets
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the congruences modulo 120 yields a smallest value of d(19, 1) = 9293. It turns out

that h(Q(
√

9293)) = 3. All values after this are larger than 38416.

So we have shown that if h(Q(
√

d)) = 1 where
√

d has a continued fraction

expansion of period three, then d = 41, 269 or d ≡ 173, 293, 437, 677, 773, or 797

(mod 840).

We now give a generalization of the procedure that we have been using.

Theorem 7.2 Let d be a square-free integer of the form given in (4) and let p be

an odd prime such that 4p2 <
√

d. If d is a square modulo p and neither p nor p2

equals 4`n + 1, then h(Q(
√

d)) > 1.

In other words, for a given value d, if we can find a prime meeting the criteria

of the theorem, then the number ring R = A ∩Q(
√

d) is not a unique factorization

domain.

Proof:

The proof goes through much as the previous arguments did. We consider the

factorization of pR:

pR =





(p,
√

d)2 if p divides d

(p, n +
√

d)(p, n−
√

d) if d ≡ n2 (mod p)

prime if (d
p
) = −1

Since we are assuming that d is a square modulo p, we know that pR is not prime.

We need only verify that none of the ideals listed in the first two cases are principal.

As before, we suppose that an ideal in question is equal to (α). Looking at norms,

we must have that N(α) = ±p,±p2. Letting α = a+b
√

d
2

where a ≡ b (mod 2) we

arrive at the equation

a2 − db2 = ±4p,±4p2.
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From the equation above, the gcd of a and b can be 1, 2, p, or 2p. Since 4p2 <
√

d

our results on Pell’s Equation apply. We look at each of the possible divisors in turn.

If gcd(a, b) = 1, then there can be no solutions to a2 − db2 = ±4p,±4p2.

If gcd(a, b) = 2, then letting a = 2m and b = 2n we have m2 − dn2 = ±p,±p2.

Since we are assuming for our particular value of d that 4`n+1 6= p, p2, this equation

can have no solutions.

If gcd(a, b) = p, then letting a = pm and b = pn we have m2 − dn2 = ±4 which

has no solutions.

If gcd(a, b) = 2p, then letting a = 2pm and b = 2pn we have that m2−dn2 = ±1.

This gives that α = a+b
√

d
2

= p(m + n
√

d) = pu where u is a unit in R. If this is the

case, then we must have (α) = pR which cannot be by the unique factorization of

ideals.

In all cases, we arrive at a contradiction; so the ideals listed cannot be principal.

Thus, h(Q(
√

d)) > 1 since we have shown the existence of a non-principal ideal.

QED

This theorem encapsulates the process we have been using thus far to search for

possible number rings having class number one. We illustrate its use by considering

the prime 11.

Since 4(11)2 = 484, we must have
√

d > 484 or d > 234256 for our results to be

valid. We must consider the possibility that either 11 or 121 equals 4`n+1. We know

that this equation cannot hold for 11, but it could hold for 121. If 4`n + 1 = 121

then we must have `n = 30. We need to check all possible combinations of positive

integers ` and n that meet this criterion. There are only eight possible combinations.

In addition, since 30 = (2)(3)(5), then one of ` or n must be even while the other

odd. This tells us that these values of d are congruent to 2 (mod 4). We have already

shown that these number rings have class number larger than one.
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If we run a search for the values of d ≤ 234256 that have not already been

excluded by previous arguments, we come up with the following list of possible ex-

ceptional values:

d(1,3) = 1613

d(15,1) = 5837

d(39,1) = 38573

d(55,1) = 76397

d(6,4) = 155333

d(24,2) = 168293.

Setting these cases aside for the time being (along with the others we have come

across), we have that in order for h(Q(
√

d)) = 1 that d ≡ 2, 6, 7, 8, or 10 (mod 11).

Combining this with our previous results (which said that in order to have class

number one d ≡ 173, 293, 437, 677, 773, or 797 (mod 840)) we come up with a list of

30 possible congruence classes modulo 9240.

Running through the possible combinations of ` and n (mod 9240) and counting

the number of these that yield one of the values in this list show that they account

for roughly 2.05% of all the values of d. Thus, we have eliminated virtually 98%

of all the possible values of d that could have class number one. This shows that

Theorem 7.2 severely limits the possible number of rings with class number one and

gives credence to our earlier assertion that relatively few of these rings are unique

factorization domains. We will show in a later section that the number is actually

finite.
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8 THE MINKOWSKI BOUND

Thus far, we have only concentrated on trying to determine which of the number

rings we have been studying have class number one. Theorem 7.2 gives us the

impression that relatively few of them can have class number one.

We would like to find a means of calculating the class number of our rings directly.

In fact, there is a formula that calculates it exactly. This formula, though it solves

our problem in theory, is very unwieldy, and for rings with even moderate values of

d, it can be difficult to evaluate. We will come to this formula in due course. In

addition, we will explore other means of calculating class numbers.

The first problem to tackle is showing that the class number is finite. In the

process, we will come up with a bound that will give us an indication of how many

ideals we need to consider in order to completely describe the class group.

The construction we give is a special case of the more general Minkowski

Bound which proves that the class number of any number ring is finite.

Since we are working over real quadratic number fields, there are exactly two

embeddings for each field. If α is in Q(
√

d), then

α = a + b
√

d.

We let σ1 be the identity embedding and σ2 be the embedding sending each α to its

algebraic conjugate. That is:

σ1(α) = σ1(a + b
√

d) = a + b
√

d

and

σ2(α) = σ2(a + b
√

d) = a− b
√

d.

Note that since any quadratic extension of the rationals is normal, these embeddings



are in fact automorphisms. We will not need the full weight of this consequence,

only that both of these embeddings have range in R.

We now create a mapping from our number field into R2 by sending α to the

point (σ1(α), σ2(α)) = (α, α) (where we have used the bar to represent the algebraic

conjugate). This mapping is an additive homomorphism since

(σ1(α + β), σ2(α + β)) = (α + β, α + β)

= (α, α) + (β, β)

= (σ1(α), σ2(α)) + (σ1(β), σ2(β)).

It also has trivial kernel, since the only element of our field mapping to (0, 0) is

0. Thus, this mapping is an embedding of our real quadratic number field into R2

with respect to the additive structure of our field.

Now that we have established a mapping, we want to see how our number ring R

= A∩Q(
√

d) maps under this operation. If we take an integral basis for our number

ring (say α1 and α2), then every element of our ring can be written as mα1 + nα2

where m and n are integers. Mapping this general element into the plane, we get

the point m(α1, α1) + n(α2, α2). Thus, the image of our ring is the integer span of

the two vectors (α1, α1) and (α2, α2) in the plane. The image of the integral basis

consists of two linearly independent vectors in the plane. To see this, we note that

∣∣∣∣∣∣∣
α1 α1

α2 α2

∣∣∣∣∣∣∣
= ±

√
|disc(R)|

which is non-zero. Thus, the image of our ring under the mapping in question is

a two-dimensional subspace spanned by integer combinations of two vectors in the

plane. Such a subspace is commonly referred to as a two-dimensional lattice.

Let v1 be the image of α1 under our mapping. Define v2 similarly. Consider the
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set

F = {a1v1 + a2v2 | 0 ≤ ai < 1}.

Graphically, this set is a parallelogram in the plane - often called the fundamental

parallelotope of the lattice. From basic geometric considerations, we can see that

the area of this parallelogram(which we call vol(ΛR)) is
√
|disc(R)|. In Figure 1, we

give a graphic representation of a typical lattice with its fundamental parallelotope.

What about the image of a proper ideal I of R? We can find an integral basis

for any such I - say I = (β1, β2). Since we can represent βi as a linear combination

of our integral basis for R, it follows that the lattice in the plane determined by the

ideal I has a fundamental parallelotope with volume

vol(ΛI) =

∣∣∣∣
R

I

∣∣∣∣
√
|disc(R)|

where |R/I| is the index of I in R.

We now define a norm on the plane by setting N(x, y) = xy. Note that for points

mapped from our field, this agrees with the field norm. To see this recall that α

from our field is mapped to the point (α, α). We will show that every lattice in the

plane must contain a point whose norm is less than or equal to 1
2

√
|disc(R)|.
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Figure 1: Typical Lattice in R2
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In order to prove this result, we need a theorem due to Minkowski:

Theorem 8.1 Let ∧ be an n-dimensional lattice in Rn and let E be a convex, mea-

surable, centrally symmetric subset of Rn such that

vol(E) > 2nvol(∧).

Then E contains some non-zero point of ∧. If E is compact, then the inequality can

be weakened to ≥.

By convex, we mean that if two points are in E, so is the line segment joining

them. By measurable, we refer to Lebesgue measure. The details of Lebesgue

measure will not concern us much. Suffice it to say that typical sets are measurable

and that their measure coincides reasonably with the idea of volume in n-dimensions.

We have used vol(E) to refer to the measure of the set E and vol(∧) to refer to the

measure of the fundamental parallelotope of ∧. By centrally symmetric, we imply

that if x is in E, then so is −x. For a proof, see [4][pp.137-138].

Corollary 8.1 Suppose there is a compact, convex, centrally symmetric set A of

Rn with vol(A) > 0 and the property that |N(a)| ≤ 1 for all a in A. Then every

n-dimensional lattice ∧ contains a nonzero point x with

|N(x)| ≤ 2n

vol(A)
vol(∧).

Proof:

Consider the set E= tA = {ta | a ∈ A} where

tn =
2n

vol(A)
vol(∧).
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The set E meets the requirements of the theorem above since

vol(E) = tnvol(A) =
2nvol(∧)

vol(A)
.

So, E contains a non-zero point x of the lattice ∧. Since x = ta for some a in A,

N(x) = tnN(a) ≤ tn. QED

To come up with a bound, we need to consider an appropriate set in the plane.

We look at the set determined by

|x|+ |y| ≤ 2.

This set is compact (being closed and bounded)and centrally symmetric (since if the

point (x, y) is in the set, so is (−x,−y)). It is also easy to see that this set is convex;

graphically, it is a diamond in the plane.

To see that every point in this set has norm less than 1 we first note that the

arithmetic mean of the coefficients in this set at most one. Thus, the geometric

mean
√
|xy| is at most the arithmetic mean which is at most one. Since

0 ≤
√
|N(x, y)| ≤ 1

we can conclude that the norm of every element in this set is less than or equal to

one.

The volume of this set (or area since we are in the plane) is 8. Hence, the corollary

to Minkowski’s Theorem promises us that every lattice in the plane contains a non-

zero point whose norm is less than or equal to 1
2
vol(ΛR).

Translating this back in terms of ideals we have that

Corollary 8.2 Every non-zero ideal I of a quadratic number ring R contains a non-
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zero element α with

|N(α)| ≤ 1

2

√
|disc(R)|

∣∣∣∣
R

I

∣∣∣∣ .

We are now in a position to give bounds for the class number. Our primary

result is

Theorem 8.2 Every ideal class of R contains an ideal J with

‖J‖ ≤ 1

2

√
|disc(R)|.

Proof:

We are using the short-hand ‖J‖ to stand for the index of J in R. Given a

particular class C, we consider its inverse class C−1. Let I be an ideal in the inverse

class and obtain the element α in I as in the corollary above. Since the principal

ideal (α) is contained in I, there exists an ideal J in C such that IJ = (α). Since

|N(α)| = ‖(α)‖ = ‖I‖‖J‖ [4][pp.65-69] and

|N(α)| ≤ 1

2

√
|disc(R)| ‖I‖.

we have that

‖J‖ ≤ 1

2

√
|disc(R)|. QED

This is a powerful result. First, it proves that the class number is indeed fi-

nite for any quadratic number ring. To see this, recall that every ideal can be

factored uniquely in terms of prime ideals. So, if J = Pm
1 P n

2 . . . P q
r then ‖J‖ =

‖P1‖m‖P2‖n . . . ‖Pr‖q. In addition every prime ideal P lies over a unique pR for

some rational prime p, and for quadratic number rings ‖P‖ is either p or p2. Hence,
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only a finite number of ideals can satisfy the criterion of Theorem 8.2 and so the

class group must itself be finite.

Since the index of a prime ideal P is either p or p2, it also follows that we need

only consider prime ideals lying over primes satisfying

p ≤ 1

2

√
|disc(R)|.

So, in order to calculate the class number (and determine the structure of the

class group) we need only consider the prime ideals obtained by factoring pR for

primes less than the bound given above, form all possible ideals with index less

than the same bound whose factorizations are comprised of these ideals, and then

determine from this finite set of ideals the ideal classes. This last step is typically the

most cumbersome since it involves multiplying the ideals and trying to find which

are in the same class.

We note that since the discriminant is either d or 4d for quadratic number rings,

we need only consider primes up to
√

d. To demonstrate this process, we consider

the first of our exceptional cases, d = 41.

Example 8.1

For d = 41, the Minkowski Bound implies that every ideal class must have an

ideal with index less than or equal to 1
2

√
41 (here we have used the the fact that the

discriminant of R is d when d ≡ 1 (mod 4)). This in turn implies that we need only

find the prime ideals lying over 2 and 3. Since 41 ≡ 2 (mod 3) and since 2 is not

a square modulo 3, it follows that 3R is prime in this number ring. Thus, we need
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only consider the primes lying over 2.

2R =

(
2,

1 +
√

41

2

)(
2,

1−√41

2

)

A little work will show that both of these ideals are principal. To be specific,

(
2,

1 +
√

41

2

)
=

(
7−√41

2

)

and(
2,

1−√41

2

)
=

(
7 +

√
41

2

)
.

Since every prime ideal we need to consider is principal, it follows that there can

be at most one class in the class group. Thus, R = A ∩ Q(
√

41) has class number

one and so is a principal ideal domain. ¤

For a less trivial example, we consider the case d = 130.

Example 8.2

Since R = A∩Q(
√

130) has discriminant 520, we must check all primes less than

1
2

√
520. This leads us to consider the prime ideals lying over 2, 3, 5, 7 and 11.

2R = (2,
√

130)2

3R = (3, 1 +
√

130)(3, 1−
√

130)

5R = (5,
√

130)2

7R = (7, 2 +
√

130)(7, 2−
√

130)

11R = (11, 3 +
√

130)(11, 3−
√

130)

Elementary norm arguments show that none of these ideals are principal. We first
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investigate which of these lie in the same class before considering possible combina-

tions of these primes.

We denote the class of an ideal I by I. We note that the classes (2,
√

130) and

(5,
√

130) are of order two. Thus, they are their own inverses. We can also show

that they are in different classes. To see this, we suppose that they are in the same

class. If this were the case, the ideal (2,
√

130)(5,
√

130) would be principal (since

the class has order two). This is the ideal generated by (10,
√

130) If this ideal were

principal, then N(α) = ‖(10,
√

130)‖ = 10. From our results on Pell’s Equation, we

know that no element in this ring can have norm 10. Thus, these two classes are

distinct.

So far, we have found four distinct classes: C0 (the class of principal ideals),

(2,
√

130), (5,
√

130), and (10,
√

130). We note that this last ideal class also has

order two - since (10,
√

130)(10,
√

130) = 10R. Thus, the class number is at least

four.

If we consider the ideal (12 +
√

130), we find that since N(12 +
√

130) = 14 =

(2)(7), the prime factors of this ideal must lie over 2 and 7. Thus (2,
√

130) must be

the inverse class of either (7, 2 +
√

130) or (7, 2−√130). Suppose it were the inverse

class of the second ideal. Then (2,
√

130) = (7, 2−√130). But since this class is

of order two, it follows that (7, 2 +
√

130) = (7, 2−√130) = (2,
√

130). Since the

same result would occur in the other case, we conclude that the ideals lying over 7

are in (2,
√

130).

Considering the ideal (35 + 3
√

130), we find that since N(35 + 3
√

130) = 55 =

(5)(11), the prime factors of this ideal must lie over 5 and 11. Mirroring the last

argument exactly, we find that (7, 2 +
√

130) = (7, 2−√130) = (5,
√

130).

Multiplication of ideals shows that (3, 1+
√

130)(10,
√

130) = (10+
√

130). Thus,

(3, 1 +
√

130) = (3, 1−√130) = (10,
√

130).

So, the all the prime ideals we need to consider have been placed into one of
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three ideal classes (each of order two). In the process of finding these classes, we

have already considered an ideal lying over 2 and 5. The only other way of generating

an ideal with index less than or equal to 11 is by finding an ideal lying over 2 and 3.

Looking at (3, 1 +
√

130)(2,
√

130), we first note that this ideal is non-principal (by

basic norm arguments). Using basic reduction techniques to find the generators of

this ideal, we find that it reduces to (6, 2−√130). Since (6, 2−√130)(5,
√

130) =

(10 +
√

130), we see that (6, 2−√130) = (5,
√

130).

So, after much effort, we find that the class number of R = A∩Q(
√

130) is four

and the class group is isomorphic to the Klein 4-Group. ¤
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9 FUNDAMENTAL UNITS

As the last section plainly shows, computing class numbers can be laborious at

best. We would like to find some process whereby the class number can be calculated

and the structure of the class group specified. The first of these problems can be

handled by the class number formula. Before we can develop this concept, we must

say something about the group of units inside our quadratic number rings.

The Unit Theorem for the multiplicative group of units U in a number ring R

states that U is the direct product of a finite cyclic group (composed of the roots of

unity in R) and a free abelian group. If our number field is of extension n = r + 2s

over Q (where r is the number of real embeddings and 2s the number of complex

embeddings), then the free abelian group has rank r + s− 1 [4][pp.141-146].

For real quadratic number rings, the only roots of unity contained in R are ±1.

Since s = 0 (there are no complex embeddings), it follows that the free abelian group

has rank 1. Thus, the multiplicative group of units is of the form:

U = {±uk | k ∈ Z}.

The generator u for the free abelian group of rank 1 is called the fundamental unit

for the number ring and is uniquely determined if we further specify that u > 1.

Knowing the continued fraction expansion for d can greatly simplify the process

of finding these fundamental units. We recall that if u is a unit in our number ring,

then its norm is necessarily one. Thus, one way of finding the units is to find all the

elements with norm one. Our results on Pell’s Equation do exactly this! We will be

assuming throughout that
√

d > 4.

If d ≡ 2 (mod 4), then we are looking for solutions to

x2 − dy2 = ±1.



Except for the case x = ±1 and y = 0, the other solutions to this equation must be

the convergents of the continued fraction expression for
√

d.

If d ≡ 1 (mod 4), then the fundamental unit must be of the form

u =
x + y

√
d

2

where x ≡ y (mod 2). Taking norms, we find that

x2 − dy2 = ±4.

If x and y are relatively prime, then ±4 cannot be a represented by any integers x

and y (from our knowledge of the solutions to Pell’s Equation when
√

d has period

three). Thus, we find that x and y must be congruent to zero modulo 2. If x = 2w

and y = 2z, we must have

w2 − dz2 = ±1.

Once again, the fundamental unit must be given by the convergents of
√

d.

So, the units of any real quadratic number ring with period three are particular

convergents of the continued fraction expansion of
√

d. To find the fundamental

unit, we need only find the first convergent pair (An , Bn) not (A0, B0) = (1, 0) that

gives A2
n − dB2

n = ±1.

In the case where d has continued fraction expansion of period three, the funda-

mental unit will be A2 + B2

√
d which has norm −1. Using the recursive definitions

for the convergents, we find that the fundamental unit for R = A ∩Q(
√

d) is

(16n4` + 4n3 + 8n2` + 3n + `) + (4n2 + 1)
√

d.
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10 THE CLASS NUMBER FORMULA

Now that we have the notion of fundamental unit, we can develop the class

number formula for quadratic number rings. In fact, a class number formula for

arbitrary number rings can be given! This would seem to solve our attempts to

determine the number of such rings with class number one. Unfortunately, the class

number formula (even for quadratic number rings) becomes incredibly difficult to

work with as the size of the discriminant increases.

Before we can state the class number formula, we need to make a few definitions

and state some fundamental results. Throughout, we will be working with a number

ring of discriminant D. The first definition is that of a character of a finite

abelian group.

Definition 10.1 A complex-valued function f defined on an abelian group G is

called a character of G if for all a and b in G

f(ab) = f(a)f(b)

and if f(c) 6= 0 for some c in G.

Since f(a) = f(ea) = f(e)f(a) where e is the identity of G, we must have

f(e) = 1. Since G is a finite group (say with order n), then an = e and so f(a)n = 1.

Hence, every character defined on G must map G into the nth roots of unity. There

are many other useful results about characters; we only list those pertinent to a

discussion of the class number formula. The interested reader is referred to [1][pp.

133-143].

Theorem 10.1 A finite abelian group G of order n has exactly n distinct characters.

Before proving this theorem, we need a lemma.



Lemma 10.1 Let G′ be a subgroup of a finite abelian group G, where G′ 6= G. For

any element a in G with indicator h 6= 1 in G′ (i.e., the smallest positive integer h

such that ah is in G′) the set of products

G′′ = {xak | x ∈ G′ and k = 0, 1, . . . , h− 1}

is a subgroup of G containing G′. Moreover, the order of G′′ is h times the order of

G′.

Proof:

G′′ is non-empty as it contains the identity element of G. Suppose b = xak and

c = yaj are elements of G′′, we must show bc−1 is also in G′′. Since c−1 = (yaj)−1 =

y−1a−j we have that bc−1 = (xy−1)ak−j. Using the division algorithm, we can write

k− j = qh+ r where 0 ≤ r < h. Then bc−1 = (xy−1)aqhar, and since a has indicator

h in G′, we must have aqh = z ∈ G′. Thus bc−1 = (xy−1z)ar ∈ G′′.

For the order of G′′, we first assume that for some x, y ∈ G′ and some k, j for

which 0 ≤ j ≤ k < h that

xak = yaj.

If this were the case, we would have

ak−j = x−1y

But since 0 ≤ k − j < h, we would have that the indicator of a in G′ is less than h.

Thus, xak is unique for each x in G′ and each k between 0 and h − 1. Hence, the

order of G′ is h times the order of G′. QED
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Proof of Theorem 10.1:

We let 〈G′, a〉 denote the subgroup G′′ from the lemma above. We construct a chain

of subgroups inside G and prove the theorem by induction. Let G1 = {e} be the

trivial subgroup of G. If G1 6= G, pick an element a1 of G that is not the identity

of G and define G2 = 〈G1, a1〉. If G2 6= G, then pick an element a2 not in G2 and

define G3 = 〈G2, a2〉. If we continue this process, we get a chain of nested subgroups

G1 ⊂ G2 ⊂ · · · ⊂ Gt+1 = G

where the final equality is justified by the fact that we have an increasing sequence

of nested subgroups inside a finite group. We note that the only character that can

be defined on G1 (the trivial group) is the one assigning e to 1.

We assume that the theorem holds for Gr (having order m). We will show that

we can extend each character on Gr to Gr+1 in exactly h distinct ways (where h

is the indicator of ar in Gr). Thus, the number of characters for Gr+1 will be mh

which is the order of Gr.

Since a typical element of Gr+1 is xak
r where x is in Gr and 0 ≤ k < h, then if

we can extend a character f of Gr to a character f̃ on Gr+1 we must have

f̃(xak
r) = f̃(x)f̃(ak

r)

= f(x)f̃(ar)
k.

So, once we determine f̃(ar), then the extension of f has been completely specified.

Since the indicator of ar in Gr is h, we know that ah
r = c which is an element of

Gr. Thus, the only possible values for f̃(ar) are the hth roots of f(c). Since each of

these roots is distinct, we have h distinct extensions of f to Gr+1. Thus, the number

of characters of Gr+1 is at least mh.

To show equality, we need only observe that if we have any character on Gr+1,

its restriction to Gr must be a character on Gr. Thus, we have produced all the pos-
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sible characters on Gr+1 by the extension process. Hence, the number of character

on Gr+1 is the order of Gr+1. QED

Theorem 10.2 Under point-wise multiplication, the characters of G form a multi-

plicative group Ĝ of order n. The identity element of Ĝ is the character f1 defined

by

f1(g) = 1 for all g in G

and Ĝ is isomorphic to G.

Proof:

Verifying that the set of characters is a group is merely an exercise in confirming the

group axioms (which we shall omit). To show that the character group is isomorphic

to G, we first decompose G into its invariant factors

G = Zh0

⊗
Zh1

⊗ · · ·⊗Zhs .

Then each element a of G can be written as

a = at0
0 at1

1 · · · ats
s (11)

for 0 ≤ ti < hi − 1. If b is another element of G where

b = au0
0 au1

1 · · · aus
s (12)

(with similar limits on the ui) then the mapping

φ : G → Ĝ (13)
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given by φ(a) = fa where fa is given by

fa(b) = exp 2πi

(
t0u0

h0

+
t1u1

h1

+ · · ·+ tsus

hs

)
.

This mapping can be shown to be an isomorphism between G and Ĝ (and interest-

ingly enough, a non-canonical one) [3][pp.25-27]. QED

Throughout the following, we will be assuming that our number field is an abelian

extension ofQ (i.e. it is a normal extension with abelian Galois group). In particular,

we note that quadratic number rings are abelian extensions (since their Galois group

is isomorphic to Z2). With the notion of characters, we can define the Dirichlet L

function (which is a generalization of the Riemann Zeta function).

Definition 10.2 The Dirichlet L function L(s, χ) is a two parameter function de-

fined for s in the complex plane and for some character χ defined on Z by

L(s, χ) =
∞∑

n=1

χ(n)

ns
.

This function converges to an analytic function on <(s) > 0 except when χ

is the trivial character [4][pp.193-196]. Now that we have the necessary tools in

place, we can give a formula for the class number of quadratic number fields. Since

such fields are of degree two over the rationals, their Galois groups have only two

members. To get a character on the integers, we first extend our number field

to a cyclotomic field containing it (which is guaranteed to exist for any abelian

extension of Q by the Kronecker-Weber Theorem). Then we choose the characters

corresponding to the elements of the Galois group of this field (which is isomorphic

to Z∗m for the mth cyclotomic field) which fix our real quadratic number field. These

characters (which are now characters on the integers) will be the ones we use. The
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two corresponding characters on our number fields are the trivial character (which

assigns 1 to everything relatively prime to d) and the character determined by:

χ(p) = (
d

p
) for odd primes not dividing D

χ(2) =





1 if d ≡ 1 (mod 8)

-1 if d ≡ 5 (mod 8)

χ(n) = 0 if (n,D) 6= 1

and extended multiplicatively for all integers relatively prime to D. For odd n, this

character equals the Jacobi symbol ( d
n
).

Theorem 10.3 For a real quadratic number ring R = A∩Q(
√

d) with discriminant

D, the class number h(D) is given by

h(D) =

√
D

2 log (u)
L(1, χ)

where u is the fundamental unit of the number ring and χ is the character described

above.

For a proof of this important theorem, see Appendix II. We will have occasion

to use this form in later arguments, but for the purpose of calculation, it is rather

cumbersome. It so happens that for real quadratic number rings with discriminant

D ≥ 3 that

|L(1, χ)| =
2√
D

∣∣∣∣∣∣

k<D/2∑

k∈Z∗D

χ(k) log sin

(
kπ

D

)∣∣∣∣∣∣
(see [4][p.201]).

Putting this result together with our previous one (and the fact that the class

number is positive) gives
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Theorem 10.4 For a quadratic number ring R = A∩Q(
√

d) with discriminant D,

the class number h(D) is given by

h(D) =
1

log (u)

∣∣∣∣∣∣

k<D/2∑

k∈Z∗D
χ(k) log sin

(
kπ

D

)∣∣∣∣∣∣

where u is the fundamental unit of the number ring and χ is the character described

above.

This formula is much easier to work with computationally. We will demonstrate

its use by calculating the class number for the field Q(
√

5) with discriminant 5.

Example 10.1

The number ring A ∩Q(
√

5) has class number given by

h(5) =
1

log
(

1+
√

5
2

)
∣∣∣∣∣∣

k<5/2∑

k∈Z∗5
χ(k) log sin

(
kπ

5

)∣∣∣∣∣∣
.

We note that the fundamental unit for this ring was computed directly from the

equation t2 − 5u2 = ±4 and taking the smallest values of t and u such that u > 1.

This sum reduces to

h(5) =

∣∣χ(1) log sin
(

π
5

)
+ χ(2) log sin(2π

5
)
∣∣

log (1+
√

5
2

)

=

∣∣log sin(π
5
)− log sin(2π

5
)
∣∣

log (1+
√

5
2

)

=

∣∣∣log
(

sin(π
5
)

sin( 2π
5

)

)∣∣∣
log (1+

√
5

2
)

=
log(2 cos(π

5
))

log (1+
√

5
2

)
.
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After some clever trigonometric manipulation, we find that

cos
(π

5

)
=

1 +
√

5

4
.

Thus h(5) = 1. ¤

In the absence of having exact values for the trigonometric functions, reasonable

approximations can be employed to evaluate the class number (as it is an integer).

However, for large discriminants, it is easily seen that this formula is still unwieldy.

We will examine algorithms for computing the class number in later sections (these

methods also have the advantage of determining the structure of the class group).
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11 APPROXIMATIONS FOR CLASS NUMBERS

We still have not answered the question which we raised at the beginning of

the paper. Is the number of quadratic number rings A ∩ Q(
√

d) where
√

d has a

continued fraction expansion of period three with class number one finite? The class

number formula 10.3 gives us a means of answering this if we can find a reasonable

approximation of L(1, χ). Such an approximation exists.

According to a result by Tatuzawa [10], we have (with at most one exception)

L(1, χ) > 0.655ηD−η

for

0 < η <
1

2
and D ≥ max{e 1

η , e22}.

Since we have already shown that our rings cannot have class number one unless

d is congruent to 1 modulo 4, it suffices to consider this case alone. In particular,

d = D. Utilizing the approximation above, we find that

h(D) =

√
D

2 log (u)
L(1, χ)

>

√
D

2 log (u)
0.655ηD−η

=
0.655ηD−η+0.5

2 log u

with the appropriate restrictions on D and η.

In order to use this result, we must first find a suitable approximation of the

fundamental unit in terms of D. We have already given the form of this unit earlier

as

u = (16n4` + 4n3 + 8n2` + 3n + `) + (4n2 + 1)
√

d.



We desire an upper bound on this unit in terms of D. To determine this upper

bound, we note that this unit can be written as

u = λ

(
(
√

D + a0)
2

4`n + 1

)

where

λ =
`(4n2 − 1) + n +

√
D

4`n + 1

and a0 is the first coefficient in the continued fraction expansion for
√

D.

Since a0 = `(4n2 + 1) + n and a0 <
√

D we have that

λ =
`(4n2 − 1) + n +

√
D

4`n + 1

<
a0 +

√
D

4`n + 1

<
2
√

D

4`n + 1

<
√

D.

In similar fashion,

(
√

D + a0)
2

4`n + 1
<

4D

4`n + 1

< D

which gives us

u < D3/2.

These estimates for u in terms of D seem rather severe. The upper bound on D

given in Tatuzawa’s approximation of L(1, χ) will justify making these estimates.
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Returning to our approximation for the class number,

h(D) >
0.655ηD−η+0.5

2 log u

>
0.655ηD−η+0.5

3 log D
.

If we can find η between 0 and 0.5 such that when D > max{e22, e1/η}

0.655ηD−η+0.5

3 log D
> 1

then we will have found a bound for D after which none of our quadratic number

rings can have class number one. Choosing η = 0.21, since e1/0.21 < e22 and since

0.655(0.21)D−0.21+0.5

3 log D
> 1

when D > e22 we have that the number of our rings with class number one must

be finite. In addition, we have an upper bound with which to work! For D ≥
3, 600, 000, 000, h(D) > 1.

Thus, we have proven

Theorem 11.1 The number of quadratic number rings A∩Q(
√

d) where
√

d has a

continued fraction expansion of period three having class number one is finite. Any

such ring with class number one must have discriminant less than 3, 600, 000, 000

(with at most one exception).

We can actually prove something stronger. The smallest value of η we can use

and retain e22 as an upper bound on D is obviously 1
22

. Using this value as a lower

bound for η proves that with at most one exception, all the number rings under

consideration with class number less than or equal to 9 must have discriminants less

than 3, 600, 000, 000.
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Theorem 11.2 The number of quadratic number rings A∩Q(
√

d) where
√

d has a

continued fraction expansion of period three having class number less than or equal

to 9 is finite. Any such ring must have discriminant less than 3,600,000,000 (with

at most one exception).

Running a search using Maple shows that there are exactly 21198 values of d less

than 3,600,000,000. We can reduce this number slightly by retaining only the ones

which are squarefree (which can easily be tested on Maple with the Möbius function).

Of the remaining 19549 values of d, we find that only 3 have class number one. Thus,

the maximum number of unique factorization domains we could have is four. Tables

3 and 4 in Appendix A list all values of d having class number less than 10 (with

at most one exception). We will consider the means by which these tables were

compiled in the following section.
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12 ALGORITHMS FOR COMPUTING CLASS NUMBER

We have shown that the number of unique factorization domains among our

number rings is finite. In addition, we have an upper bound on the discriminant for

such rings. The next logical step in our treatment is to attempt a search for these

rings. Thus, we need an efficient algorithm for computing the class number.

In theory, we already have a formula suitable for such an algorithm - the class

number formula (as given in 10.4). However, a close inspection of this formula shows

that it would be terribly inefficient for discriminants of the size we will need to con-

sider. Since we already have a closed form for the fundamental unit (which can be a

problem in general), all the major computation time will be spent evaluating the sum

in 10.4. In evaluating this sum, we will first need to determine whether each k less

than bD
2
c is relatively prime to D. The value of log sin can be approximated rather

quickly using appropriate series representations. The major difficulty in evaluating

the individual summands is computing the Jacobi symbol χ(k) (which requires its

own separate algorithm).

Running this algorithm on Maple (which has the Jacobi symbol preprogrammed)

is effective only for discriminants on the order of one thousand or so. There are

known improvements for prime discriminants using Bernoulli numbers. This is only

a slight improvement since evaluating the appropriate Bernoulli number becomes in-

creasingly difficult as the discriminant increases; the 2nth Bernoulli number depends

on each of the n − 1 Bernoulli numbers preceding it (recall that the mth Bernoulli

number is 0 if m is odd).

An alternative method for computing class numbers exists and has been pro-

grammed into the computer package PARI. We examine the fundamental aspects

of this algorithm without delving too deeply into the specifics. One rather amazing

aspect of this algorithm is that computing the structure of the class group (which



gives us the class number) is more efficient than computing the class number alone

[2][p.235].

To avoid making case distinctions, we let D be the discriminant of our number

ring (which is equal to d if d is congruent to 1 modulo 4 and 4d otherwise). Then

our number ring can be represented succinctly as Z[ω] where

ω =
D +

√
D

2
.

Instead of working with the ideals directly, we use binary quadratic forms.

Definition 12.1 A binary quadratic form f is a function f(x, y) = ax2 + bxy + cy2

where a, b, and c are integers. We denote this form more briefly as (a, b, c). We

say that a form (a, b, c) is primitive if gcd(a, b, c) = 1. The discriminant D of a

quadratic form (a, b, c) is given by D = b2 − 4ac.

We let a matrix act on a form f by:




α β

γ δ


 • f(x, y) = f(αx + βy, γx + δy)

We also define an equivalence relation on forms as follows:

Definition 12.2 If f and g are two quadratic forms, then we say f and g are

equivalent if there exists a matrix




α β

γ δ


 in SL2(Z) such that

g(x, y) =




α β

γ δ


 • f(x, y) = f(αx + βy, γx + δy)

Recall that SL2(Z) is the set of two-by-two matrices with entries in Z having deter-

minant equal to one.
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This equivalence relation preserves the discriminant of our form (which can be

checked by expanding the resulting form and checking the discriminant remembering

that αδ − βγ = 1). Since we will be interested in forms with discriminants that are

discriminants of number rings (which implies that D is squarefree or divisible by four

and no other perfect square), it follows that all of the forms we will be interested in

are primitive. If such a form were not primitive, then gcd(a, b, c) would be greater

than or equal to two. If the gcd is larger than 2, we have a contradiction since then

D would be divisible by a square larger than four. If g = 2 then d must be congruent

to 2 or 3 (mod 4). In this case we would have d = (b′)2−4(a′)(c′) (where the primed

coefficients are the ones remaining from D = b2 − 4ac after dividing through by

four). This is clearly impossible. Hence gcd(a, b, c) = 1.

Since the matrices A and −A in SL2(Z) determine the same action on a form

f , the natural group to act on quadratic forms is PSL2(Z) where the matrices A

and −A are identified. We will treat members of PSL2(Z) as matrices instead of

equivalence classes of matrices to avoid unnecessary notational difficulties. Let us

denote by F(D) the set of equivalence classes of primitive forms with discriminant

D modulo the action of PSL2(Z).

Using these equivalence classes of forms we can establish a correspondence be-

tween ideal classes in our number rings and classes of forms. Since the forms are

easier to work with computationally, we will have a nice set of objects from which

to construct our algorithm.

It will be convenient in what follows to consider the narrow class number of a

number ring.

Definition 12.3 Two ideals I and J are said to be equivalent in the narrow sense

(denoted ∼n) if there exists an element α in the number field with positive norm

such that I = α J.
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Recall that two ideals I and J are said to be equivalent in the general sense if

there exists an element α in our number field such that I = αJ (this is a trivial

modification of our original definition). So, every narrow ideal class is a subset of

an ideal class. In addition, it is clear that each ideal splits into exactly two narrow

ideal classes. Thus, if we denote by H+(D) and h+(D) the narrow class group and

narrow class number of our number ring respectively, then we must have

h+(D) = 2h(D).

We mentioned in the earlier section on number rings that every ideal I in a

number ring can be given by an integral basis. In fact, we can choose the integral

basis as follows:

I = aZ+ (b + cω)Z

where a is the smallest positive integer in I, 0 ≤ b < a and 0 < c divides a and b

[2][p.220]. In this case, N(I) = ac.

We are now ready to give the correspondence between the narrow ideal classes

and the set F(D) of primitive forms with discriminant D modulo PSL2(Z).

Theorem 12.1 Let D be the discriminant of a real quadratic number ring, and let

the maps

ψFI : F(D) → H+(D)

and

ψIF : H+(D) → F(D)
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be given by

ψFI(a, b, c) =

(
aZ+

−b +
√

D

2
Z

)
q

and

ψIF (ω1Z+ ω2Z) =
N(xω1 − yω2)

N(ω1Z+ ω2Z)

respectively, where q is any non-zero element of the number field Q(
√

D) such that

sign(N(q)) = sign(a), and {ω1, ω2} is any integral basis for the ideal I such that

ω2ω1 − ω1ω2√
D

> 0

(where ωi represents the algebraic conjugate of ωi). Then ψFI and ψIF are inverse

bijections.

Proof of Theorem 12.1:

We prove the theorem in three parts. We first show ψFI is well-defined on F(D)

(i.e. that equivalent forms map to the same ideal class). We then do the same for

ψIF . Once we have established that these maps are well-defined, we show that they

are inverses of each other. This automatically guarantees the bijection.

ψFI is well-defined:

We suppose that (a, b, c) ∼ (d, e, f) and that D = b2 − 4ac = e2 − 4df . We can also

suppose without loss of generality that a is positive. By definition, there is some

matrix in PSL2(Z) such that




α β

γ δ


 • (a, b, c) = (d, e, f)

where αδ − βγ = 1. Remembering the definition of the action of PSL2(Z) on a
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quadratic form gives the following relations:

d = aα2 + bαγ + cγ2

e = 2aαβ + bαδ + bβγ + 2cγδ

f = aβ2 + bβδ + cδ2.

These prove a bit cumbersome, so we will develop more convenient notation as

we progress. We are interested in how the ideal class

(
aZ+ −b+

√
D

2
Z

)
q

behaves when we apply an element of PSL2(Z). Since we are only interested in the

ideal up to a multiple of Q(
√

D), we choose to factor out a and absorb it into q:

(Z+ τZ) q

where

τ =
−b +

√
D

2a

The resulting set (ignoring the q) is no longer an ideal but a fractional ideal (i.e.

a set that becomes an ideal when it is multiplied by an appropriate element of the

field). The details of fractional ideals will not concern us too much.

After some lengthy algebra, we find that d can be written as

d = aN(−γτ + α)
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which in turn gives that τ becomes

τ −→ δτ − β

−γτ + α

(which we call τ ′) under the action of




α β

γ δ


. Thus, the ideal class becomes

(Z+ τZ) q −→ (Z+ τ ′Z) q′

under this action. If we can show for an appropriate element q of Q(
√

D) that

(Z+ τ ′Z) = (Z+ τZ) q

then these two ideal classes are equivalent and ψFI will be well-defined. We will

show that

(Z+ τ ′Z) =
(Z+ τZ)

−γτ + α
.

We begin by first observing that the relation αδ − βγ = 1 ensures that α and

β are relatively prime. In fact, every element of PSL2(Z) can be determined by

specifying α, β, and an arbitrary integer n (since γ = γ0 +nα and δ = δ0 +nβ where

γ0 and δ0 are determined by the Euclidean Algorithm).

Let x = `+mτ ′ be an arbitrary element of Z+τ ′Z. Then by simple rearrangement

we see that

x = ` + mτ ′

=
`(−γτ + α) + m(δτ − β)

−γτ + α

=
(`α−mβ) + (mδ − `γ)τ

−γτ + α
.
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Hence, x is also in (Z+τZ)
−γτ+α

. Thus, we have

(Z+ τ ′Z) ⊆ (Z+ τZ)

−γτ + α
.

To show the reverse containment, it suffices to show that a general element x of

Z + τZ is in (−γτ + α)(Z + τ ′Z). Let x = ` ′ + m′τ where ` ′ and m′ are integers.

We find integers ` and m such that x = (−γτ + α)(` + mτ ′). Since

x = (−γτ + α)(` + mτ ′)

= −`γτ + α` + m(δτ − β)

= (α`− βm) + (δm− γ`)τ

we must have

` ′ = α`− βm

and

m′ = δm− γ`.

These equations give that

` =
` ′(1 + βγ) + αβm′

α

and

m = αm′ + γ` ′

where ` is guaranteed to be an integer since αδ − βγ = 1 implies that 1 + βγ ≡ 0
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(mod α). Having shown the reverse containment, we have immediately that

(Z+ τ ′Z) =
(Z+ τZ)

−γτ + α
.

Note also that

N

(
1

−γτ + α

)
=

1

N (−γτ + α)

=
a

d
> 0

as required.

ψIF is well-defined:

We can think of an ideal class in H+(D) as given by an ideal I (with integral basis

{ω1, ω2} as described in the theorem) times an element q of the field Q(
√

D) with

positive norm (which is arbitrary except for the requirement that αI be an ideal of

the number ring). We note that the integral basis described immediately before the

theorem meets the condition given by the theorem.

Then

ψIF (qI) =
N(xω′1 − yω′2)

N(qI)

where {ω′1, ω′2} is the corresponding integral basis for qI. It is clear that ω′i = qωi

and using the fact that the norm is multiplicative (for both elements and ideals) we

have that

ψIF (qI) =
N(xqω1 − yqω2)

N(qI)

=
N(q)N(xω1 − yω2)

N((q))N(I)

=
N(xω1 − yω2)

N(I)
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= ψIF (I).

Technically, N((q)) = |N(q)| (where the norm on the left is on a principal ideal while

the one on the right is on an element). Since we restricted ourselves to elements

of positive norm, we get equality, and the cancellation is justified. Thus, ψIF is

well-defined on the ideal classes of H+(D).

ψIF and ψFI are inverse bijections:

By using an appropriate element of PSL2(Z), we can assume that a form (a, b, c) has

a > 0.

ψIF (ψFI(a, b, c)) = ψIF

(
aZ+

−b +
√

D

2
Z

)

=
N(xa− y(−b+

√
D

2
))

N
(
aZ+ −b+

√
D

2
Z

)

=

(
xa + by

2

)2 −D y2

4

N
(
aZ+ −b+

√
D

2
Z

)

=
a2x2 + abxy + b2−D

4
y2

N
(
aZ+ −b+

√
D

2
Z

)

=
a2x2 + abxy + acy2

N
(
aZ+ −b+

√
D

2
Z

)

=
a2x2 + abxy + acy2

a

= (a, b, c)

We have used the fact that N
(
aZ+ −b+

√
D

2
Z

)
= a which can be shown by several

different means. Perhaps the easiest is by comparing fundamental parallelotopes

under the mapping sending the ring into R2.
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ψFI(ψIF (qI)) = ψFI (q[a′Z+ (b′ + `ω)Z])

where we have used an integral basis for I as described above. Since ` must divide a′

and b′ we can factor it out and absorb it into the element q. By renaming constants

appropriately, our representative for the ideal class becomes

aZ+ −b+
√

D
2

Z.

Thus,

ψFI(ψIF (qI)) = ψFI

(
q
N(ax− −b+

√
D

2
y)

a

)

= ψFI(q(ax2 + bxy + cy2))

= ψFI(q(a, b, c))

= qI

Hence, ψIF and ψFI are inverse bijections. QED

We can represent an ideal class by a class of quadratic forms. The key advantage

to this approach is that we can easily identify a special type of form in each class

(which we call reduced). Unfortunately, for real quadratic number rings (as opposed

to imaginary) the reduced forms are not unique in each class but are cyclic. Thus,

we must identify the reduced forms for a given discriminant D and then determine

the cycle structures among these to determine the narrow class number.

Definition 12.4 Let f = (a, b, c) be a quadratic form with positive discriminant D.
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We say that f is reduced if we have

∣∣∣
√

D − 2|a|
∣∣∣ < b <

√
D.

We have as an easy proposition the following results [2][pp.257-258]:

Proposition 12.1 Let (a, b, c) be a reduced form with positive discriminant D.

Then:

(1) |a|, b, and |c| are less than
√

D and a and c are of opposite signs

(2) |a|+ |c| < √
D

(3) (a, b, c) is reduced if and only if
∣∣∣
√

D − 2|c|
∣∣∣ < b <

√
D.

We now give a means of reducing an arbitrary form with discriminant D.

Definition 12.5 Let D > 0 be a discriminant. If a 6= 0 and b are integers, we

define r(b, a) to be the unique integer r such that r ≡ b (mod 2a) and −|a| < r ≤ |a|
if |a| > √

D,
√

D − 2|a| < r <
√

D if |a| < √
D.

We define the reduction operator ρ on a form (a, b, c) with discriminant D > 0

by

ρ(a, b, c) =

(
c, r(−b, c),

r(−b, c)2 −D

4c

)
.

To find a reduced form equivalent to a given one, we just repeatedly apply the

reduction operator until we arrive at a reduced form. To show that this is effective

we look at the action of ρ on a reduced form and then on forms in general.

If (a, b, c) is reduced, then |c| <
√

D. Thus the action of ρ on (a, b, c) gives the

form (c, r, c′) where
√

D − 2|c| < r <
√

D and c′ is number given in the definition.

This is clearly reduced, but not the same form. Hence, there are multiple reduced

forms in each class.
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If we restrict ourselves to the reduced forms in a given class, then ρ acts as a

permutation with inverse

ρ−1(a, b, c) =

(
r(−b, a)2 −D

4a
, r(−b, a), a

)

which can be verified by direct computation. Since we can have only a finite number

of reduced forms in a given class we must have that every form (a, b, c) is equivalent

to a cycle of reduced forms. Hence, (a, b, c) is equivalent to a reduced form given by

ρn(a, b, c) for n sufficiently large.

So, to determine the narrow class number of a given real quadratic number ring

R = A ∩ Q(
√

D), we need only list all the possible reduced quadratic forms with

discriminant D and apply the reduction operator to determine the cycle structures

among them. The number of orbits under the action of ρ will be the narrow class

number (which is twice the class number). We illustrate with an example.

Example 12.1

We consider R = A∩Q(
√

60). Our first task is to find all of the possible reduced

forms. Since b2 − 4ac = 60 this is equivalent to finding all pairs (a, b) that meet the

following conditions:

(1) |a| < √
60

(2) |√60− 2|a|| < b <
√

60

(3) b ≡ 0 (mod 2)

(4) 4a|b2 − 60.

The first two conditions are a direct consequence of the definition of reduced form.

Condition (3) comes from the observation that b2 ≡ 60 (mod 4). Condition (4)

ensures that c in the quadratic form is integral.
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The possible values of a with the potential values of b are:

a ±1 ±2 ±3 ±4 ±5 ±6 ±7

b 6 4,6 2,4,6 2,4,6 2,4,6 4,6 6

Checking condition (4) gives us the following list of reduced forms for D = 60:

(1, 6,−6); (−1, 6, 6); (2, 6,−3); (−2, 6, 3);

(3, 6,−2); (−3, 6, 2); (6, 6,−1); (−6, 6, 1).

The only thing left to check are the orbits under ρ. We can easily verify that:

ρ(1, 6,−6) = (−6, 6, 1) ρ(−6, 6, 1) = (1, 6,−6)

ρ(−1, 6, 6) = (6, 6,−1) ρ(6, 6,−1) = (−1, 6, 6)

ρ(2, 6,−3) = (−3, 6, 2) ρ(−3, 6, 2) = (2, 6,−3)

ρ(−2, 6, 3) = (3, 6,−2) ρ(3, 6,−2) = (−2, 6, 3).

Hence, the narrow class number is 4. Recalling that the class number is always

one-half the narrow class number we can see that the class number of R = A∩Q(
√

60)

must be 2. ¤

This method can easily be made into an effective algorithm for computing the

class number. In its current form, it is still rather inefficient. Many improvements

have been made to this algorithm that bear mentioning.

In our example, we were only concerned with the class number, not the structure

of the class group. To deal with class structure, it is possible to define a composition

of forms that mimics the multiplication of ideals [2][pp. 241-242]. Using such a

composition, we can examine the group structure of the reduced forms which will
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give us the structure of the narrow class group. We pass to the structure of the class

group by identifying the forms (a, b, c) and (−a, b,−c).

One of the more original ideas used to improve the efficiency of the computation

is the introduction of a distance function defined on equivalent forms [2][pp. 274-

278]. This distance function allows for a more rapid reduction of the forms. Even

though we can count the reduced forms directly, the composition of two reduced

forms is not guaranteed to be reduced. Thus, the introduction of a distance between

forms greatly increases the efficiency of determining the class structure.

This algorithm has been programmed into a number theoretic software package

called PARI by Henri Cohen, et al. Tables 3 though 6 in Appendix A were ob-

tained by using PARI to determine the class number of real quadratic rings R =

A ∩Q(
√

d) (where
√

d has period three) with discriminant less than 3,600,000,000.

From our results in the previous section we know that for discriminants larger than

3,600,000,000, the class number must be at least ten (with at most one omission).

If we were just interested in the rings with class number one, we could have

reduced the number of discriminants we need to check (which is about 19,550) to

around 400 entries using our results on the divisibility of d obtained in Section 7.

We opted to determine all 19,550 (which took approximately 6 hours). Interestingly

enough, every possible class number up to 150 appears in this list except for five

(43, 51, 79, 101, and 145). Of course, to verify that these are actually omitted, we

would need to check all discriminants up to 2.125 trillion.
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13 CONCLUSION

We have shown conclusively that the number of UFDs for real quadratic number

rings Q(
√

d) where d has continued fraction expansion of period three is at most

four. Using analytic results coupled with computational algorithms, we have given

a list of these rings along with all rings having class number less than ten (with at

most one exception).

There are several interesting unanswered questions that we have raised along

the way. The first is whether any prime congruent to three modulo four divides

the values of d given by the parametrization we found in Section 3. We did find a

sufficient condition guaranteeing that a prime congruent to three modulo four does

not divide any given d. This condition is not necessary however.

The second deals with bounds on the class number. The Tatuzawa result gives

a rough lower bound for the class number. It seems to be a rather poor one how-

ever since the three values of d leading to UFDs have discriminant much less than

3,600,000,000. Are better approximations possible?

Looking at the 19,550 rings for which we know the class number, it would appear

that when d ≡ 1 (mod 4), h(d) has a lower bound of about 0.007
√

D (d = D in this

case). For d ≡ 2 (mod 4), we see that h(d) has a lower bound of about 0.011
√

D

(D = 4d in this case).

Third, are any class numbers omitted for our number rings Q(
√

d)? We have

stated that all the class numbers up to 150 except for five appear in our current

list. Tatuzawa’s lower bound on the L-function gives us an upper bound on the

discriminant size we have to check, but the upper bound we obtain is large enough

to cause serious computational problems.

Finally, the question of whether the number of arbitrary real quadratic number

rings with class number one is infinite is still open (as it has been since the time of



Gauss). Our results seem to indicate that while looking at a particular case is useful

in many respects, it is unlikely that there are an infinite number of UFDs for a given

period length.

A related question that might be of interest is whether there is a UFD for each

period length. This combined with the fact that there is always a d such that
√

d has

a given period length would prove that there are an infinite number of real quadratic

number rings with class number one. The paper by Mollin [9] listed in the references

provides results along this line (for period lengths up to 24).
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APPENDIX A - TABLES

Table 2: d for Small Values of ` and n

` n d [a0; a1, a1, 2a0]

1 1 41 [6; 2, 2, 12]

2 1 130 [11; 2, 2, 22]

3 1 269 [16; 2, 2, 32]

1 2 370 [19; 4, 4, 38]

2 2 1313 [36; 4, 4, 72]

3 2 2834 [53; 4, 4, 106]

1 3 1613 [40; 6, 6, 80]

2 3 5954 [77; 6, 6, 154]

3 3 13033 [114; 6, 6, 228]



Table 3: Discriminants with Class Number less than 101

` n d D h(D) H(D)

1 1 41 41 1 {0}
3 1 269 269 1 {0}
1 3 1613 1613 1 {0}
4 1 458 1832 2 Z2

15 1 5837 5837 2 Z2

4 2 4933 4933 3 Z3

19 1 9293 9293 3 Z3

2 1 130 520 4 Z2 ⊗ Z2

1 2 370 1480 4 Z2 ⊗ Z2

6 1 986 3944 4 Z2 ⊗ Z2

2 2 1313 1313 4 Z4

10 1 2642 10568 4 Z4

3 2 2834 11336 4 Z2 ⊗ Z2

8 2 19109 19109 4 Z4

5 3 35405 35405 4 Z2 ⊗ Z2

39 1 38573 38573 4 Z4

1 7 41645 41645 4 Z4

9 1 2153 2153 5 Z5

1This table omits at most one discriminant.
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Table 4: Discriminants with Class Number less than 10 (continued)

` n d D h(D) H(D)

11 1 3181 3181 5 Z5

5 1 697 697 6 Z6

1 4 4778 19112 6 Z6

31 1 24461 24461 6 Z6

55 1 76397 76397 6 Z6

12 2 42533 42533 7 Z7

43 1 46829 46829 7 Z7

6 4 155333 155333 7 Z7

24 2 168293 168293 7 Z7

12 1 3770 15080 8 Z2 ⊗ Z2 ⊗ Z2

5 2 7610 30440 8 Z4 ⊗ Z2

18 1 8354 33416 8 Z8

22 1 12410 49640 8 Z2 ⊗ Z2 ⊗ Z2

67 1 113165 113165 8 Z4 ⊗ Z2

87 1 190445 190445 8 Z4 ⊗ Z2

4 6 343493 343493 8 Z8

13 1 4409 4409 9 Z9

2 4 17989 17989 9 Z9
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Table 5: Class Numbers for small d

` n d D h(D) H(D)

1 1 41 41 1 {0}

2 1 130 520 4 Z2 ⊗ Z2

3 1 269 269 1 {0}

1 2 370 1480 4 Z2 ⊗ Z2

4 1 458 1832 2 Z2

5 1 697 697 6 Z6

6 1 986 3944 4 Z2 ⊗ Z2

2 2 1313 1313 4 Z4

1 3 1613 1613 1 {0}

8 1 1714 6856 12 Z12

9 1 2153 2153 5 Z5

10 1 2642 10568 4 Z4

3 2 2834 11336 4 Z2 ⊗ Z2

11 1 3181 3181 5 Z5

12 1 3770 15080 8 Z2 ⊗ Z2 ⊗ Z2

13 1 4409 4409 9 Z9

1 4 4778 19112 6 Z6

4 2 4933 4933 3 Z3

14 1 5098 20392 18 Z18

15 1 5837 5837 2 Z2
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Table 6: Class Numbers for small d (continued)

` n d D h(D) H(D)

2 3 5954 23816 12 Z6 ⊗ Z2

16 1 6626 26504 16 Z16

17 1 7465 7465 18 Z18

5 2 7610 30440 8 Z4 ⊗ Z2

18 1 8354 33416 8 Z8

19 1 9293 9293 3 Z3

20 1 10282 41128 16 Z8 ⊗ Z2

6 2 10865 10865 12 Z6 ⊗ Z2

1 5 11257 11257 17 Z17

21 1 11321 11321 15 Z15

22 1 12410 49640 8 Z2 ⊗ Z2 ⊗ Z2

3 3 13033 13033 13 Z13

23 1 13549 13549 12 Z12

7 2 14698 58792 18 Z18

24 1 14738 58952 12 Z12

25 1 15977 15977 10 Z10

26 1 17266 69064 32 Z8 ⊗ Z4

2 4 17989 17989 9 Z9

8 2 19109 19109 4 Z4

28 1 19994 79976 20 Z10 ⊗ Z2
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APPENDIX B - PROOF OF THE CLASS NUMBER FORMULA

We prove the class number formula in stages. We first examine the Riemann

zeta function ζ(s) and calculate its residue at s = 1. We then define the Dedekind

zeta function ζK(s) and expand it in terms of ζ(s) and appropriate Dirichlet L-

functions. We then find the residue of the Dedekind zeta function at s = 1 using

this expansion. Finally, we use a geometric argument to find the residue of the

Dedekind zeta function in a second way (which will involve the class number of the

field K). Combining these results will give us a formula for the class number in terms

of L-functions.

Recall that the Riemann zeta function is defined to be

ζ(s) =
∞∑

n=1

1

ns

where s = σ + it is a complex variable. This function is analytic on the half-plane

σ > 1. The Riemann zeta function also admits a nice product form due to Euler:

ζ(s) =
∏

p

(
1− p−s

)−1
.

We can actually say more about the zeta function. On the half-plane σ > 0,

ζ(s) is analytic except for a simple pole at s = 1. To see this, we first consider the

function

S(s,m, k) =
k∑

n=m+1

n−s.

It can be easily verified that

S(s,m, k) =
k−1∑
n=m

n

(
1

ns
− 1

(n + 1)s

)
−m1−s + k1−s



and

n

(
1

ns
− 1

(n + 1)s

)
= s

∫ n+1

n

bxc
xs+1

dx.

Since the sum of these terms becomes a sequence of abutting integrals, we can write

S(s,m, k) = s

∫ k

m

bxc
xs+1

dx−m1−s + k1−s

which we change slightly to assure convergence of the integral by

S(s,m, k) = −s

∫ k

m

x− bxc
xs+1

dx +
1

s− 1
(m1−s − k1−s).

Letting m = 1 and k → ∞ we see that S(s,m, k) → ζ(s) − 1 and so we have for

σ > 1

ζ(s) =
1

s− 1
+ 1− s

∫ ∞

1

bxc − x

xs+1
dx. (14)

This form can be shown to be the analytic continuation for ζ(s) on σ > 0. Since

0 ≤ x − bxc ≤ 1, it follows that the integral in (14) is bounded. Hence, ζ(s) has a

simple pole at s = 1 with residue 1.

We now consider the Dedekind zeta function ζK(s) for a given number field K:

ζK(s) =
∞∑

n=1

jn

ns

where jn denotes the number of ideals I of the number ring R = A∩K with ‖I‖ = n.

By the unique factorization of ideals, we know that for each n, jn must be finite.

So, this function is analytic on σ > 1 and can be extended to a function analytic on

σ > 0 in much the same way that the Riemann zeta function was extended. We do
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this in two different ways and compare the residues at s = 1.

We begin by noting that we can also represent the Dedekind zeta function in two

additional ways. The first merely changes the sum from one over n to one over the

ideals of R:

ζ(s) =
∑
I∈R

1

‖I‖s
.

Since we have unique factorization of ideals, this sum can be rewritten as a product

exactly as the Riemann zeta function:

ζ(s) =
∏
P∈R

(
1− 1

‖P‖s

)−1

where P represents a prime ideal in R. This product can be recast into a product

over the rational primes by recalling that each prime ideal in R lies over a unique

prime p in Z. Since we are dealing with normal extensions of Q it follows that every

prime ideal lying over p must have the same norm

‖P‖ = pfp

where fp is a constant for each p (called the inertial degree of P over p). If there are

rp primes lying over the rational prime p we must have

ζK(s) =
∏

p

(
1− 1

pfps

)−rp

where the product is taken over all rational primes.

Next, we discuss some basic results for arbitrary number fields K which are

abelian extensions of Q. We will quickly specialize to the case of real quadratic

number fields to make the arguments more tractable. Since we are dealing with
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abelian extensions, the famous theorem of Kronecker and Weber tells us that K is a

subfield of a cyclotomic field. Since the Galois group of the cyclotomic field of degree

m over Q is isomorphic to Z∗m, we can assume that the character group of our field

are characters modulo m (sometimes called Dirichlet Characters). So, if Ĝ are the

characters corresponding to the Galois group of our field K, then we can consider

Ĝ to be a subgroup of Ẑ∗m. In the case of real quadratic number fields, we know

that Q(
√

d) is a subfield of the Dth cyclotomic field where D is the discriminant of

Q(
√

d). Hence, the Galois group G of Q(
√

d) is the subgroup of Z∗D of order two that

fixes Q(
√

d). Hence, the character group Ĝ of Q(
√

d) is the corresponding subgroup

of Ẑ∗D. This group contains the trivial character (which assigns one to every integer

relatively prime to D and zero to any other integer). And the character given by:

χ(p) = (
d

p
) for odd primes not dividing D

χ(2) =





1 if d ≡ 1 (mod 8)

-1 if d ≡ 5 (mod 8)

χ(n) = 0 if (n,D) 6= 1

and extended multiplicatively for all integers relatively prime to D. For odd n, this

character equals the Jacobi symbol ( d
n
).

The Dirichlet L-function

L(s, χ) =
∞∑

n=1

χ(n)

ns
.

also admits a product representation

L(s, χ) =
∏

p6÷D

(
1− χ(p)

ps

)−1

.
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It can be shown that taking the product of all L-functions over the character group

gives [4][pp.194-195]

∏

χ∈Ĝ

L(s, χ) =
∏

p 6÷D

(
1− 1

pfps

)−rp

which gives us that

ζK(s) =
∏

p|D

(
1− 1

pfps

)−rp ∏

χ∈Ĝ

L(s, χ).

Separating out the trivial character and noting that

L(s, 1) = ζ(s)
∏

p|D

(
1− 1

ps

)

we see that

ζK(s) = ζ(s)
∏

p|D

(
1− 1

ps

)(
1− 1

pfps

)−rp ∏

χ∈ Ĝ−{1}
L(s, χ).

In the special case of real quadratic number fields, there is only one non-trivial

character. In addition, when p|D, we can see from our results on prime ideals that

fp = 1 and rp = 1. Hence, we see that

ζK(s) = ζ(s)L(s, χ)

where χ is the non-trivial character described above. We wish to characterize the

pole of the Dedekind zeta function at s = 1. To that end, we note that for any

non-trivial character, L(s, χ) is analytic on σ > 0 [4][pp.195-196]. Hence, ζK(s) has

a simple pole at s = 1 (since ζ(s) has one there) and the residue of ζK(s) at s = 1

is given by L(1, χ).
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We now compute the residue of ζK(s) in a different fashion. Equating these two

forms for the residue will yield the class number formula. To that end, we try to

estimate the number jn appearing in the original definition of the Dedekind zeta

function.

We begin by counting the number of ideals in a particular ideal class C with

norm less than or equal to a given n. Denote this quantity by iC(n). To estimate

this number, we fix an ideal J in C−1 (the inverse class of C) and note that for any

ideal I in C, IJ = (α) for some α in R. Since ‖I‖ ≤ n if and only if |N(α)| ≤ n‖J‖,
counting ideals in R with norm less than or equal to n is nearly equivalent to counting

elements in R whose norm is less than or equal to n‖J‖. The one problem with this

approach is that the principle ideal (α) equals the principle ideal (uα) where u is

any unit in R. Thus, when we count at the element level, we must ensure that we

do not count any associates. If there were only a finite number of units, this would

not be an issue (since we could count all elements and then divide by the number of

units). Unfortunately, we know that for real quadratic number rings, there are an

infinite number of units. Thus, we must find a way of excluding associates from our

counts.

To avoid over-counting, we construct a subset D of R in which no two members

differ by a unit and such that every non-zero element of R has a unit multiple in

D. This can be done by letting D be a set of coset representatives for U (the unit

group) in R−{0} (which is a multiplicative monoid). To make the arguments more

concrete, we discuss the real quadratic case only.

For real quadratic number rings, U is the direct product of the group {−1, 1}
with the infinite cyclic group {uk | k ∈ Z} where u is the fundamental unit. We

map our number ring into R2 by r → (r, σ(r)) where σ is the automorphism of the

corresponding number field taking each element to its algebraic conjugate (this is

the same map we employed when proving the Minkowski Bound). We let ΛR denote
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the image of R under this mapping (which is a two-dimensional lattice in R2.

We now re-map ΛR − {0} into R2 by (r, σ(r)) → (ln |r|, ln |σ(r)|). In total, we

have the following mappings:

R− {0} (r,σ(r))−→ ΛR − {0} (ln |r|,ln |σ(r)|)−→ Φlog(ΛR − {0})

where Φlog(ΛR − {0}) denotes the image of ΛR − {0} under the log map defined

above. The first mapping is a multiplicative isomorphism. The second mapping is

a multiplicative-to-additive isomorphism if we restrict ourselves to the elements of

ΛR − {0} with positive abscissas.

Since we want to construct a set of coset representatives for R− {0} modulo U ,

we need only consider elements in R+ since any negative element r is associated with

|r|. This restricts us to the portion of ΛR lying in the first and fourth quadrants

of R2. To find the appropriate regions in these quadrants, we first find the coset

representatives in Φlog(ΛR − {0}) (which will be easier than in ΛR − {0}). We then

pull this region back to its pre-image restricted to the first and fourth quadrants.

We then attempt to count the appropriate elements of ΛR − {0} in these regions.

Under the action of the log map, all units are sent to the line x + y = 0 in R2

(since the norm of a unit is ±1). We wish to find a region of the plane where all

the elements of R+ (under the composite map) are unassociated. Such a region is

shown in Figure 2.

96



Figure 2: Coset Representatives in Φlog(ΛR − {0})
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The quantity u in this diagram is the fundamental unit. This region pulls back

to the one shown in Figure 3.

Recall that we need only consider the portions of this region in the first and

fourth quadrants. Our job now is to estimate the number of points in the lattice ΛJ

(the image of the ideal J in R2) with |N(r)| = |rσ(r)| ≤ n‖J‖. We give a graphical

representation of this region in Figure 4 for concreteness.

The area enclosed by these boundaries is obviously

Area

2
=

∫ √
n‖J‖

0

(
x− 1

u2
x

)
dx +

∫ u
√

n‖J‖
√

n‖J‖

(
n‖J‖

x
− 1

u2
x

)
dx

= n‖J‖ ln(u).

Recall that we used vol(ΛR) to represent the area of the fundamental parallelo-

tope for the lattice ΛR (which is essentially the smallest parallelogram making up

the lattice). Similarly, we let vol(ΛJ) represent the area of the fundamental par-

allelotope of the sublattice ΛJ determined by the ideal J . This area is related to

vol(ΛR):

vol(ΛJ) = ‖J‖vol(ΛR)

= ‖J‖
√
|disc(R)|.
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Figure 3: Coset Representatives in ΛR − {0}
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Figure 4: Region Containing Appropriate Lattice Points
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We can obtain a rough estimate of the number of points of ΛJ in the specified

region of the plane simply by dividing the area of this region by vol(ΛJ). So, we find

that

iC(n) =
2n‖J‖ ln(u)

vol(ΛJ)
+ δ(n)

=
2 ln(u)√
|disc(R)|n + δ(n)

where δ(n) is a measure of the error we have incurred by the estimation. We need to

give a bound on this error. As n →∞ the error should be bounded by the number

of fundamental parallelotopes of ΛJ intersecting the boundary of our region. We

can estimate this number by taking the arc-length of this region and dividing by the

length of the smaller side of the parallelotope.

The arc-length is given by

L = 2

∫ √
n‖J‖

0

(
√

2) dx + 2

∫ u
√

n‖J‖

0

(√
1 +

1

u2

)
dx

+2

∫ u
√

n‖J‖
√

n‖J‖




√
1 +

(
n‖J‖
x2

)2

 dx

= 2
√
‖J‖

(√
2 +

√
u2 +

1

u2

)
√

n + 2

∫ u
√

n‖J‖
√

n‖J‖




√
1 +

(
n‖J‖
x2

)2

 dx.

Since we are only interested in giving an order approximation for the error, we

do not need to evaluate the last integral explicitly. We simply note that for

√
n‖J‖ ≤ x ≤ u

√
n‖J‖

the integrand is at most
√

2 and approximate accordingly. Hence, the arc-length is
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bounded by:

L ≤ 2
√
‖J‖

(√
2u +

√
u2 +

1

u2

)
√

n

Since vol(ΛJ) = ‖J‖ vol(ΛR), we know that the smaller side of the fundamental

parallelotope for ΛJ is approximately
√
‖J‖c where c is the smaller side of the

fundamental parallelotope for ΛR. Thus, as n →∞ we expect the error term in our

approximation to grow as

δ(n) ≈ f
√

n

where f is some constant independent of the ideal class C. Hence

iC(n) =
2 ln(u)√
|disc(R)|n + δ(n)

where δ(n) is O(n1/2) for all ideal classes.

If we now add up the ideals in all ideal classes with norm less than or equal to n

(which we denote i(n)) we see that

i(n) = h
2 ln(u)√
|disc(R)|n + δ(n)

where h is the class number of our number ring and δ(n) is O(n1/2).

We are interested in the quantity jn which is the number of ideals with norm

equal to n. This quantity should be given by

jn = i(n)− i(n− 1)

= h
2 ln(u)√
|disc(R)| + δ(n)− δ(n− 1).
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Hence jn − h 2 ln(u)√
|disc(R)|

is O(n−1/2) (since
√

n−√n− 1 is O(n−1/2)). This will help

us determine the residue of the Dedekind zeta function at s = 1.

By subtracting the term h 2 ln(u)√
|disc(R)|

ζ(s) from the summand of the Dedekind zeta

function and compensating appropriately, we see that

ζK(s) =
∞∑

n=1




jn − h 2 ln(u)√
|disc(R)|

ns


 + h

2 ln(u)√
|disc(R)|ζ(s),

and since we know the numerator of the summand is O(n−1/2), it follows that the

sum converges for s = 1. Hence, the pole at s = 1 must be contained in the

remainder term. Consequently, the residue must be h 2 ln(u)√
|disc(R)|

(since the residue of

the Riemann zeta function at s = 1 is one). Equating the two forms for the residue

of the Dedekind zeta function gives that

h =

√
disc(R)

2 ln(u)
L(1, χ)

where we have dropped the absolute value on the discriminant of R since we are

dealing with real quadratic number rings. This is precisely the formula given by

Theorem 10.3.
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